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This note shows that with a stochastic oracle, there exists a strongly convex objective such that no
deterministic optimization algorithm can reduce the expected gap at a rate faster than O(1/ε).

We first formalize stochastic optimization in the oracle-versus-optimizer paradigm (Nemirovski and
Yudin, 1983) in Section 1, and then sketch the state-of-the-art upper and lower bounds for the rate
of convergence (Agarwal et al., 2009) in Section 2. Intuitively, they show that there exists a first-
order stochastic oracle (which returns a noisy version of the gradient with zero mean and bounded
variance), such that for any optimization algorithm there exists an objective function on which the
gap is at least Ω(1/t) after querying the oracle for t times. However, this result is weak in the
following sense:

• They contrived a tough oracle which makes optimization hard. But in practice the optimizer
can engineer the stochastic mechanism in the oracle.

• The oracle was restricted to first-order, i.e. the expectation of the randomly returned result
is the true gradient. It is well known that by using a more expensive/informative oracle such
as the expectation oracle introduced by Nesterov (2005b), the rate of convergence for deter-
ministic algorithms can be accelerated from O(1/t) to O(1/t2). Therefore, it is conceivable
that using a stochastic version of such an oracle can also yield O(1/t2) rate of convergence.

• The outcome of the oracle is used for explicit updates. However, in practice implicit update
is often observed to converge faster.

Therefore, it was our hope that the O(1/t) lower bound could be bypassed by using implicit
update, and/or more informative oracles with a better stochastic mechanism. Unfortunately, this
hope was later dismissed in Section 3 by using a simple one dimensional example. By making a
weak assumption on the optimizer which is often satisfied, we strengthened the minimax lower
bound in (Agarwal et al., 2009) into a maximin (uniform) lower bound.

1. Oracle-versus-optimizer Model for Stochastic Optimization

In this section we try to give a rigorous and self-contained formalization of stochastic optimization.
Although the ideas are sometimes quite obvious, many subtleties exist and various normalizations
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are needed to rule out vacuous results. Nemirovski and Yudin (1983) devoted one chapter to this
end, and we just highlight some important conceptualizations based on (Agarwal et al., 2009).

Suppose we have a class of (deterministic) convex functions F =
{
f : Rd 7→ R : f is convex

}
, and a

class of feasible regions S =
{
S ⊆ Rd : S is convex

}
. Given any function f ∈ F and feasible region

S ∈ S, we want to find its minimizer
min
w∈S

f(w).

An optimization method is any procedure that solves this task, typically by repeatedly selecting
values from S. Our primary focus is: given some F and S, what is the minimum computational
labor any such optimization method would expend to find an ε accurate solution for any f ∈ F and
S ∈ S? An ε accurate solution w̄ means f(w̄) ≤ minw∈S f(w) + ε. We call f(w̄) −minw∈S f(w)
the gap of w̄.

In order to address this question, we follow the oracle model abstracted by Nemirovski and Yudin
(1983) which encompasses the following key elements.

• A class of objective functions F and feasible regions S,

• A set of deterministic or stochastic oracles O,

• For a given integer t, a class Mt of methods making t oracle queries.

Objective function and feasible region Scaling has subtle effect on the lower bounds. Suppose
by applying a methodM to an objective function f constrained to feasible region S, the gap can be
reduced to |f(w0)|

k after making k oracle queries where w0 is the initial guess. Then by arbitrarily
scaling up f , the gap can be arbitrarily scaled up. Similarly, when f is unbounded on S, changing w0

also allows one to arbitrarily scale up f(w0). Therefore, scaling assumptions are often introduced
such that, among other consequences, maxw∈S |f(w)| < L < ∞ for all f ∈ F and S ∈ S. For
example, Agarwal et al. (2009) assumed that

F =
{
f : Rd 7→ R : f is 1-Lipschitz continuous, i.e. |f(x)− f(y)| ≤ ‖x− y‖ for all x,y ∈ S

}
(1)

S =
{
S ⊆ Rd : S is convex, ‖x− y‖∞ ≤ 1 for all x,y ∈ S

}
. (2)

One can also assume that the nonsmooth objective f contains a bounded subgradient everywhere:

F = {f : ∀ w,∃ g ∈ ∂f(w), s.t. ‖g‖ ≤ 1} .

A weaker assumption made by Abernethy et al. (2008) is that the f contains a bounded subgradient
at every iterate wt. Since wt depends on the optimization method, this assumption in fact couples
the optimization method and the problem. Assumptions can also be be made indirectly. For
example, a standard assumption made in machine learning is that the data points xi are contained
in a R radius ball. This indirectly introduces restrictions on the empirical risk `(w; xi, yi).

One can also restrict the choice of S. In fact, the dependence of the lower bound on the shape of
the feasible region S can be quite interesting (via the so-called aspherity).
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Oracle An oracle is a possibly random function φ which takes a function f and a query point w,
and responses with an element φ(w, f) in an information set I. For example, an exact oracle of k-th
order returns f(w) and the first k derivatives of f at w. We now only consider first order oracle
and if f is not differentiable at w then any arbitrary subgradient of f at w is returned in place.
For the case of stochastic oracles which is the focus of this note, these values can be corrupted with
zero-mean noise whose variance is bounded. Later, we will discuss in more depth the stochasity
and localness of the oracle.

Method Method models the iterative optimization algorithm, which maps the outcome of the
oracle from step 1 to t− 1 to a new iterate wt. If the oracle is stochastic, which means its result is
random, then wt is also random.

1.1 Definition of rate of convergence

Although we have been discussing rates for lunch, its meaning can be quite tricky and a rigorous
formalization is important. Otherwise it is very easy to draw plausible conclusions.

In our oracle/method model, the rate of convergence coincides with the oracle complexity, i.e. the
number of queries made to the oracle. We will stick to this definition in the whole note.

Given some number of rounds/iterations t, an optimization methodMt designed to approximately
minimize a function f over a convex set S proceeds as follows: at any round k = 1, ..., t, the
method Mt queries the oracle φ at wk ∈ S, and the oracle returns the information φ(wk, f). The
method then uses the information φ(w1, f), . . . φ(wk, f) to decide at which point wk+1 the next
query should be made. We only consider deterministic methods, i.e. this mapping to wk+1 is not
random. For a given oracle φ, let Mt denote the class of all optimization methods Mt that make t
queries according to the procedure outlined above. For any method Mt ∈ Mt, we denote its error
on function f after t steps as

ε(Mt, f, S, φ) := f(wt+1)− inf
w∈S

f(w). (3)

When the oracle is stochastic, wt+1 is random and so is ε(Mt, f, S, φ). Then a natural measurement
of accuracy is in terms of the expected value

Eφ [ε(Mt, f, S, φ)] . (4)

where the expectation is taken over the randomness of the outcome of the oracle.

We can consider that Mt is trying to accelerate the optimization by choosing the best method in
it, while F , S and O are trying to find a tough combination of their elements to slow down the
optimization. In practice, a tuple of elements from F and S defines an optimization problem. For
a fixed oracle φ ∈ O we can define a minimax gap and a maximin gap:

(minimax gap) ε∗(Mt,F ,S, φ) := inf
Mt∈Mt

sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)], (5)

(maximin gap) ε∗(Mt,F ,S, φ) := sup
S∈S

sup
f∈F

inf
Mt∈Mt

Eφ[ε(Mt, f, S, φ)]. (6)
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They are both functions of t and φ, and of other hyperparameters used to define F , S, and Mt. The
name “minimax” refers to infMt supf,S , and “maximin” refers to supf,S infMt . It is well known
that the minimax gap majorizes maximin gap:

ε∗(Mt,F , S, φ) ≥ ε∗(Mt,F , S, φ). (7)

There are four possible bounds: upper/lower bounding the minimax/maximin gap. We start from
minimax gap.

Minimax upper bound The minimax upper bound simply upper bounds the minimax error
defined by (5):

ε∗(Mt,F ,S, φ) = inf
Mt∈Mt

sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)] ≤ u∗(t;φ), ∀ t ∈ N.

It means fixing t and φ, there exists a methodM∗t such that for any problem (f, S),M∗t can reduce
the expected error to be below u∗(t;φ) in t steps.

Fixing φ, ∀ t, ∃ M∗t , s.t. ∀ (f, S), Eφ[ε(M∗t , f, S, φ)] ≤ u∗(t;φ).

Here u∗(t;φ) is a function of t parameterized by φ, Mt, F and S. It does not depend on the
particular problem (f, S), but uniformly for the class F and S. This will require restricting the
scale of F and S as was discussed above.

Minimax lower bound One can also lower bound the minimax gap:

ε∗(Mt,F ,S, φ) = inf
Mt∈Mt

sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)] ≥ l∗(t;φ), ∀ t ∈ N

where l∗(t;φ) is a positive valued function of t parameterized by φ and the hyperparameters used
to define F , S, and Mt. This minimax lower bound says intuitively that fixing the oracle, for any
fixed number of query t, no matter what method (optimizer) Mt ∈ Mt is used, there must exist a
problem (f, S) ∈ F × S such that the expected gap/error is at least l∗(t;φ).

Fixing φ, ∀ t, ∀ M∗t , ∃ (f, S), s.t. Eφ[ε(M∗t , f, S, φ)] ≥ l∗(t;φ).

In this sense, the game between the problem and solver runs as follows:

• Player (solver) picks an optimization algorithm Mt ∈Mt,

• Adversary picks a tough pair of objective function f ∈ F and feasible region S ∈ S,

• Then the player (solver) suffers at least some amount of expected error.

Since the solvers plays first and the adversary can customize a tough problem against this particular
optimization algorithm, so we can expect that the solver will suffer a high expected error.
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Maximin (uniform) lower bound We can also lower bound the maximin gap as follows:

ε∗(Mt,F ,S, φ) := sup
S∈S

sup
f∈F

inf
Mt∈Mt

Eφ[ε(Mt, f, S, φ)] ≥ l∗(t;φ), ∀ t ∈ N. (8)

This maximin lower bound says intuitively that fixing the oracle, for any number of query t, there
exists a problem (f, S) ∈ F × S such that all methods will suffer the expected gap at least l∗(t;φ).

Fixing φ, ∀ t, ∃ (f, S), s.t. ∀ M∗t , Eφ[ε(M∗t , f, S, φ)] ≥ l∗(t;φ).

In this sense, the game between the problem and solver runs as follows:

• Adversary picks a tough objective function f ∈ F and feasible region S ∈ S,

• Player (solver) picks an optimization algorithm Mt ∈Mt,

• Then the player (solver) suffers at least some amount of expected error.

Since the adversary plays first and the solver can choose an algorithm that is most efficient for this
particular problem, we may expect that the solver will suffer a lower expected gap. We also call
maximin lower bound as “uniform lower bound” because it finds a tough problem which is hard
for all solvers Mt.

Maximin upper bound Simply upper bound the maximin gap by

ε∗(Mt,F ,S, φ) := sup
S∈S

sup
f∈F

inf
Mt∈Mt

Eφ[ε(Mt, f, S, φ)] ≤ u∗(t;φ), ∀ t ∈ N. (9)

This maximin upper bound says that fixing the oracle, for any number of query t and any problem
(f, S) ∈ F × S, there exists a method which reduces the expected gap to at most u∗(t;φ).

Fixing φ, ∀ t, ∀ (f, S), ∃ M∗t , s.t. Eφ[ε(M∗t , f, S, φ)] ≤ u∗(t;φ).

Clearly this is weaker than the minimax upper bound which says there exists a method which can
minimize all problems efficiently.

1/ε and 1/k representation It is well known that the 1/t rate is equivalent to the 1/ε rate,
and the above t based definition can also be translated into the language of ε. Which style of
definition to use depends on the convenience of analysis, usually affected by the class of algorithms
M. For example, Nesterov (2005a) requires a prescribed gap ε, i.e. only an ε accurate solution
is required. Then it uses ε to construct a smooth convex function that approximates the original
objective function, such that their difference lies uniformly in [0, ε]. Afterwards any solver can
be applied to optimize this surrogate objective. On the other hand, some real applications have
a notion of budget, i.e. the maximum number of steps that the solver is allowed to take (or the
number of times that the oracle can be invoked). For example, some solvers can reduce the gap
to a medium level (e.g. 10−3) in just a handful of steps, but is very inefficient in finding a high
precision solution. In contrast, some solvers has a good local rate of convergence (in the vicinity
of the solution) but needs a lot of steps to find such a vicinity. So in the budget based setting, it
appears more convenient to use t based analysis.
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Lower and upper bounds for a fixed method Sometimes we have already engineered a
method Mt, and it is our goal to analyze its efficiency. In this case, we are interested in

ε(Mt,F , S, φ) := sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)]. (10)

However there is still a minimax hidden in the definition if we recall that the step index t is fixed
prior to the two sup operations in (10). In other words, the argsup can change with t. So

sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)] ≥ l∗(t;φ) for all t (11)

means that for any t, there exists a problem (f, S) which depends on t such that the expected gap
is at least l∗(t;φ). Here l∗(t;φ) is a function of t parameterized by φ, F , and S. (11) can be easily
rewritten as

inf
t

sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)]

l∗(t;φ)
≥ 1.

which makes the minimax explicit. To derive a uniform variant, we just need to change the minimax
into maximin:

sup
S∈S

sup
f∈F

inf
t

Eφ[ε(Mt, f, S, φ)]

l∗(t;φ)
≥ 1,

which means there exists a problem (f, S) such that for all t, Mt suffers an expected gap at least
l∗(t;φ). As for upper bound, we simply use

sup
t

sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)]

u(t;φ)
≤ 1 i.e., ε(Mt,F ,S, φ) ≤ u(t;φ) for all t. (12)

That is, for any problem (f, S) and any t, the expected gap incurred by Mt is at most u(t;φ).

1.2 Relationship between different bounds and tightness

Now that the maximin gap ε∗(Mt,F ,S, φ) minorizes the minimax gap (Eq (7)), the maximin lower
bound is stronger than the minimax lower bound because any lower bound of ε∗(Mt,F , S, φ) must
also be a lower bound of ε∗(Mt,F ,S, φ) (the converse is not necessarily true). Similarly, the minimax
upper bound is stronger than the maximin upper bound because any upper bound of ε∗(Mt,F ,S, φ)
must also be an upper bound of ε∗(Mt,F ,S, φ).

Since both minimax upper bound and minimax lower bound use the minimax gap ε∗(Mt,F ,S, φ),
it is clear that if one can upper and lower bound ε∗(Mt,F , S, φ) by O(c(t)) and Ω(c(t)) respectively,
then the analysis must be tight on both sides. This means to study the tightness of the minimax
upper bound, there is no need to examine the maximin lower bound which is usually much harder
to establish than the minimax lower bound. But of course, maximin lower bound is interesting and
useful in its own right, and is useful for studying the optimality of maximin upper bound.

When the optimization method Mt is fixed, it is also clear that if one can upper and lower bound
ε∗(Mt,F , S, φ) by O(c(t)) (in (12)) and Ω(c(t)) (in (11)) respectively, then the analysis must be
tight on both sides.
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1.3 A variety of ways to qualify the oracle

In the above we deliberately left the oracle φ unqualified. But it is sometimes meaningful to qualify
it universally on top of the minimax gap, which is the approach taken by Agarwal et al. (2009):

ε∗(Mt,F , S,O) := sup
φ∈O

inf
Mt∈Mt

sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)]. (13)

In this sense, the game between the problem and solver proceeds as follows after fixing t:

• Adversary picks a tough oracle φ ∈ O,

• Player (solver) picks an optimization algorithm Mt ∈Mt,

• Adversary picks a tough pair of objective function f ∈ F and feasible region S ∈ S,

• Finally the player (solver) suffers some amount of expected error.

However, taking sup over the oracle is not realistic in stochastic convex optimization, because in
reality the oracle is not necessarily picked against the solver. In many applications, the solver has
the right to specify the oracle. This motivates the use of taking infφ∈O for both ε∗(Mt,F ,S, φ) and
ε∗(Mt,F ,S, φ). However, this will be too optimistic because the solver can hardly tell which oracle
is the best either. So in practice, it will just choose some default distribution, which typically lies
between the worst and the best oracle. That is why we leave the oracles unqualified in the definition
(5) and (9), and it is meaningful to study the lower bound for different choices of φ.

1.4 More details on oracle: deterministic and stochastic

In this section, we discuss in more depth the concept of oracle. A good understanding is critical
for us to bypass the existing lower bounds given by, e.g., (Agarwal et al., 2009) and (Abernethy
et al., 2008).

1.4.1 Deterministic oracles

In deterministic class of oracles, although the k-th order oracle is probably the most commonly
used, some other oracles are also possible and could yield faster convergence. For example, consider
the objective function

f(w) = max
i
〈ai,w〉+ bi.

Given a query point wt, the first order deterministic oracle will return the subgradient

gt := ai∗ , where i∗ = argmax
i
〈ai,wt〉+ bi (14)
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Figure 1: Illustration of different oracles on a piecewise linear function. At wt, the first order oracle
returns a3. The exp oracle returns a weighted average of a1, a2 and a3.

In other words, the returned subgradient does not change even if we perturb aj and bj for all j 6= i∗

(so far as i∗ is still the argmax). Another more soft oracle will return

g̃t :=
∑
i

ai
exp

{
1
T (〈ai,wt〉+ bi)

}∑
j exp

{
1
T (〈aj ,wt〉+ bj)

} , where T > 0. (15)

So g̃t is a weighted average of all ai, and ai receives a higher weight if 〈ai,wt〉+ bi is large. Hence
we call it “expectation oracle” or simple “exp oracle”. T serves as a temperature which controls the
softness. If the argmax in (14) is unique, then g̃t tends to gt when the temperature T approaches
0. See Figure 1 for an illustration. It is noteworthy that the lower bounds under k-th order oracle
can often be readily extended to the so-called “local oracle”, which roughly speaking, depends only
on the function value (rather than its expression) in some small neighborhood of wt. Clearly, the
exp oracle is not local, because adding or removing the line (a2, b2) in Figure 1 does not change
the function value at the neighborhood of wt, while it does change the result of the exp oracle.

1.4.2 Stochastic oracles

The motivation of using stochastic oracles is basically two folds: computational efficiency and oracle
viability. Although we have been bounding the number of oracle queries, the cost for the oracle to
answer each query definitely matters in practice. The main advantage of stochastic optimization
is that the oracle is often computationally cheap. For example, consider the objective function (in
w):

E
α∼Q

[f(w;α)], where α has a distribution Q. (16)

Assume that all regularities conditions hold (e.g., swapping expectation and gradient). A stochastic
oracle may respond to query wt by

f(wt;α) and ∇wf(wt;α) where α is drawn from Q.

Another situation of using stochastic optimization is when the expectation in (16) is computation-
ally intractable, or even when Q is unknown (but samples can be drawn).

Although the outcome of the oracle is not the exact function value or gradient, many algorithms
can use this noisy information to asymptotically find a high precision solution with high probability.
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Obviously, using a stochastic oracle will require more queries than deterministic oracles to achieve
a fixed level of accuracy. But this is compensated by its much lower cost per invocation. More
importantly, stochastic oracle often still allows one to efficiently find a low precision solution. This is
usually enough for machine learning purposes because the objective function is just an approximate
model in the first place (see (Bottou and Bousquet, 2007) for the tradeoff between approximation
error, estimation error and optimization error).

Despite the randomness of the stochastic oracle, conceivably it is should still satisfy some statistical
conditions. Formally, let there be a random variable ω which controls the stochastic oracle, i.e.
once the observation of ω is available, the result of the oracle can be determined with no more ran-
domness. Let the objective function be f(w). We follow Nemirovski and Yudin (1983) and denote
the oracle result as (f(w;ω), f ′(w;ω)) which slightly abuses the notation. Now we can formally
express the “standard” conditions of stochastic oracles: unbiasedness and bounded variance:

Unbiasedness : Eω[f(w;ω)] = f(w), and Eω[f ′(w;ω)] = ∇f(w); (17)

Bounded variance : ∃L > 0, s.t. Varω[f ′(w;ω)] � LI and Varω[f(w;ω)] < L. (18)

Here I is the identity matrix and A � B means the matrix B − A is positive semi-definite. These
conditions on “oracle” are effectively conditions on the distribution over ω and the mechanism that ω
deterministically assigns the result of oracle. Using this notation, the iterate wt+1 is a deterministic
function of the latent variable ωt1 := (ω1, . . . , ωt) through the last t steps, and the expected gap
at step t + 1 can be expressed as the expectation over ωt1: εt+1 := Eωt

1
[f(wt+1) −minw f(w)]. In

general, ω1, . . . , ωt can be dependent, but we assume they are iid throughout the whole note.

The stochastic oracle can be either hostile or benign. On one extreme, it can deliberately use a
hostile distribution over ωt1 which maximally slows down the solver, i.e.

sup
ω1,...,ωt all satisfy (17) and (18)

E
ωt
1

[f(wt+1)− f∗].

On the other extreme, the oracle can use a benign distribution to help the solver reduce εt+1 as
fast as possible. Well, maybe the most solver-friendly distribution is to set the noise to zero which
recovers the deterministic oracle1.

1.4.3 Parametric form of stochastic oracle

In many real problems, the objective function is restricted to a parametric class, and the oracle
can randomly choose a “parameter”. Similar to Agarwal et al. (2009), we assume that all objective
functions f can be written as the expectation of a parametric class of basis functions: with slight
abuse of notation,

f(w) = E
α∼Q

[f(w;α)].

That is, f is determined by the distribution Q of α. For example, in binary SVM the parameter α
corresponds to the data point (X,Y ), f corresponds to the hinge loss, and Q is the joint distribution
on the feature-label space.

1. This claim is quite obvious, but I don’t know how to prove it.
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The oracle can take a “different” distribution P (even over a different random variable) and return

φ(w, f ;ω) = f(w;ω), where ω ∼ P.

The choice of P must satisfy (17) and (18). In the oracle, ω can be taken as the data point too,
and P be set to Q. This is an extreme case where the stochastic oracle uses a single data point.
Sometimes, mini-batch is also used, e.g. each step the oracle uses three iid samples:

φ(w, f ;ω1, ω2, ω3) = 1
3 (f(w;ω1) + f(w;ω2) + f(w;ω3)) , where ω1, ω2, ω3 ∼ Q.

2. Existing Minimax Lower Bounds with Hostile Stochastic Oracle

The main result on the minimax lower bound for stochastic convex optimization was given by
Agarwal et al. (2009). We give a self-contained description of their results in this section.

Assume

F =
{
f : Rd 7→ R : f strongly convex and 1-Lipschitz continuous

}
S =

{
S ⊆ Rd : S is convex, ‖x− y‖∞ ≤ 1 for all x,y ∈ S

}
.

They also assume that the set of first-order oracle O consists of all unbiased samples of f and ∇f
with bounded variance

O :=
{
φ : (f,w) 7→(φ1(f,w;ω),φ2(f,w;ω)) :

Eω[φ1(f,w;ω)] = f(w), and Eω[φ2(f,w;ω)] = ∇f(w); (19)

∃L > 0, s.t. Varω[φ1(f,w;ω)] < L and Varω[φ2(f,w;ω)] � LI.
}

There is no assumption on Mt. Their conclusion is

sup
φ∈O

inf
Mt∈Mt

sup
S∈S

sup
f∈F

Eφ[ε(Mt, f, S, φ)] ≥ cd
t
, (20)

where c is an absolute constant.

Consider the subset V ⊆ {−1,+1}d such that all pairs of points in V have Hamming distance at
least d/4. By standard argument (Matoušek, 2002), there exists such a V whose cardinality is at
least (2/

√
e)d/2. Choose the basis function set as

f+i (w) := (wi + 1/2)2, and f−i (w) := (wi − 1/2)2, for i = 1, . . . , d. (21)

And define the function set

Gε :=

{
gα :=

1

d

d∑
i=1

{(
1

2
+ αiε

)
f+i (w) +

(
1

2
− αiε

)
f−i (w)

}
: α := (α1, . . . , αd) ∈ V

}
. (22)

It is easy to check that Gε ⊆ F over the L∞ ball of radius 1/2.

The idea of proof can be summarized in the following steps:
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1. Fix arbitrary ε > 0 and construct V and Gε.

2. Recognize that for any arbitrary methodMt and α ∈ V which induces an objective function
gα ∈ Gε, the process of stochastic optimization with a properly designed oracle is equivalent
to estimating α with t samples. That is, once the optimizer finds an ε accurate minimizer
for gα in expectation, then α can be correctly identified with high probability. The converse
may also hold, but is not needed for the proof.

3. On the one hand, by Fano’s lemma (see details in Lemma 3 of (Yu, 1993)), for any M∗t and
its induced estimator, there exists an α∗ ∈ V such that the probability of correctly estimating
α∗ is at most O( tεd ). This step relies on the cardinality of V (exponential in d), and imposes
some restriction on the form of oracle. See details below.

4. On the other hand, once M∗t finds an ε accurate solution of gα∗ in expectation, it must be
able to correctly identify α∗ with probability at least 1

3 . Markov inequality is the key to
translating the expectation into probability.

5. Combining 3) and 4), one derives t ≥ O
(
d
ε

)
.

The invocation of Fano’s lemma results in the minimax nature of the lower bound (for any method
there exists a tough problem s.t. blah). This lemma is applied in the following context. Consider
two random variables (Z,X) where Z and X are valued in {1, . . . , d} and {0, 1} respectively. Fixing
α ∈ V, the joint distribution is defined by first setting P (Z = i) = 1/d for all i, and then letting
P (X = 1|Z = i) = 1

2 + αiε. At each iteration t, an iid sample (Zt, Xt) is drawn, and the task is to
estimate α. Given any estimator and a fixed number of samples, Fano’s lemma states that there
exists an α ∈ V such that the probability of incorrectly identifying α can be lower bounded. Since
Fano requires a sample of (Z,X) at each step, the following construction of oracle is natural for
the objective in (22) (treating it as Z and bit as X):

• Pick an it ∈ {1, . . . , d} uniformly at random.

• Draw bit ∈ {0, 1} according to a Bernoulli distribution with parameter 1
2 + αitε.

• Return the value and subgradient of the function bitf
+
it

(w) + (1− bit)f−it (w).

By construction, the returned function value and gradient are unbiased samples of those of gα;
moreover, the variance of the effective “noise” is bounded independently of d as long as the Lipschitz
constant is independent of d since the function values and gradients are bounded on S.

If no strong convexity can be assumed, then the lower bound can be improved to Ω
(
d
ε2

)
. The

definition of function set Gε in (22) keeps intact, and we just need to modify (21) into

f+i (w) :=

∣∣∣∣wi +
1

2

∣∣∣∣ , and f−i (w) :=

∣∣∣∣wi − 1

2

∣∣∣∣ , for i = 1, . . . , d.

11



2.1 Limitations of the lower bound

One clear restriction of the above lower bound is that the oracle must be chosen in a way that admits
the application of Fano’s lemma. This means that no lower bound is proved for the following oracle:

• Pick an it ∈ {1, . . . , d} uniformly at random.

• Return the value and subgradient of the function
(
1
2 + αitε

)
f+it (w) +

(
1
2 − αitε

)
f−it (w).

Another restriction lies in (19) where the expectation of the outcome of the oracle gives the true
gradient. It is well known that more informative oracles also exist, e.g. (15), and the stochastic
version just requires that the expectation of the oracle match it. In the deterministic setting, the
oracle in (15) can be utilized to achieve O(1/t2) rate of convergence. Whether the same rate can
be achieved for stochastic oracle is still not clear.

Besides, the oracle only returns the first order gradient (with noise), which forces the optimizer
to perform explicit updates. Lots of practical experiences show that implicit update is useful. By
implicit oracle, we mean that when optimizing f(w) = Eα∼Q[f(w;α)], the oracle first draws an
αt+1 from Q, and then returns the function f(w;αt+1) rather than merely its gradient at wt.

2

So the result of the oracle may be even independent of wt. More generally, αt+1 could be drawn
from another distribution Pt+1 which depends on wt, as long as some unbiasedness conditions are
maintained asymptotically. In fact, implicit update is an extremely reasonable scenario: in SVM
training, the oracle returns a training example which determines a hinge loss function, rather than
just its subgradient at a particular wt.

3. A Maximin Lower Bound for Uniform Distribution Oracle

This section dismisses all the hope outlined in the above Section 2.1 regarding bypassing the lower
bound in (20). In particular, we consider an oracle φ which responses to wt and f = Eα∈Q[f(w;α)]
with αt+1 drawn randomly from Q, together with the function f(w;αt+1). This is clearly more
informative than the stochastic first-order oracle. We show a maximin lower bound which is also
stronger than the minimax lower bound given by Agarwal et al. (2009) in (20). Formally, we show
that

sup
f,S

inf
Mt

Eφ[ε(Mt, f, S, φ)] ≥ cd
t
,

where c is an absolute constant. f, S will be given below, Mt needs to satisfy some very mild
conditions which will also be detailed below.

Let us consider the following one dimensional optimization problem:

min
w
f(w) = min

w

1

2
E

X∼Q
[(X − w)2], (23)

2. We admit that the words ”explicit update” and ”implicit update” are not really accurate, because in online
learning its meaning is just slightly similar.
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where X has a pdf or pmf Q. To see the exact minimizer, decompose f(w) in the standard way:

f(w) =
1

2
E
[
(X − E[X])2

]
+

1

2
(E[X]− w)2 ≥ 1

2
E
[
(X − E[X])2

]
= f(E[X]).

So f(w) is minimized at w = E[X] with minimal value f∗ = 1
2Var[X].

At each iteration, the stochastic oracle can provide a noisy gradient and function value as

f ′(wt;Xt) = wt −Xt

f(wt;Xt) = 1
2(Xt − wt)2

, where Xt ∼ Q. (24)

Here Xt corresponds to ωt introduced in Section 1.4.2, and we use Xt now to emphasize the
meaning of sample. Unbiasedness is clear: EXt∼Q[f ′(wt;Xt)] = wt − EX∼Q[X] = ∇f(wt) and
EXt∼Q[f(wt;Xt)] = f(wt). We also assume X1, . . . , Xt are independent, and denote the sequence
as Xt

1. In the sequel, it will become evident that the exact form of oracle in (24) is not important.
It only needs to return a sample Xt and the optimizer can make use of X1, . . . , Xt in whatever
fashion, e.g. compute (24).

To bound εt+1 we again decompose the objective function following the standard procedure:

E
Xt

1

[f(wt+1)] = E
Xt

1

[
1

2
E
X

[(X − wt+1)
2]

]
=

1

2
E
Xt

1

[
E[(X − E[X])2] + (E[X]− wt+1)

2
]

= f∗ +
1

2

(
E[X]− E

Xt
1

[wt+1]

)2

︸ ︷︷ ︸
bias square

+
1

2
E
Xt

1

(E
Xt

1

[wt+1]− wt+1

)2


︸ ︷︷ ︸
variance

. (25)

Since wt+1 is a function of iid samples X1, . . . , Xt of X, we can view wt+1 as an estimator of E[X].
In this sense, (25) can be decomposed into the square bias and variance of the estimator. This
perspective also allows us to apply well known lower bounds in statistical estimation.

Suppose Q is parameterized by its mean θ := EQ[X], i.e. P (X) = p(X; θ). We restrict θ ∈ [0, 1].
In this sense, we will also write f as fθ. Denote the bias as

bt(θ) := EXi∼p(X;θ)[wt+1]− θ.

Naturally, we assume the estimator is asymptotically unbiased:

Assumption 1. wt is asymptotically unbiased for all θ: limt→∞ bt(θ) = 0, ∀θ.

It is our goal to apply the Cramer-Rao’s inequality which lower bounds the variance

vt(θ) := EXt
1

[(
EXt

1
[wt+1]− wt+1

)2]
, where Xi ∼ p(X; θ)

by

vt(θ) ≥
(

d
dθEXi∼p(X;θ)[wt+1]

)2
t · EX∼p(X;θ)

[
( d
dθ log p(X; θ))2

] =
(1 + b′t(θ))

2

t · EX∼p(X;θ)

[
(

d

dθ
log p(X; θ))2

]
︸ ︷︷ ︸

:=C(θ)

. (26)
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The expectation in the denominator is independent of the estimator (optimizer), and can be treated
as a constant C(θ). The numerator requires differentiability of bt(θ):

Assumption 2. For all t, bt(θ) is differentiable in θ.

With these two assumptions, it is straightforward to show that the gap cannot be reduced faster
than O

(
1
t

)
uniformly over all θ.

Theorem 1. Suppose Assumption 1 and 2 hold. Also assume that for any θ̄ there exists an open
neighborhood in which C(θ) is upper bounded. Then there cannot exist a constant c > 0 and a

superlinear function g(t) ( i.e., limt→∞
g(t)
t =∞) such that

εt+1 := E
Xi∼p(X;θ)

[fθ(wt+1)]− f∗θ ≤
c

g(t)
for all t and θ. (27)

Proof. Pick arbitrary θ1 < θ3. Then there exists θ2 ∈ (θ1, θ3) such that C(θ) is upper bounded in
[θ1, θ2]. Let C <∞ be an upper bound. By (25) and (26), we have

E
Xi∼p(X;θ)

[fθ(wt+1)]− f∗θ =
1

2
b2t (θ) +

1

2
vt(θ) ≥

1

2
b2t (θ) +

(1 + b′t(θ))
2

2tC(θ)
.

If (27) holds, then for all θ ∈ [θ1, θ2], we have

1

2
b2t (θ) +

(1 + b′t(θ))
2

2tC(θ)
≤ c

g(t)
⇒ 1

2
b2t (θ) +

(1 + b′t(θ))
2

2tC
≤ c

g(t)
⇒ b′t(θ) ≤ −1 +

c′√
g(t)/t

,

where c′ is a constant independent of t and θ. Let γ := θ2−θ1
4 . There must exist a T such that for

all t > T we have

|bt(θ1)| < γ, |bt(θ2)| < γ (28)

b′t(θ) < −
1

2
∀ θ ∈ [θ1, θ2]. (29)

By Role’s mid-value theorem, there exists θ̄ ∈ [θ1, θ2], such that

|bt(θ1)− bt(θ2)| =
∣∣b′t(θ̄)∣∣ · |θ1 − θ2| .

The left-hand side is less than 2γ = 1
2(θ2 − θ1) by (28), while the right-hand side is greater than

1
2(θ2 − θ1) by (29). Contradiction.

Theorem 1 is weak in that the assertion (27) requires the existence of a common c and g(t) for all
θ. To remove this uniform requirement and tighten the lower bound, we can request some more
restrictive conditions on b′t(θ). One practical assumption is the uniform boundedness which allows
us to apply the dominated convergence theorem.

Assumption 3. There exists an integrable function h(θ) such that |b′t(θ)| ≤ h(θ) for all t.
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Theorem 2. Suppose Assumption 1, 2 and 3 hold. Then the following is impossible: for all θ,
there exists a constant cθ > 0 and a superlinear function gθ(t) such that

E
Xi∼p(X;θ)

[fθ(wt+1)]− f∗θ ≤
cθ
gθ(t)

for all t. (30)

Proof. For any θ, by (25) and (26), we have

E
Xi∼p(X;θ)

[fθ(wt+1)]− f∗θ =
1

2
b2t (θ) +

1

2
vt(θ) ≥

1

2
b2t (θ) +

(1 + b′t(θ))
2

2tC(θ)
.

If (30) holds, then
1

2
b2t (θ) +

(1 + b′t(θ))
2

2tC(θ)
≤ cθ
fθ(t)

∀ t.

Thus, limt→∞ bt(θ) = 0 and limt→∞ b
′
t(θ) = −1 for all θ.

Arbitrarily pick two different θ1 and θ2. Thanks to Assumption 3, the dominated convergence
theorem is applicable:

lim
t→∞

∫ θ2

θ1

b′t(θ)dθ =

∫ θ2

θ1

lim
t→∞

b′t(θ)dθ. (31)

Since limt→∞ b
′
t(θ) = −1 for all θ, so the right-hand side equals θ1 − θ2 6= 0. But the left-hand side

equals limt→∞(bt(θ2)− bt(θ1)) = 0− 0 = 0. Contradiction.

3.1 Discussions on the assumptions

It seems that Assumption 3 is already the weakest condition needed for Theorem 2 to hold. A
counter-example can be constructed to show that Theorem 2 may be broken if b′t(θ) cannot be
dominated by a fixed function. Simply set b′t(θ) on θ ∈ [0, 1] as (for large enough t):

b′t(θ) = −1, ∀θ ∈ [0, t−1],

b′t(θ) = t, ∀θ ∈ (t−1, t−1 + t−2],

b′t(θ) = −1, ∀θ ∈ (t−1 + t−2, t−1 + t−2 + t−1],

b′t(θ) = t, ∀θ ∈ (t−1 + t−2 + t−1, t−1 + t−2 + t−1 + t−2],
. . .

Denote Θt := {θ : b′t(θ) = −1}, and Θ′t := {θ : b′t(θ) = t}. Then the measure/size of Θt is t times
of Θ′t. When t tends to infinity, “the number of” θ satisfying b′t(θ) 6= −1 approaches 0. One can
show that for any θ, it is impossible to have infinitely many t such that b′t(θ) 6= −1. Integrating
b′t(θ) from 0 to any θ, we get that bt(θ) lies in [0, t−1] (i.e., uniformly approaches 0). Therefore, our
construction is compatible with

1

2
b2t (θ) +

(1 + b′t(θ))
2

2C(θ)t
≤ cθ
fθ(t)

∀ θ, t.
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To satisfy Assumption 2 and 3, various conditions can be imposed on the distribution p(X; θ),
and the estimator wt+1. For example, when p(X; θ) is an exponential family of distributions,
Assumption 2 is satisfied for any measurable estimator wt+1. Assumption 3 appears harder to
check. A simple upper bound is a constant. Note that the boundedness can be guaranteed by the
Lipschitz continuity of b′t(θ) on a bounded domain of θ:

Assumption 4. There exists an L > 0 such that for all t, the gradient of the bias with respect to
θ, b′t(θ), is Lipschitz continuous with constant L.

3.2 Why the lower bound has not been bypassed

In Section 2.1, we outlined three possible ways to bypass the lower bound of (Agarwal et al., 2009).
Now it is fairly easy to see that none of them survives the above counter-example. First, the oracle
does return a sampled function (via a sample Xt) instead of just a subgradient. So it already
accommodates implicit updates. Second, we have already used a most straightforward stochastic
mechanism in the oracle (the first paragraph of Section 3). Finally, any other fancy oracle such
as (15) is ultimately a function of the sample Xt. So it still falls in our framework for general
estimators.
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