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Abstract—In this paper we introduce the concept of pseudo-
MDPs to develop abstractions. Pseudo-MDPs relax the require-
ment that the transition kernel has to be a probability kernel.
We show that the new framework captures many existing
abstractions. We also introduce the concept of factored linear
action models; a special case. Again, the relation of factored
linear action models and existing works are discussed. We use
the general framework to develop a theory for bounding the
suboptimality of policies derived from pseudo-MDPs. Specializing
the framework, we recover existing results. We give a least-
squares approach and a constrained optimization approach of
learning the factored linear model as well as efficient computation
methods. We demonstrate that the constrained optimization ap-
proach gives better performance than the least-squares approach
with normalization.

I. INTRODUCTION

In reinforcement learning an agent chooses actions in a
sequential manner to maximize its long term reward while
observing state transitions [1, 2]. In this paper we consider
model-based reinforcement learning where a model of the
Markovian environment is built first. When a model is built,
the main questions are whether the model can be efficiently
solved and whether the policy derived from the approximate
model is useful. To answer these questions in a general form,
we introduce the framework of pseudo-MDPs. Pseudo-MDPs
relax the requirement that the transition kernel has to be a
probability kernel. We show that the new framework captures
many existing abstractions, such as those derived from state-
aggregation, or even RKHS embeddings of MDPs [3]. We
also introduce the concept of factored linear action models;
which is a special case of pseudo-MDPs. Again, the relation of
factored linear action models and existing works are discussed.
We develop a general theory for bounding the suboptimal-
ity of policies derived from pseudo-MDPs. Specializing the
framework, we recover existing results by [3] in the case
of using kernel features. We propose a general approximate
value iteration (AVI) algorithm that solves a pseudo-MDP. The
advantage of this algorithm is that it has convergence guaran-
tee with linear function approximation comparing to popular
linear approximate policy iteration algorithms such as LSPI
[4]. We propose two approaches of learning a factored action
model, including a least-squares approach and a constrained
optimization approach. We provide an efficient solution for
the constrained optimization approach using gradient descent
methods.

II. BACKGROUND AND NOTATION

In this section we provide the necessary background on
MDPs. We define a finite-action MDP as a 4-tuple M =
(X ,A, (Pa)a∈A, (f

a)a∈A), where X is a set of measurable
states,1 A is a finite set of actions2; for each a ∈ A action and
state x ∈ X , the “kernel” Pa assigns a probability measure
to x, which we denote by Pa(·|x) and fa is a real-valued
function over X . We will consider discounted MDPs only and
we denote the discount factor by γ ∈ [0, 1). An MDP gives
rise to a sequential decision process, where at each stage an
action has to be chosen based on the past observations, leading
to a next observed state X ′ sampled from Pa(·|X = x),
where X is the current state and a is the action chosen. While
transitioning to X ′, a reward of fa(X,X ′) is incurred, which
is also observed. The goal is to find a way of choosing the
actions so that the expected total discounted sum of rewards
incurred is maximized no matter how the process is started.
A standard result [5] is that this can be achieved by following
some stationary Markov policy α: Here, α : X × A → [0, 1]
and for each state x ∈ X , α(x, ·) is distribution over A.
Following α means that the state is Xt ∈ X at time t then the
next action is chosen from α(Xt, ·): At ∼ α(Xt, ·). In what
follows we will simply call stationary Markov policies a policy
and denote their set by ΠM. We will denote by V α(x) the total
expected discounted reward incurred while following α from
state x; V α(x) = E

{∑∞
t=0 γ

tfAt(Xt)
∣∣∣X0 = x,Xt+1 ∼

PAt(·|Xt), At ∼ α(Xt, ·), t = 0, 1, 2, . . .
}

. The optimal value
of state x is V ∗(x) = supα V

α(x), giving rise to the optimal
value function V ∗ : X → R. For these definition to make sense
we need to make some further assumptions. First, for a mea-
sure µ over some measurable set W , introduce L1(µ) to denote
the space of µ-integrable real-valued functions with domain
W . Further, for a kernel Pa let L1(Pa) = ∩x∈XL1(Pa(·|x)).
We also let L1(P) = ∩a∈AL1(Pa) = ∩a∈A,x∈XL1(Pa(·|x)).
We require that for any a ∈ A, fa ∈ L1(Pa) and further that
for any measurable set U ⊂ X , a ∈ A, Pa(U |·) ∈ L1(P) (in
particular, x 7→ Pa(U |·) must be measurable). These ensure
that the expectations are well-defined. Note that L1(Pa) and

1In particular, any finite set would do, in which case measurability becomes
nonrestrictive. The generalization for measurable spaces (which include mea-
surable subsets of Euclidean spaces) is pursued as it comes essentially for
free and allows one to consider “large” spaces.

2This assumption could be lifted without much work.



L1(P) are vector-spaces. As is well known, the optimal value
function V ∗ satisfies the so-called “Bellman optimality equa-
tions” V ∗(x) = maxa∈A f

a(x)+γ
∫
Pa(dx′|x)V (x′), x ∈ X .

Furthermore, only V ∗ is the solution to these simultaneous
equations.

For a normed vector space V = (V, ‖ · ‖), the (induced)
norm of an operator T : V → V is defined by ‖T‖ =
supV ∈V,V 6=0 ‖TV ‖/‖V ‖. An operator is called a contraction
if ‖T‖ < 1. The difference of two operators T, T̂ : V → V
is defined via (T − T̂ )V = TV − T̂ V . The supremum norm
‖·‖∞ of a (real-valued) function f over some set W is defined
by ‖f‖∞ = supw∈W |f(w)|. We will denote by δx0(dx) the
Dirac measure concentrated on x0:

∫
f(x)δx0(dx) = f(x0)

for any measurable f .

III. THE PSEUDO-MDP FRAMEWORK

We shall consider abstracting MDPs into what we call
“pseudo-MDPs”. Let S be a measurable space. Recall that
a signed measure µ over S maps measurable subsets of S
to reals and satisfies µ(∪iSi) =

∑
i µ(Si) for any countable

family (Si)i of disjoint measurable sets of S. We call the tuple
N = (S,A, (Qa)a∈A, (g

a)a∈A) a pseudo-MDP if Qa maps
elements of S to signed measures over S (Qa(·|s) .

= Qa(s, ·)
is a signed measure over S) and ga : S → R is a measurable
function. As for MDPs, we assume that ga ∈ L1(Q) and for
any measurable U ⊂ S and action a ∈ A, Qa(U |·) ∈ L1(Q).

The difference between a pseudo- and a “real” MDP is that
in a pseudo-MDP Qa(·|s) does not need to be a probability
measure. This can be useful when constructing abstractions:
dropping the requirement that the transition kernel must
be a probability measure increases the power of pseudo-
MDPs. The concepts of policies and value functions extend
to pseudo-MDPs with almost no change except for defining
the value function of a policy β of N , we consider the
signed measures µs,β induced by (Qa)a and β over the
set ({s} × A) × (S × A)N of trajectories starting at some
state s ∈ S . Then the value function of β is vβ defined
by vβ(s) =

∫ ∑∞
t=0 γ

tgat(st)dµs,β(s0, a0, s1, a1, . . .). We
assume that vβ is finite-valued for any policy β of N .

The purpose of constructing pseudo-MDPs is to create
abstractions that facilitate efficient computation. However, for
an abstraction to be of any use, we need to be able to
use it to come up with good (near-optimal) policies in the
source MDP. Denoting the abstracted, or source MDP by
M = (X ,A, (Pa)a∈A, (f

a)a∈A), the connection will be
provided by a measurable map φ : X → S, which must be
chosen at time of choosing N . In what follows we fix the
mapping φ.

We let ΠM,ΠN be the space of policies in the original
MDP and the pseudo-MDP, respectively. The map φ can be
used to pull any policy of the pseudo-MDP back to a policy
of the source MDP:

Definition 1 (Pullback Policy). Let N be a φ-abstraction of
M. The pullback of policy β ∈ ΠN is the policy α ∈ ΠM
that satisfies α(x, a) = β(φ(x), a). The map that assigns α to

β will be denoted by L and we will call it the pullback map
(thus, L : ΠN → ΠM and L(β)(x, a) = β(φ(x), a), for any
x ∈ X , a ∈ A).

The power of pseudo-MDPs is that it provides a common
framework for many MDP-abstractions that were considered
previously in the literature. Some examples are as follows:

Example 1 (Finite Models). Let S be a finite set, for s ∈ S,
a ∈ A, Qa(·|s) be a distribution over S, ga : S → R be an
arbitrary function.

Example 2 (Linear Action Models). Assume that S = Rd
where measurability is meant in the Borel sense. For each a ∈
A, let F a ∈ Rd×d, fa ∈ Rd. Then, for each s ∈ S, a ∈ A, U
Borel measurable, Qa(U |s) = I{Fas∈U} and ga(s) = (fa)>s.

Example 3 (Factored Linear Action Models). Let S = X ,
ψ : X × A → Rd, ξ : B → Rd, where B is the collection
of measurable sets of X . Then, for x ∈ X , a ∈ A, U ∈ B,
Qa(U |x) = ξ(U)>ψ(x, a), while ga is arbitrary.3

In the first two examples (Qa)a are probability kernels.
Discrete models are typically obtained in a process known as
state aggregation [6] in which case φ : X → S is assumed to
be surjective and is known as the state-aggregation function.
Given φ, one further chooses for each s ∈ S a distribution
µs supported on φ−1(s) = {x ∈ X |φ(x) = s}. Then, Qa
is given by Qa(U |s) =

∫
µs(dx)Pa(dx′|x)I{φ(x′)∈U} and

ga(s) =
∫
fa(x)µs(dx). Linear action models arise when the

transition dynamics underlying each action is approximated
via a linear model, in which case φ is known as the “feature-
map” [7]. Note that one can represent any finite MDP with
linear models: Given a finite model N with state space
S = {1, . . . , d}, define S̃, the state space of the linear model,
as the simplex of Rd, (F a)j,i = Qa(j|i), fai = ga(i),
1 ≤ i, j ≤ d.

Motivating examples. Here we give a few motivating ex-
amples for pseudo-MDPs. Pseudo-MDPs increase the search
space for solving the original MDP. Note that Pseudo-MDPs
include MDPs, and so we just have to demonstrate the
advantage of pseudo-MDPs that are not MDPs.

Ex. 1 (normalized model has a bad estimation of the optimal
value function). The MDP is, A = {a},S = {1, 2},Pa =
[0.01, 0.99; 0, 1], ga = [1, 0]. V ∗(1) ≈ 0.01, V ∗(2) = 0. The
discount factor is 0.9. The pseudo-MDP is different with Qa =
[0.01, 0; 0, 1]; the state space and others are all the same. Then
we have V̂ ∗ = V ∗. If normalizing the model (i.e., normalizing
each row of Qa by its L-1 norm, which gives an MDP), we
have, Q̄a = [1, 0; 0, 1], and V̂ ∗(1) = 10, V̂ ∗(2) = 0.

Ex. 2 (normalized model has a bad policy output). The MDP
is, A = {a1, a2},S = {1, 2},Pa1 = [0.01, 0.99; 0, 1],Pa2 =
[0, 1; 0, 1], ga1(1, 1) = 100, ga1(1, 2) = 0, ga1(2, 2) =
ga2(2, 2) = 10, ga2(1, 2) = 100. The discount factor is 0.9.
The optimal policy is α∗(1) = α∗(2) = a2. A figure is shown
in Figure 1.

3A natural restriction on ga would be to assume ga(x) = (fa)>ψ(x, a).
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Fig. 1. A small MDP used in Ex. 2.

The pseudo-MDP parameters are, Qa1 =
[0.01, 0; 0, 1],Qa2 = [0, 1; 0, 1]; all the other parameters
are the same as the original MDP. The parameters
of the normalized model (which is a valid MDP) are,
Q̄a1 = [1, 0; 0, 1], Q̄a2 = [0, 1; 0, 1]; all the other parameters
are the same as the original MDP. One can show that from
the pseudo-MDP we can derive the optimal policy but the
normalized model does not. In particular, the optimal policy
according to the normalized model selects action a1 at state
1.

Although linear action models are powerful, it may be
difficult to compute a near-optimal policy in a linear action
model. The idea of factored linear models is similar except that
here the state space is unchanged; the “abstraction” happens
because the transition kernel is written in a factored form:
The map ψ extracts the features of state-action pairs, while
the “features” of the sets one may arrive at are extracted by
ξ. An interesting special case is when ξ takes the form

ξ(U) =

∫
U

f(x′)µ(dx′), (1)

where µ is a signed measure over X and f : X → Rd
is measurable. When µ is a counting measure with finite
support X ′ ⊂ X , we have ξ(U) =

∑
x′∈X ′∩U f(x′) and

Qa(U |x) =
∑
x′∈X ′ f(x′)>ψ(x, a). In this case, under some

additional conditions the optimal policy can be computed
efficiently. Indeed, if V̂ ∗ denotes the optimal value function
for the factored model, from Bellman’s optimality equation,

V̂ ∗(x) = max
a∈A

ga(x) + γ

( ∑
x′∈X ′

V̂ ∗(x′)f(x′)

)>
ψ(x, a)

= max
a∈A

(T̂ aV̂ ∗)(x),

where the last equation defines the operators T̂ a. By this
equation, knowing V̂ ∗ at states in X ′ suffices to compute
an optimal action of N at any state x ∈ X . The Bellman
optimality equation will be guaranteed to have a solution
if T̂ a is a contraction in the ‖ · ‖∞-norm, which holds if
|
∑
x′∈X ′ f(x′)>ψ(x, a)| ≤ 1 for any (x, a) ∈ X × A. Using

Bellman’s optimality equation again, we see that V̂ ∗|X′ is the
optimal value function of the finite pseudo-MDP

(X ′, (Qa|X ′×2X′ )a∈A, (g
a|X ′)a∈A) (2)

and, as such, it can be found, e.g., by any dynamic program-
ming algorithm.

Given a finite model N = (S,A, (Qa)a∈A, (g
a)a∈A)

with S = {1, . . . , d} and a surjective map φ : X → S,

pick µ(·|i) so that for each i ∈ S , µ(·|i) is a probabil-
ity distribution supported on φ−1(i) = {x ∈ X |φ(x) = i}.
Define the probability kernels (P̂a)a∈A by P̂a(dx′|x) =∑
j∈S µ(dx′|j)Qa(j|φ(x)). By choosing ξi(dx) = µ(dx|i),

ψi(x, a) = Qa(i|φ(x)), 1 ≤ i ≤ d, we see that P̂a(U |x) =
ξ(U)>ψ(x, a), thus a finite model gives rise to a factored
model.

Now, consider the following construction: Let Z = X ×A,
(z1, x

′
1), . . . , (zn, x

′
n) ∈ Z × X , ν(·|x) a probability kernel

over X , and k : Z × Z → [0,∞) a function such that∑n
j=1 k( (x, a), zi) > 0 for any (x, a) ∈ Z . Define ξi(dx′) =

ν(dx′|x′i) and ψi(x, a) = k( (x, a), zi)/
∑n
j=1 k( (x, a), zj).

It is not hard to see that the resulting factored model is a
generalization of the kernel-based model of [8] who chooses
ν(dx′|x′i) = δx′i(dx

′). In this case, ξ can be put in the form (1)

with fi(x′) =
I{x′=x′

i
}

|{j | x′j=x′i}|
and µ(dx′) =

∑n
j=1 δx′j (dx

′), thus
the model can be “solved” efficiently. The model of [3] that
embeds the transition kernels into reproducing kernel Hilbert
spaces can also be seen to be a factored linear model, though
to allow this we need to replace the range of ξ and ψ with a
Hilbert space. Details are left out due to the lack of space.

A. A Generic Error Bound
The main purpose of this section is to derive a bound on how

well the pullback of a near-optimal policy of a pseudo-MDP
will do in the source MDP. Before stating this result, we need
some definitions. Given any measurable function v over S, we
let Vv denote the function over X defined by Vv(x) = v(φ(x)):
Vv is called the pullback of v. We also introduce a left inverse
l : ΠM → ΠN to L, which we call a pushforward map. Thus,
l(L(β)) = β holds for any β ∈ ΠN . Note that to ensure that
L has a left inverse, φ must be surjective:

Assumption A1 φ is surjective.

When φ is surjective, it is easy to see that a left inverse
of L indeed exists and, in fact, there could be multiple left
inverses. The pushforward map is a theoretical construction in
the sense that it is only used in characterizing the “power” of
abstractions (it is not used algorithmically). This allows one to
choose the best pushforward map that gives the tightest error
bounds.

A pushforward and a feature map together give rise to the
concept of approximate value functions:

Definition 2 (Approximate Value Function). Fix a pushfor-
ward map l and a feature map φ. Given a policy α ∈ ΠM, we
call vl(α) the value-function of α under l in N . Further, we
let V αv

.
= Vvl(α) be the N -induced approximate value function

underlying policy α.4

Let B(X ) = (B(X ), ‖ · ‖) be a normed subspace of L1(P):
B(X ) = {V : X → R |V ∈ L1(P), ‖V ‖ < ∞}. We use the
norm ‖ · ‖ associated with B(X ) to measure the magnitude of
the errors introduced by N : We call

ε(α) = ‖V α − V αv ‖ (3)

4In fact, in addition to N , both l and φ influence V αv .



the evaluation error of policy α induced by N .
To compare policies we will use the expected total dis-

counted reward where the initial state is selected from some
fixed distribution, which we will denote by ρ. Given any
V : X → R, define Vρ =

∫
x∈X V (x)ρ(dx). Then V αρ =∫

x∈X V
α(x)ρ(dx) gives the expected total discounted reward

collected while following α assuming that the initial state
is selected from ρ. Further, for a function V ∈ L1(P),
define its L1(ρ)-norm by ‖V ‖L1(ρ) =

∫
|V (x)|ρ(dx) and let

Kρ = supV ∈B(X ) ‖V ‖L1(ρ)/‖V ‖. We will denote by φ∗(ρ)
the pushforward of ρ under φ: φ∗(ρ) is a probability measure
on S: it is the distribution of φ(X) where X ∼ ρ.

With this, we can present our first main result which bounds
the suboptimality of the pullback of the pseudo-MDP’s optimal
policy:5

Theorem 1. Let α∗ ∈ arg maxα∈ΠM V αρ , β∗ ∈
arg maxβ∈ΠN v

β
φ∗(ρ)

and let α∗L = L(β∗) be the pullback of
β∗. Then, under A1,

V α
∗

ρ −Kρ(ε(α
∗) + ε(α∗L)) ≤ V α

∗
L

ρ ≤ V α
∗

ρ .

The theorem shows that the quality of the policy derived
from an optimal policy of the pseudo-MDP is governed by
the error induced by N on the value functions of policies
α∗, α∗L alone. Thus, it suggests that when considering the
construction of N , one should concentrate on the evaluation
error of these two policies. The result is remarkable because
it suggests that the common objection against model learning
according to which model learning is hard because a good
model has to capture all the details of the world might not
be as well founded as one may think it is. Of course, the
difficulty is that while β∗ may be accessible (given N ), α∗ is
hardly available. Nevertheless, the result suggests an iterative
approach towards constructing N , which we will explore later.

The policy evaluation error defined in (3) depends on the
norm chosen for the functions over X . If one chooses the
supremum norm, Theorem 1 immediately gives the following
result:

Corollary 2. Let ‖ · ‖ = ‖ · ‖∞ in (3). Then, under A1, for
any optimal policy α∗ of M and optimal policy β∗ of N ,
‖V α∗L − V ∗‖∞ ≤ ε(α∗) + ε(α∗L), where α∗L = L(β∗).

Note that the definition of α∗ and β∗ in Theorem 1 is
different from the definition used in this corollary. While here
α∗, β∗ are required to be optimal, in Theorem 1 they are
optimal only in a weaker, average sense. Note that choosing
the norm in (3) to be the supremum norm makes Kρ = 1 for
any distribution ρ (which is favourable), but can increase the
values of ε(α∗) and ε(α∗L). Hence, the norm that optimizes the
bound may very well be different from the supremum norm.

B. Injective Feature Maps

When the feature map φ : X → S is injective (and thus
invertible), the generic bound of the previous section gives

5All the proofs of the theoretical results in this paper is available in an
extended version.

rise to a bound of a particularly appealing form. When φ
is a bijection, we can identify S with X without loss of
generality and choose φ to be the identity map, an assumption
that we will indeed make in this section. The factored linear
action model considered in the previous section gives a useful
example when S = X . In general, when S = X , the
approximation happens through “compressing” the transition
kernel.

For simplicity, we also assume that ga ≡ fa, i.e., the
rewards are not approximated (the extension of the results
to the general case is trivial). In summary, the pseudo-
MDP considered in this section takes the form N =
(X ,A, (P̂a)a∈A, (f

a)a∈A) (we replace Qa by P̂a to empha-
size that the approximate kernels are now over the state space
of the source MDP).

When maxa∈A ‖P̂a‖1 ≤ 1, Corollary 2 together with
standard contraction arguments leads to the following result:

Theorem 3. Let N = (X ,A, (P̂a)a∈A, (f
a)a∈A) be a

pseudo-MDP such that maxa∈A ‖P̂a‖1 ≤ 1. Then, for any
optimal policy α̂∗ of N ,

‖V α̂
∗
−V ∗‖∞ ≤ 2γ

(1−γ)2 min{ ‖(P̂−P)V ∗‖∞, ‖(P̂−P)v∗‖∞}.

Again, we see that it suffices if P̂ is a good approximation
to P at V ∗. Since V ∗ is unknown, in practice one may choose
a normed vector-space F of functions over X and construct
P̂ such that it is a good approximation to P over F in the
sense that ε(F) = supV ∈F,‖V ‖F=1 ‖(P̂ − P)V ‖∞ is small
(here, ‖ · ‖F denotes the norm that comes with F). Can this
approach succeed? Let ∆P = P̂ − P . Then, for any V ∈ F ,
‖∆PV ∗‖∞ ≤ ‖(P̂ −P)(V ∗−V )‖∞+ ‖∆PV ‖∞ ≤ 2‖V ∗−
V ‖∞ + ε(F)‖V ‖F . Taking the infimum over V ∈ F , we get
the following result:

Corollary 4. Under the same conditions as in Theorem 3,
for any optimal policy α̂∗ of N , ‖V α̂∗ − V ∗‖∞ ≤

2γ
(1−γ)2 infV ∈F 2‖V ∗ − V ‖∞ + ε(F)‖V ‖F .

Thus, the approach will be successful as long as our bet
that V ∗ is close to F is correct and in particular if the
L∞-projection of V ∗ to F has a small F-norm. Note that
Corollary 4 can be viewed as a generalization/specialization
of Theorem 3.2 of [3].6 The assumption maxa∈A ‖P̂ a‖1 ≤ 1
is relatively mild. In the next section, we show how to learn
models such that this assumption is satisfied.

IV. LEARNING FACTORED LINEAR MODELS

In this section we propose two approaches of learning
factored linear models including a least-squares approach and
a constrained optimization approach. We then give a procedure
of solving the resulting pseudo-MDPs.

6The specialization comes from the fact that while Theorem 3.2 considers
all kinds of approximations, we concentrate on the approximation induced by
the approximate model as we find the approach that separates this from other
approximation terms much cleaner.



A. Least-Squares Approach

In this section we show how factored linear models arise
from a least-squares approach, essentially reproducing the
model of [3] in a finite-dimensional setting from simple first
principles (thus, hopefully catching the interest of readers
who would shy away from the infinite dimensional setting
considered by [3]). The factored linear model that arises will
be the basis of the feature iteration method proposed in the
next section.

As before, we will denote Z = X ×A. Choose V ∈ L1(P)
and suppose that we are interested in estimating the func-
tion (x, a) 7→

∫
Pa(dx′|x)V (x′) where (x, a) ∈ Z . Let

Z = (X,A) be a random state-action pair sampled from a
distribution with full support over Z and X ′ ∼ PA(·|X).
Then,

∫
Pa(dx′|x)V (x′) = E[V (X ′)|Z = (x, a)]. Assume

that we are given a mapping ψ : X × A → Rd to extract
features based on state-action pairs and our goal is to find
the best linear estimator z 7→ u>ψ(z) based on ψ of the
function z 7→ E[V (X ′)|Z = z]. The parameter vector of
the estimator that minimizes the expected squared error is
u∗(V ) ∈ arg minu∈Rd E[

(
V (X ′)− u>ψ(Z)

)2
]. A simple cal-

culation shows that u∗(V ) = E[ψ(Z)ψ(Z)>]†E[ψ(Z)V (X ′)],
where M† denotes the pseudo-inverse of matrix M .

In practice, u∗(V ) is approximated based on a finite dataset,
(〈zi, x′i〉, i = 1, . . . , n). Defining un(V ) =

(
Ψ>Ψ

)†
Ψ>V̄ ,

where Ψ = [ψ(zi)
>] ∈ Rn×d and V̄i = V (x′i), 1 ≤

i ≤ n, un(V ) optimizes the squared prediction error of
u>ψ(z) computed over (〈zi, x′i〉, i = 1, . . . , n). Introducing
F = Ψ

(
Ψ>Ψ

)†
and letting Fi: denote the ith row of F (i.e.,

Fi: ∈ R1×d), we calculate

un(V )>ψ(x, a) = V̄ >Fψ(x, a)

=

∫ n∑
i=1

V (x′)δx′i(dx
′)Fi:ψ(x, a) . (4)

Thus with ξ(dx′) =
∑n
i=1 δx′i(dx

′)F>i: , if P̂a(dx′|x) =

ξ(dx′)>ψ(x, a) then given ψ, (x, a) 7→
∫
P̂a(dx′|x)V (x′)

is the best linear least-squares estimator of (x, a) 7→∫
Pa(dx′|x)V (x′) for any V ∈ L1(P). In this sense, (P̂a)a∈A

is the “best” estimate of (Pa)a∈A.
Since (P̂a)a∈A is of the form (1) with f(x′) =

I{x′=x′i}F
>
i: ,7 the discussion after (1) applies: The approximate

model can be solved with finite resources up to any desired
accuracy.

For computational purposes, it is worthwhile to define π :
Z → Rn using πi(x, a) = Fi:ψ(x, a). Then, the prediction of
E[V (X ′)|Z = (x, a)] simply becomes8

un(V )>ψ(x, a) = V̄ >π(x, a).

7Strictly speaking this holds when no data point is repeated. The best way
to address problems with duplicated datapoints would be to allow ξ(dx′) =∑n
i=1 δx′i

(dx′)fi(x′), which does not change the discussion after (1).
8When using kernels to generate the features, the matrix Ψ will be an n×n

symmetric matrix and the formula given here reduces to that of [3].

Fig. 2. An MDP example used to show that least-squares model does not
guarantee the L1-norm constraint.
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As considered beforehand, if

‖π(x, a)‖1 ≤ 1, x ∈ {x′1, . . . , x′n}, a ∈ A , (5)

holds, the Bellman optimality operator of the finite pseudo-
MDP given by (2) underlying (P̂a)a will be a contraction and
thus V̂ ∗, the optimal value function in the pseudo-MDP will
exist.

The following counterexample shows that (5) is not guar-
anteed to hold. Consider an MDP with S = {1, 2}, and A =
{1, 2}. The (state) feature vectors are, φ(1) = 1, φ(2) = 2. Let
Daj = diag(d1,j , d2,j) with di,j being the frequncy of taking
aj at state i, i = 1, 2; j = 1, 2. Let the samples be arranged
such that samples of action a1 appear first. Let Φ> = [1, 2].
We have

(Ψ>Ψ)† =

(
(Φ>Da1Φ)† 0

0 (Φ>Da2Φ)†

)
=

(
1/(d1,1 + 4d2,1) 0

0 1/(d1,2 + 4d2,2)

)
Now

‖π(1, a1)‖1 = ‖Ψ(Ψ>Ψ)†ψ(1, a1)‖1

=
n∑
i=1

ψ(xi, bi)
>[1/(d1,1 + 4d2,1), 0]>

= (d1,1 + 2d2,1)/(d1,1 + 4d2,1).

Set d1,1 = 9, d2,1 = 1, we have ‖π(1, a1)‖1 ≈ 0.8462.
Set d1,2 = 1, d2,2 = 9. Similarly, we have ‖π(2, a1)‖1 =
2‖π(1, a1)‖1 ≈ 1.6923, ‖π(1, a2)‖1 = 0.5135, and
‖π(2, a2)‖1 = 1.0270.

Now look at the MDP in Figure 2, with Pa1 =
[0, 1; 1, 0];Pa2 = [1, 0; 0, 1]. ga2(1, 1) = ga1(2, 1) =
1.0, ga1(1, 2) = 0.0, ga2(2, 2) = 0. The discount factor is
0.9. The features are specified as above. We used 9 pairs of
(x = 1, a = 1), one pair of (x = 2, a = 1); one pair of
(x = 1, a = 2) and 9 pairs of (x = 2, a = 2). Note this
guarantees the same model as above. The L1-norm constraint
is not satisfied. The AVI procedure using the model quickly
diverges if using the iterative procedure for policy evaluation;
the procedure has policy oscillation if using a direct solver.

One solution is to normalize each π(x, a) by the L-1 norm
[3]. In the next section, we propose another solution.

B. The Constraint Approach

We propose to modify the least-squares fitting problem by
adding constraint (5). The resulting least squares problem can



be formulated in terms of the matrix F ∈ Rn×d:

minimize ‖ΨF> − In×n‖2F (6)

subject to
n∑
j=1

|Fj:ψ(x′i, a)| ≤ 1, a ∈ A , 1 ≤ i ≤ n ,

where In×n is the n×n identity matrix and ‖ ·‖F denotes the
Frobenius norm. Note that the objective function is a convex
quadratic function, while the constraints can be rewritten as
linear constraints. To explain the objective function, note that
by (4), for V ∈ L1(P) arbitrary, the least-squares prediction
of
∫
Pai(dx′|xi)V (x′) ≈ V (x′i) is V̄ >Fψ(xi, ai). Hence,

F should be such that
∑n
i=1(V̄ >Fψ(xi, ai) − V (x′i))

2 =
‖(ΨF> − In×n)V̄ ‖22 is small.

Choosing V ∈ {e1, . . . , en} and summing, we get the
objective of (6). Note that this suggests alternative objectives,
such as supV̄ :‖V̄ ‖2≤1 ‖(ΨF>−In×n)‖2 = ‖ΨF>−I‖2, which
is again convex.

Let f = (F1:, . . . , Fn:)
> ∈ Rnd, e = (e>1 , . . . , e

>
n )>. The

objective function of (6) can be written as

‖ΨF> − In×n‖2F =

n∑
i=1

‖ΨF>i: − ei‖22 = ‖Hf − e‖22, (7)

where H ∈ Rn2×nd is defined by

H =


Ψ 0 . . . 0
0 Ψ . . . 0
...

...
...

...
0 0 . . . Ψ

 .

Note that H>H ∈ Rnd×nd is given by

H>H =


Ψ>Ψ 0 . . . 0

0 Ψ>Ψ . . . 0
...

...
...

...
0 0 . . . Ψ>Ψ


To put (6) into the canonical form of linearly constrained
quadratic optimization, introduce the variables ξj,ia =
|Fj:ψ(x′i, a)|. Further, let Sj ∈ Rd×nd be the block matrix
Sj = (0, . . . , 0, Id×d, 0, . . . , 0) so that Sjf = F>j: . With this,
we can write (6) as

minimize f>H>Hf − 2e>Hf

subject to

ξj,ia ≥ ψ(x′i, a)>Sjf, 1 ≤ i, j ≤ n, a ∈ A ,
ξj,ia ≥ −ψ(x′i, a)>Sjf, 1 ≤ i, j ≤ n, a ∈ A ,

n∑
j=1

ξj,ia ≤ 1, 1 ≤ i ≤ n, a ∈ A .

Denote the transition kernels derived from the solution of (6)
by (P̃a)a∈A and the resulting pseudo-MDP by Ñ .

To summarize, to learn a model and to use it to produce a
policy, the following steps are followed: (i) data is collected of
the form (〈zi, ri, x′i〉, i = 1, . . . , n), where zi = (xi, ai) ∈ Z ,
x′i ∈ X and ri ∈ R (the intention is that 〈zi, ri, x′i〉 represents a

Algorithm 1 A generalized AVI algorithm that is based on an
approximate model extending kernel embedding [3].
Input: A set of samples (〈xi, ai, ri, x′i〉)i=1,2,...,n, a feature mapping
ψ : X ×A → Rd, and a matrix F ∈ Rn×d.
/*Those x′i that are terminal have ψ(x′i, a) = 0, which ensures
π(x′i, a) = 0; for ∀a ∈ A. */
Output: A policy α and an estimate of V α at the samples
(x′i)i=1,2,...,n

. . . . . . . . . . . . . . . . . . . . . . . . . . Modeling . . . . . . . . . . . . . . . . . . . . . . . . . .
Compute the action model π for all x′i:
For i = 1, . . . , n

For each action a
Compute π(x

′
i, a) = Fψ(x′i, a)

End
End
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialize policy α /*α is specified at (x′i)i=1,2,...,n */
Initialize V̄ α /*n-dimensional vector; V̄ α(i) estimates V α(x′i) */
Generate vector r̄ with r̄(i) = ri.
Repeat

Solve V̄ α for the current policy: /* iteratively or directly*/
V̄ α(i) = π(x′i, α(x′i))

>(r̄ + γV̄ α), i = 1, 2, . . . , n,
For i = 1, . . . , n

Compute α(x′i) = arg maxa∈A π(x′i, a)>(r̄ + γV̄ π).
End

End

transition sampled from the true model); (ii) based on the data,
matrix F and then the normalized table (π̃j(xi, a))1≤i,j≤n,a∈A
are calculated; (iii) value- or policy-iteration [9] is used to
find the optimal value function of the finite pseudo-MDP with
n states where the reward at state i is ri, and the transition
kernel is Qa(j|i) = π̃j(xi, ai). Denote the computed optimal
value function by v. We will view v as an n-dimensional
vector over x′i. Finally, an optimal action at state x ∈ X
of underlying the model that uses (P̃a)a∈A is obtained by
computing argmaxa∈A g

a(x)+γv>π̃(x, a). The pseudo code
of the proposed AVI algorithm is shown in Algorithm 1.

One can prove that when the constraints in the optimization
problem in equation (6) are removed, the resulting solution is
equal to the least-square solution.

We need an efficient solver for the constraint approach for
which off-the-shelf softwares are very slow. Let matrix A ∈
Rd×|A|n be A = [Ψ>a1 ,Ψ

>
a2 , . . . ,Ψ

>
a|A|

] where Ψak is in Rn×d
and Ψak(i, j) = ψj(xi, ak). The optimization problem can be
written as

min
F :‖A>F>‖1,∞≤1

1

2
‖FΨ> − I‖2F

⇔ min
F,Y :Y=A>F>

1

2
‖FΨ> − I‖2F + δ(‖Y ‖1,∞ ≤ 1).

where δ(·) = 0 if · is true and ∞ otherwise. ‖Z‖p,q :=
(
∑
i(
∑
j |Zij |p)q/p)1/q , i.e., the `q norm of (y1, y2, . . .)

>

where yi is the `p norm of the i-th row of Z. It is well
known that the dual norm of `p norm is the `p∗ norm, where
1/p+ 1/p∗ = 1. The dual norm of ‖ · ‖p,q is ‖ · ‖p∗,q∗ .

Note that we are deliberately decoupling A>F> and Y . We
solve this problem by applying Alternating Direction Method
of Multipliers (ADMM) [10], which gradually enforces Y =



A>F> through the minimization of augmented Lagrangian

L(F, Y,Λ) =
1

2
‖FΨ> − I‖2F + δ(‖Y ‖1,∞ ≤ 1)

− tr(Λ>(Y −A>F>)) +
1

2µ
‖Y −A>F>‖2F ,

in the following steps:
1. Initialize F0 and set Y0 = A>F>0 and Λ0 = 0. t← 1.
2. Yt ← arg minY L(Ft−1, Y,Λt−1).
3. Ft ← arg minF L(F, Yt,Λt−1).
4. Λt ← Λt−1 + 1

µ (A>F>t − Yt).
5. t ← t + 1, and go to step 2. Terminate if the difference

between Yt and A>F>t falls below some threshold.
Step 2 essentially solves

min
Y :‖Y ‖1,∞≤1

1

2
‖Y − Zt‖2F ,

where Zt = µΛt−1 + A>F>t−1. Note the constraint and
objective are decoupled along rows, and therefore it suffices
to solve

min
y:‖y‖1≤1

1

2
‖y> − (Zt)i:‖2F ,

where (Zt)i: stands for the i-th row of Zt. This can be solved
in linear time by, e.g., [11].

Step 3 minimizes an unconstrained quadratic function in F :

min
F

1

2
tr(FΨ>ΨF>) +

1

2µ
tr(FAA>F>)− tr(C>t F ),

where Ct = Ψ−Λ>t−1A
>+ 1

µY
>
t A

> and Ct changes over iter-
ation. Setting the gradient to 0, a solution is optimal if and only
if Ct = FΨ>Ψ + 1

µFAA
>. Thus Ft = Ct(Ψ

>Ψ + 1
µAA

>)†.
The pseudo-inversion of the matrix can be pre-computed
before iteration.

The larger µ is, the less effective is the constraint and
thus the closer is the solution to the least-squares solution.
In practice, µ is usually set to a small positive constant.

V. EMPIRICAL RESULTS

In this section, we provide empirical results of learning an
optimal control policy for cart-pole balancing using the AVI
algorithm from the LS model and the constraint model.

A. Cart-pole Balancing

In this problem, the goal is to keep the pole with one end
attached to the cart above the horizontal line (|ϑ| ≤ π/2). The
agent can choose between three actions to apply to the cart at
each time step: pushing to the left (action 1) or right (action
3) in 50 Newton or applying no force (action 2). A Gaussian
noise with zero mean and a standard deviation of 10 Newton is
added to the force. If the pole is below the horizontal line the
task fails and a reward −1 is given; a constant zero reward is
given for the other states. The state variables are the angle and
angular velocity of the pole, [θ, θ̇], which are both continuous.
The discount factor is 0.9. No exploration was used.

Recall that for both the LS model and the constraint model
the goal is to learn a matrix F such that Î = ΨF> approx-
imates the identity matrix In×n well where n is the number
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Fig. 3. The approximate identity matrix by the RBF features (LS fit).

of samples. We first tried the nine radial basis functions plus
a constant feature by LSPI authors [4] for our AVI algorithms
(with both the LS model and the L1 constraint model). For
a state s, φi(s) = exp(−||s− ui−1||2/2), i = 1, 2, . . . , 10,
where u0 = s, and the other ui are the points from the
grid {−π/4, 0, π/4} × {−1, 0, 1} [4]. The algorithms did
not perform well with these features. It turns out that the
approximation of the identity matrix is poor for both models.
For example, the LS approximation is shown in Figure 3
using about 1, 300 samples collected using a random policy
by starting the pole from a random state near the state [0, 0].
The diagonal part is well approximated but the other part is
noisy.

To circumvent this problem, we used “tensor-product fea-
tures”. We first partitioned the state space using a grid and then
pre-computed the RBF features inside each cell to provide gen-
eralization. As a result, both the LS model and the constraint
model approximate the identity matrix well. For example,
Figure 4 shows the LS approximation. In these two figures,
we partitioned each state dimension into three parts. There
are effectively three cells laid over the state space because six
of them are all failure states (with |θ| > π/2) whose feature
vector is all zero. To illustrate the matrix better, we had sorted
the samples according to the grid index that xi belongs to
and then according to the action ai using a stable sorting
algorithm. Because of the way the features are constructed,
the approximate matrix contains only diagonal blocks and
outside these blocks the values are strictly zero. The sorting
operation ensures that the diagonal part of the approximate
identity matrix is in the order of action blocks, each of which
contains the smaller approximate identity matrices for the
grids. The approximation is better with more partitions. Figure
5 shows the optimization solution using five partitions in each
dimension. The ADMM algorithm was run with µ = 1.0 and
30 iterations. The algorithm was fast and took 318 seconds
for 30 iterations on a desktop with 1.7GHz Intel Core i7 and
8GB 1600 MHz DDR3.

In order to evaluate the performance of the normalized LS
model and the constraint model, we conducted 30 independent
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(The constrained optimization approximation using 5 partitions in each state
dimension).

runs of experiment. In each run, we collected a number of
episodes of samples from the random policy. We learned
the LS model and the constraint model, and then used them
independently in AVI to compute an approximate optimal
policy. The LS model was normalized by the L1 norm of each
π. Each model was fed into the AVI procedure to produce
a policy. We then evaluated each policy 100 times with up
to 3000 steps in each evaluation. The averaged number of
balanced steps was then used as a quality measure. Figure 6
shows the balanced steps by the policies of both methods. The
constraint model is substantially better than the LS model.

VI. CONCLUSION

In this paper we proposed a framework called pseudo-MDPs
which are more general than MDPs in that the transition kernel
does not have to be a probability kernel. The advantage of
pseudo-MDPs is that it allows one to solve a MDP from a
broader class of approximate models. We provide a general
AVI algorithm for pseudo-MDPs and theoretical guarantees
as well as a generic error bound which recovers existing
bounds. We propose two efficient approaches of learning a
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Fig. 6. The balanced steps of the pole for the cart-pole system by the AVI
algorithms using the normalized LS model and the constraint model.

factored linear action model which constructs a pseudo-MDP.
Results show that the approaches perform well; in addition,
the constrained optimization approach is better than the least-
squares approach.
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