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Abstract. A number of priors have been recently developed for Bayesian esti-
mation of sparse models. In many applications the variables are simultaneously
relevant or irrelevant in groups, and appropriately modeling this correlation is
important for improved sample efficiency. Although group sparse priors are also
available, most of them are either limited to disjoint groups, or do not infer spar-
sity at group level, or fail to induce appropriate patterns of support in the poste-
rior. In this paper we tackle this problem by proposing a new framework of prior
for overlapped group sparsity. It follows a hierarchical generation from group
to variable, allowing group-driven shrinkage and relevance inference. It is also
connected with set cover complexity in its maximum a posterior. Analysis on
shrinkage profile and conditional dependency unravels favorable statistical be-
havior compared with existing priors. Experimental results also demonstrate its
superior performance in sparse recovery and compressive sensing.

1 Introduction

Sparsity is an important concept in high-dimensional statistics [1] and signal processing
[2] that has led to important application successes. It reduces model complexity and
improves interpretability of the result, which is critical when the number of explanatory
variables p in the problem is much higher than the number of training instances n.

From a Bayesian perspective, the sparsity of a variable βi is generally achieved by
shrinkage priors, which often take the form of scale mixture of Gaussians: βi|zi ∼
N (0, zi). zi indicates the relevance of βi, and a broad range of priors on zi has been
proposed. For example, the spike and slab prior [3, 4] uses a Bernoulli variable for zi,
which allows βi to be exactly zero with a positive probability. Absolutely continuous
alternatives also abound [5], e.g., the horseshoe prior [6, 7] which uses half-Cauchy on
zi and offers robust shrinkage in the posterior. Interestingly, the maximum a posterior
(MAP) inference often corresponds to deterministic models based on sparsity-inducing
regularizers, e.g. Lasso [8] when zi has a gamma distribution [9, 10]. In general, the
log-posterior can be non-concave [11, 12].

However, many applications often exhibit additional structures (correlations) in
variables rather than being independent. Groups may exist such that variables of each
group are known a priori to be jointly relevant or irrelevant for data generation. Encod-
ing this knowledge in the prior proves crucial for improved accuracy of estimation. The



simplest case is when the groups are disjoint, and they form a partition of the variable
set. This allows the relevance indicator zi of all variables in each group to be tied, form-
ing a group indicator which is endowed with a zero-centered prior as above [13, 14].
In particular, a gamma prior now yields the Bayesian group Lasso [15], and its MAP
is the group Lasso [16] which allows group information to provably improve sample
efficiency [17]. More refined modeling on the sparsity within each group has also been
explored [18, 19]. We overview the related background in Section 2.

However, groups do overlap in many practical applications, e.g. gene regulatory net-
work in gene expression data [20], and spatial consistency in images [21]. Techniques
that deal with this scenario start to diverge. A commonly used class of method employs
a Markov random field (MRF) to enforce smoothness over the relevance indicator of all
variables within each group [22–24]. However, this approach does not infer relevance
at the group level, and does not induce group-driven shrinkage.

Another popular method is to directly use the Bayesian group Lasso, despite the
loss of hierarchical generative interpretation due to the overlap. Its MAP inference has
also led to a rich variety of regularizers that promote structured sparsity [21, 25], al-
though statistical justification for the benefit of using groups is no longer rich and solid.
Moreover, Bayesian group Lasso tends to shrink a whole group based on a complexity
score computed from its constituent variables. So the support of the posterior β tends to
be the complement of the union of groups, rather than the union of groups as preferred
by many applications.

To address these issues, we propose in Section 3 a hierarchical model by placing
relevance priors on groups only, while the variable relevance is derived (probabilisti-
cally) from the set of groups that involve it. This allows direct inference of group rel-
evance, and is amenable to the further incorporation of hierarchies among groups. All
previously studied sparsity-inducing priors on relevance variables can also be adopted
naturally, leading to a rich family of structured sparse prior. The MAP of our model
turns out exactly the set cover complexity, which provably reduces sample complexity
for overlapped groups [26].

Although in appearance our model simply reverses the implication of relevance in
Bayesian group Lasso, it amounts to considerably more desirable shrinkage profile [7].
In Section 4, detailed analysis based on horseshoe prior reveals that set cover priors
retain the horseshoe property in its posterior, shrinking reasonably for small response
and diminishing when response grows. Surprisingly, these properties are not preserved
by the other structured alternatives. Also observed in set cover prior is the favorable
conditional dependency between relevance variables, which allows them to “explain-
away” each other through the overlap of two groups they each belong to. Experimental
results in Section 5 confirm that compared with state-of-the-art structured priors, the
proposed set cover prior outperforms in sparse recovery and compressive sensing on
both synthetic data and real image processing datasets.

Note different from [27] and [28], we do not introduce regression variables that
account for interactions between features, i.e. βij for xixj .



2 Preliminaries on Sparse Priors

In a typical setting of machine learning, we are given n training examples {xi, yi}ni=1,
where xi ∈ Rp represents a vector of p features/variables, and yi is the response that
takes value in R for regression, and in {−1, 1} for classification. Our goal is to learn a
linear model β ∈ Rp, or a distribution of β, such that x′iβ agrees with yi. This problem
is usually ill-posed, especially when p� n as considered in this work. Therefore prior
assumptions are required and here we consider a popular prior that presumes β is sparse.
In Bayesian methods, the compatibility between yi and x′iβ is enforced by a likeli-
hood function, which is typically normal for regression (i.e., y|x,β∼N (x′β, σ2)), and
Bernoulli for classification. σ is a pre-specified constant.

The simplest form of sparsity is enforced on each element of β independently
through priors on βi. Most existing models use a scalar mixture of normals that cor-
respond to the graphical model zi → βi [27, 29, 30]:

π(βi) =

∫
N (βi; 0, σ

2
0zi)f(zi)dzi. (1)

Here σ2
0 can be a constant, or endowed with a prior. Key to the model is the latent

conditional variance zi, which is often interpreted as relevance of the variable βi. Larger
zi allows βi to take larger absolute value, and by varying the mixing distribution f of
zi we obtain a range of priors on β, differing in shrinkage profile and tail behavior. For
example, the spike and slab prior [3, 4] adopts

fSS(zi) = p0δ(zi − 1) + (1− p0)δ(zi), (2)

where δ is the Dirac impulse function and p0 is the prior probability that βi is included.
Absolutely continuous distributions of zi are also commonly used. An inverse gamma
distribution on zi leads to the Student-t prior, and automatic relevance determination
[ARD, 9] employs f(zi) ∝ z−1i . Indeed, a number of sparsity-inducing priors can be
unified using the generalized beta mixture [5, 31]:

zi|λi ∼ Ga(a, λi), and λi ∼ Ga(b, d). (3)

Here Ga stands for the gamma distribution with shape and rate (inverse scale) parame-
ters. In fact, zi follows the generalized beta distribution of the second kind:

GB2(zi; 1, d, a, b) = za−1i (1 + zi/d)
−a−bd−a/B(a, b), (4)

where B(a, b) is the beta function. When a = b = 1
2 , it yields the horseshoe prior

on β [6]. The normal-exponential-gamma prior and normal-gamma prior [32] can be
recovered by setting a = 1 and b = d→∞ respectively. In the intersection of these two
settings is the Bayesian Lasso: π(β)∼ exp(−‖β‖1) [10], where ‖β‖p := (

∑
i |βi|p)

1
p

for p ≥ 1.
To lighten notation, in the case of spike and slab we will also use zi to represent

Bernoulli variables valued in {0, 1}. So integrating over zi ≥ 0 with respect to the
density in (2) can be interpreted as weighted sum over zi ∈ {0, 1}.



Fig. 1. Group spike and
slab

Fig. 2. Nested spike
and slab

Fig. 3. Group counting
prior for spike and slab

2.1 Disjoint Groups

In many applications, prior knowledge is available that the variables can be partitioned
into disjoint groups gi ⊆ [p] := {1, . . . , p}, and all variables in a group tend to be pos-
itively correlated, i.e. relevant or irrelevant simultaneously. Denote G = {g1, g2, . . .}.
[13] generalized the spike and slab prior to this scenario by introducing a scalar param-
eter of relevance for each group: ug ∼ fSS, and extending (1) into a scalar mixture of
multivariate normal

π(βg) =

∫
N (βg;0,Λgug)f(ug)dug ∀ g ∈ G. (5)

Here βg encompasses all variables in the group g, and Λg is a diagonal matrix of vari-
ance. See Figure 1 for the factor graph representation that will facilitate a unified treat-
ment of other models below. As a result, correlation is introduced among all variables
in each group. Using exactly the same density f as above (but on ug here), one may
recover the group horseshoe, group ARD [14], and Bayesian group Lasso [15]:

π(β) ∝ exp(−‖β‖G), where ‖β‖G =
∑

g
‖βg‖p . (6)

Common choices of p are 2 and∞. To further model the sparsity of different variables
within a group, [18] proposed a nested spike and slab model as shown in Figure 2. The
key idea is to employ both Bernoulli variables zi and ug that encode the relevance of
variables and groups respectively, and to define the spike and slab distribution of βi
conditional on ug = 1. In particular, zi must be 0 if ug = 0, i.e. group g is excluded.
This relation is encoded by a factor between zi and ug:

h(zi, ug) =

pzi0 (1− p0)1−zi if ug = 1

I(zi = 0) if ug = 0
, ∀i ∈ g. (7)

Here I(·) = 1 if · is true, and 0 otherwise.



3 Structured Prior with Overlapped Groups

In many applications, groups may overlap and fully Bayesian treatments for this setting
have become diverse.

Group counting prior (GCP). A straightforward approach is to ignore the fact of
overlapping, and simply use the group Lasso prior in (6). This idea is also used in
deterministic overlapped group Lasso [16]. When p =∞, the norm in (6) is the Lovász
extension of the group counting penalty [33] which, in the case of spike and slab prior
on βi, can be written in terms of the binary relevance indicator z := {zi} ∈ {0, 1}p

Ω(z) =
∏
g∈G

p
ug

0 (1− p0)1−ug , where ug = max
i:i∈g

zi. (8)

So a group is deemed as relevant (ug = 1) if, and only if, any variable in the group
is relevant (zi = 1). The factor graph is given in Figure 3, with a Bernoulli potential
on ug . However, since this prior promotes ug to be 0 (i.e. zero out all variables in the
group g), the support of β in the posterior tends to be the complement of a union of
groups. Although this may be appropriate for some applications, the support is often
more likely to be the union of groups.

MRF prior. Instead of excluding groups based on its norm, the MRF prior still places
sparsity-inducing priors on each variable βi, but further enforces consistency of rele-
vance within each group via zi. For example, assuming the variables are connected via
an undirected graph where each edge (i, j) ∈ E constitutes a group, [22, 34] extended
the spike and slab prior by incorporating a pairwise MRF over the relevance indicators
zi: exp(−

∑
(i,j)∈E RijI(zi 6= zj)).

As a key drawback of the above two priors, they do not admit a generative hierarchy
and perform no inference at the group level. To address these issues, we next construct
a hierarchical generative model which explicitly characterizes the relevance of both
groups and variables, as well as their conditional correlations.

3.1 Set cover prior (SCP)

To better clarify the idea, we first focus on spike and slab prior where sparsity can be
easily modeled by Bernoulli variables zi and ug . Recall the nested model in Figure 2,
where each group has a Bernoulli prior, and each variable zi depends on the unique
group that it belongs to. Now since multiple groups may be associated with each node,
it will be natural to change the dependency into some arithmetics of these group indi-
cators. In Figure 4, we show an example with1

h(zi, {ug : i ∈ g}) = I(zi ≤ max{ug : i ∈ g}). (9)

This means a variable can be relevant only if any group including it is also relevant.
Although this appears simply reversing the implication relations between group and
variable in the group counting prior, it does lead to a hierarchical model and enjoys
much more desirable statistical properties as will be shown in Section 4.

1 This defines a potential in an MRF; there is no explicit prior on zi.



Fig. 4. Set cover prior for
spike and slab
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Fig. 5. Set cover prior for spike
and slab with tree hierarchy. uj

corresponds to gj . h = I(u4 ≥
max{u2, u3}).

Fig. 6. Set cover
prior using horseshoe.
r2 = Ga(u2;

1
2
, 1
2
). h2 =

Ga(z2;
1
2
,max{u1, u2}).

By endowing a Bernoulli prior on all ug with Pr(ug = 1) = p0 < 0.5 (i.e. favoring
sparsity), we complete a generative prior of β in a spike and slab fashion. Given an
assignment of z, it is interesting to study the mode of {ug}, which is the solution to

min
{ug}

∑
g

ug, s.t. ug ∈ {0, 1},
∑
g:i∈g

ug ≥ zi, ∀ i. (10)

This turns out to have exactly the same complexity as set cover [26]. It seeks the
smallest number of groups such that their union covers the set of variables. Hence we
will call this prior as “set cover prior”. This optimization problem is NP-hard in general,
and some benefit in sample complexity is established by [26].

A number of extensions follow directly. Additional priors (e.g. MRF) can be placed
on variables zi. The max in (9) can be replaced by min, meaning that a variable can be
selected only if all groups involving it are selected. Other restrictions such as limiting
the number of selected variables in each (selected) group can also be easily incorporated
[35]. Moreover, groups can assume a hierarchical structure such as tree, i.e. g ∩ g′ ∈
{g, g′, ∅} for all g and g′. Here the assumption is that if a node g′ is included, then all
its ancestors g ⊃ g′ must be included as well [21, 36]. This can be effectively enforced
by adding a factor h that involves each group g and its children ch(g) (see Figure 5):

h(g, ch(g)) = I(ug ≥ maxg′∈ch(g) ug′). (11)

When the groups are disjoint, both set cover and group counting priors are equivalent
to group spike and slab.

3.2 Extension to Generalized Beta Mixture

The whole framework is readily extensible to the continuous sparse priors such as horse-
shoe and ARD. Using the interpretation of zi and ug as relevance measures, we could



simply replace the function I that tests equality by the Dirac impulse function δ, and
apply various types of continuous valued priors on zi and ug . This is indeed feasible for
GCP, e.g. encode the continuous variant of (8) using the generalized beta mixture in (3)

h(ug, {zi : i ∈ g}) = δ(ug −max{zi : i ∈ g}), h(ug) = GB2(ug; 1, d, a, b). (12)

Here more flexibility is available when zi is continuous valued, because the max can
be replaced by multiplication or summation, which promotes or suppresses sparsity
respectively [27, Theorem 1, 2].

However problems arise in SCP if we directly use

zi = max
g:i∈g

ug or min
g:i∈g

ug, where ug ∼ GB2(ug; 1, d, a, b), (13)

because it leads to singularities in the prior distribution on z. To smooth the prior, we
resort to arithmetic combinations of the intermediate variables in the generative process
of the prior on ug . Note that in (3), d is a scale parameter, while a and b control the
behavior of the distribution of zi close to zero and on the tail, respectively. A smaller
value of λi places more probability around 0 in zi, encouraging a sparser βi. So a natural
way to combine the group prior is:

zi|{ug} ∼ Ga(a,maxg:i∈g ug), and ug ∼ Ga(b, d), (14)

where max allows zi to pick up the most sparse tendency encoded in all ug of the asso-
ciated groups2. Changing it to min leads to adopting the least sparse one. The resulting
graphical model is given in Figure 6. Here ug has a gamma distribution, playing the
same role of relevance measure as in the normal-gamma prior on βi [32]. The SCP con-
structed in (14) is no longer equivalent to the group priors in Section 2.1, even when the
groups are disjoint.

In fact, the arithmetics that combine multiple groups can be carried out at an even
higher level of the generative hierarchy. For example, in the horseshoe prior where
a = b = 1/2, one may introduce an additional layer of mixing over the scale parameter
d, making it an arithmetic combination of ug of the associated groups. We leave this
possibility for future exploration.

Notice [38] used a partial least squares approach based on an MRF of binary se-
lectors of groups and variables. However their method is confined to spike and slab,
because these two groups of indicators are not coupled by the potential function, but
by imposing external restrictions on the admissible joint assignment that is valued in
{0, 1}. It also brings much challenge in MCMC inference.

4 Analysis of Structured Sparse Prior

Although the above three types of priors for structured sparsity appear plausible, their
statistical properties differ significantly as we study in this section. Here in addition to
the robust shrinkage profile studied by [6], we also compare the conditional correlation
among variables when the groups overlap.

2 See more detailed discussions in Appendix A of the full paper [37] on how a greater value of
the second argument (rate, i.e. inverse scale) of a Gamma distribution induces higher sparsity
in βi.



0.25 0.25 0.25
0.35 0.35 0.35
0.4 0.4 0.4

0.
5

0.5 0.50.55
0.55 0.55

0.
6

0.6
0.6

0.6

0.65

0.65

0.7

κ1

κ
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Contour of E[κ3|κ1, κ2]

−1 −1 −1
0

0

0

0

0.5

0.5

0.5
0.5

0.5

0.5

1

1
1

1

1

1
1

2

2
2

2 2
2

2

κ1

κ
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Contour of log p(κ1, κ2)

0 10 20 30 40 50 60 70
0

0.4

0.8

1.2

1.6

2

yi

y
i
−
E
[β

i|
y
]

 

 

variable 1 (i = 1)
variable 2 (i = 2)

(c) yi − E[βi|y] v.s. yi
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Consider p = 3 variables, and there are two groups {1, 2} and {2, 3} which overlap
on variable 2. The design matrix X is the 3 × 3 identity matrix I (n = 3), and the
observation y|β ∼ N (Xβ, I) = N (β, I). Let σ0 = 1. Then the expected posterior
value of β given z has a closed form E[βi|zi, yi] = (1−κi)yi where κi = 1/(1+zi) is a



random shrinkage coefficient. The distribution of κi is determined entirely by the prior
on zi, and a larger value of κi means a greater amount of shrinkage towards the origin.

As a concrete example, we study the horseshoe prior with a = b = d = 1/2.
GCP and SCP use the formulae (12) and (14), respectively. The MRF prior attaches a
horseshoe potential on each βi, and in addition employs a smooth MRF exp(−α(z1 −
z2)

2 − α(z2 − z3)2) with α = 0.01. We use a Gaussian MRF because there is no need
of shrinking the difference.

4.1 Conditional Dependency (Explain-away Effect)
We first consider the conditional distribution of κ3 given κ1 and κ2. Since it is hard to
visualize a function of three variables, we show in panel (a) of Figures 7 to 9 the mean
E[κ3|κ2, κ1] under the three priors. Clearly the mean of κ3 does not change with κ1 in
GCP and MRF prior, because z3 is simply independent of z1 given z2. The mean of κ3
grows monotonically with κ2, as MRF favors small difference between z2 and z3 (hence
between κ2 and κ3), and in SCP smaller κ2 clamps a larger value of max{z2, z3},
shifting more probability mass towards greater z3 which results in a lower mean of κ3.

Interestingly when κ2 is large, the SCP allows the mean of κ3 to decrease when κ1
grows. See, e.g., the horizonal line at κ2 = 0.8 in Figure 7a. To interpret this “explain-
away” effect, first note a greater value of κ2 means z2 has a higher inverse scale. Due
to the max in (14), it implies that either u1 or u2 is large, which means κ1 or κ3 is
large since variables 1 and 3 belong to a single group only. Thus when κ1 is small,
κ3 receives more incentive to be large, while this pressure is mitigated when κ1 itself
increases. On the other hand when κ2 is small, κ1 and κ3 must be both small, leading
to the flat contour lines.

4.2 Joint Shrinkage
Next we study the joint density of κ1 and κ2 plotted in panel (b). SCP exhibits a 2-D
horseshoe shaped joint density in Figure 7b, which is desirable as it prefers either large
shrinkage or little shrinkage. In GCP, however, the joint density of (κ1, κ2) concen-
trates around the origin in Figure 8b. Indeed, this issue arises even when there are only
two variables, making a single group. Fixing κ2 and hence z2, max{z1, z2} does not
approach 0 even when z1 approaches 0 (i.e. κ1 approaches 1). So it is unable to exploit
the sparsity-inducing property of horseshoe prior which places a sharply growing den-
sity towards the origin. The joint density of MRF is low when κ1 and κ2 are both around
the origin, although the marginal density of each of them seems still high around zero.

4.3 Robust Marginal Shrinkage
Finally we investigate the shrinkage profile via the posterior mean E[β|y], with z inte-
grated out. Let q(z) be proportional to the prior density on z (note the group counting
and MRF priors need a normalizer). Then E[βi|y] = γ

(1)
i /γ

(0)
i , where for k ∈ {0, 1}

γ
(k)
i =

∫
βk
i q(z)

∏
j

N (βj ; 0, zj)N (yj ;βj , 1)dβjdz, (15)

and
∫
βk
jN (βj ; 0, zj)N (yj ;βj , 1)dβj =

√
1

8π

zkj

(1 + zj)k+
1
2

exp

(
−y2j

2 + 2zj

)
. (16)



Panel (c) of Figures 7 to 9 shows yi − E[βi|yi] (the amount of shrinkage) as a
function of yi, for variables i ∈ {1, 2}. All yj (j 6= i) are fixed to 1. In Figure 7c, Both
SCP and GCP provide valuable robust shrinkage, with reasonable shrinkage when yi
is small in magnitude, and diminishes as yi grows. And as expected, variable 2 shrinks
more than variable 1. In SCP, variable 2 takes the sparser state between variables 1 and
3 via the max in (14), while in GCP variable 2 contributes to both sparsity-inducing
priors of u1 and u2 in (12). Notice that for small y1, GCP is not able to yield as much
shrinkage as SCP. This is because for small y1, z1 is believed to be small, and hence the
value of max{z1, z2} is dominated by the belief of z2 (which is larger). This prevents
z1 from utilizing the horseshoe prior around zero. The case for y2 is similar.

In fact, we can theoretically establish the robust shrinkage of SCP for any group
structure under the current likelihood y|β ∼ N (β, I).

Theorem 1. Suppose SCP uses horseshoe prior in (14) with a = b = 1/2. Then for
any group structure, limyi→∞(yi − E[βi|y]) = 0 with fixed values of {yj : j 6= i}.

Proof. (sketch) The key observation based on (15) and (16) is that E[βi|y] − yi =
∂

∂yi
logF (y) where F (y) is given by∫
z

∏
j

(1 + zj)
−1
2 exp

(
−y2j

2 + 2zj

)
q(z)dz (17)

=

∫
u

∏
j

(∫
zj

(1 + zj)
−1
2 exp

(
−y2j

2 + 2zj

)
Ga(zj ; a,max

g:j∈g
ug)dzj

)∏
g

Ga(ug; b, d)du

The rest of the proof is analogous to [6, Theorem 3]. The detailed proof is provided in
Appendix B of the longer version of the paper [37]. ut

By contrast, MRF is unable to drive down the amount of shrinkage when the re-
sponse yi is large. To see the reason (e.g. for variable 1), note we fix y2 to 1. Since MRF
enforces smoothness between z1 and z2, the fixed value of y2 (hence its associated be-
lief of z2) will prevent z1 to follow the increment of y1, disallowing z1 to utilize the
heavy tail of horseshoe prior. The amount of shrinkage gets larger when α increases.

To summarize, among the three priors only the set cover prior enjoys all the three
desirable properties namely conditional dependency, significant shrinkage for small ob-
servation, and vanishing shrinkage for large observations.

5 Experimental Results

We next study the empirical performance of SCP, compared with GCP, and MRF priors
[34]. Since the MRF prior therein is restricted to spike and slab, to simplify comparison
we also base SCP and GCP on spike and slab. This allows convenient application of ex-
pectation propagation for posterior inference [EP, 39, 40], where all discrete factors are
approximated by Bernoulli messages [34]. At each iteration, messages are passed from
top to the bottom in Figure 4, and back up. Other inference algorithms are also possible,
such as MCMC [e.g., 38], and variational Bayes [41]. Since the Bayesian models used



Fig. 10. Recovery rate for sparse signal Fig. 11. Sequential experimental design for
sparse recovery

here are typically multi-modal and the mean of the posterior is generally more impor-
tant, we choose to use EP in our experiment, although it will also be interesting to try
other methods.

Empirically EP always converged within 10 iterations, with change of message
fallen below 1e-4. The loops make it hard to analyze the local or global optimality
of EP result. But in practice, we did observe that with different initializations, EP al-
ways converged to the same result on all experiments, being highly reliable. To give an
example of computational efficiency, in image denoising (Section 5.5, p = n = 4096),
it took only 0.5 seconds per image and per iteration to compute messages related to the
prior, while common techniques for Gaussian likelihood allowed its related messages
to be computed in 1-2 seconds.

As a baseline, we also tried spike and slab prior with non-overlapping groups (GSS)
if reasonable non-overlapping group approximation is available, or even without groups
(SS). Furthermore we consider three state-of-the-art frequentist methods, including
Lasso, group Lasso (GLasso), and coding complexity regularization [CCR, 26]. Groups
are assumed available as prior knowledge.

5.1 Sparse Signal Recovery

We first consider a synthetic dataset for sparse signal reconstruction with p = 82 vari-
ables [42]. {βi} was covered by 10 groups of 10 variables, with an overlap of two
variables between two successive groups: {1, . . . , 10}, {9, . . . , 18}, . . . , {73, . . . , 82}.
The support of β was chosen to be the union of group 4 and 5, with the non-zero entries
generated from i.i.d. Gaussian N (0, 1). We used n = 50 samples, with the elements of
the design matrix X ∈ Rn×p and the noisy measurements y drawn by

Xij
i.i.d.∼ N (0, 1), y = Xβ + ε, εi

i.i.d.∼ N (0, 1). (18)

We used recovery error as the performance measure, which is defined as ||β̂ −
β||2/||β||2 for the posterior mean β̂. X and β were randomly generated for 100 times,
and we report the mean and standard deviation of recovery error. An extra 10 runs were



Table 1. Recovery error for network sparsity. GSS is not included as disjoint group approximation
is not clear for general graph structure. CCR is also not included since its implementation in [26]
does not allow flexible specification of groups.

SCP GCP MRF SS Lasso GLasso

Jazz 0.264± 0.083 0.312± 0.068 0.338± 0.149 0.398± 0.188 0.489± 0.101 0.456± 0.107

NetScience 0.067± 0.005 0.093± 0.058 0.167± 0.110 0.188± 0.113 0.394± 0.045 0.383± 0.048

Email 0.106± 0.025 0.104± 0.054 0.243± 0.105 0.310± 0.130 0.432± 0.049 0.420± 0.057

C.elegans 0.158± 0.034 0.163± 0.025 0.184± 0.057 0.225± 0.101 0.408± 0.068 0.394± 0.068

taken to allow all models to select the hyper-parameters that optimize the performance
on the 10 runs. This scheme is also used in subsequent experiments.

In Figure 10, SCP clearly achieves significantly lower recovery error than all other
methods. MRF is the second best, followed by GCP. This suggests that when β is gen-
erated over the union of some groups, SCP is indeed most effective in harnessing this
knowledge. Bayesian models for structured sparse estimation also outperform vanilla
Bayesian models for independent variables (SS), as well as frequentist methods (CCR,
Lasso, GLasso),

5.2 Sequential Experimental Design

A key advantage of Bayesian model is the availability of uncertainty estimation which
facilitates efficient sequential experimental design [13]. We randomly generated a data
pool of 10,000 examples based on (18), and initialized the training set with n = 50
randomly selected examples (i.e. revealing their response yi). Then we gradually in-
creased the size of training set up to n = 100. At each iteration, one example was
selected and its response yi was revealed for training. In the random setting examples
were selected uniformly at random, while in sequential experimental design, typically
the example with the highest uncertainty was selected. For each candidate example x,
we used x′V x as the uncertainty measure, where V is the current approximated pos-
terior covariance matrix. The whole experiment was again repeated for 100 times, and
the average recovery error is shown.

In Figure 11, for all models sequential experimental design is significantly more
efficient in reducing the recovery error compared with random design. In particular,
SCP achieves the steepest descent in error with respect to the number of measurements.
This again confirms the superiority of SCP in modeling group structured sparsity in
comparison to GCP and MRF. SS performs worst as it completely ignores the structure.

5.3 Network Sparsity

Following [34] and [43], we next investigate the network sparsity where each node is
a variable and each edge constitutes a group (i.e. all groups have size 2). We tried on
four network structures: Email (p = 1, 133, #edge=5,451), C.elegans (453, 2,015),
Jazz (198, 2,742), NetScience (1,589, 2,742).3 See network properties in Table 1. We
picked a subset of edges uniformly at random, and added their two incident nodes to the
support of β. By adjusting the number of selected edges, the size of the support of β is

3 Downloaded from http://www-personal.umich.edu/∼mejn/netdata
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Fig. 12. Recovery error for background subtraction

0.25p, and the nonzero elements in β were sampled from N (0, 1). The design matrix
X and the response y were drawn from (18). We used n = bp/2c examples as in [43].

The average recovery error of 100 runs is shown in Table 1. Again SCP yields
significantly lower error than all other algorithms, except for a tie with GCP on Email.
GCP outperforms MRF, which in turn defeats all other methods that do not faithfully
model the group structure.

5.4 Background Subtraction

We next consider real-world applications in compressive sensing with overlapped group
sparsity. Here the data generating process is beyond our control. In video surveillance,
the typical configuration of the images are the sparse foreground objects on the static
backgrounds. Our task here is to recover the sparse background subtracted images via
compressive sensing.

Our experimental setting follows [26]4. The spatial consistency is an important prior
knowledge on 2D image signals which has been successfully leveraged in various ap-
plications. Specifically pixels in a spatial neighborhood are likely to be background or
foreground at the same time. Edges connecting pixels to its four neighbors are used in
the MRF prior to encourage the consistency between adjacent pixels. For GSS which
requires no overlap between groups, we simply defined the groups as non-overlapped
3× 3 patches. For the rest structured priors, we defined groups as the overlapped 3× 3
patches. Singleton groups were also added to deal with isolated foreground pixels. Each
image is sized 80 × 80 (p = 6, 400). We varied the number of image (n) from 600 to
2400.

Figure 12 shows SCP and GCP achieve significantly lower recovery error than other
methods on any number of measurement. The prior of spatial consistency does help
improve the recovery accuracy, especially when the size of the training set is small.
With sufficient training samples, both structured and non-structured methods can have
accurate recovery. This can be seen by comparing Lasso with GLasso, as well as SCP

4 Video from http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1


Table 2. PSNR in image denoising. MRF and GSS are not included because in the case of hier-
archical structure, it is not clear how to enforce MRF, or approximate a tree by disjoint groups.

SCP GCP SS Lasso GLasso CCR

House 28.77± 0.04 28.13± 0.06 27.72± 0.06 27.22± 0.02 27.24± 0.03 27.79± 0.04

Lenna 28.27± 0.03 27.65± 0.02 27.28± 0.02 26.95± 0.03 27.15± 0.01 27.11± 0.02

pepperr 26.57± 0.03 25.87± 0.01 25.75± 0.03 25.06± 0.05 25.39± 0.06 25.51± 0.04

Boat 26.80± 0.01 26.24± 0.01 26.09± 0.01 25.65± 0.01 26.05± 0.02 25.65± 0.01

Barbara 24.93± 0.02 24.56± 0.02 24.43± 0.02 24.23± 0.01 24.77± 0.02 24.34± 0.01

with GCP, GSS, and SS. The superiority of SCP and GCP over GSS corroborates the
importance of accommodating more flexible group definitions.

5.5 Image Denoising with Tree-structured Wavelets

Our last set of experiment examines the effectiveness of structured sparse priors for
modeling hierarchical sparsity. The task is to restore 2D images which are contaminated
by noise via compressive sensing on 2D wavelet basis. The setting is similar to [26]
and [21]. 2D wavelet basis at different resolution levels is used as dictionary to get
sparse representation of images. There is a natural hierarchical structure in the wavelet
coefficients: a basis b can be defined as the parent of all such basis at finer resolution
and whose support is covered by the support of b. Such tree-structured dependency
corresponds to the nature of multi-resolution wavelet analysis and have been proven
empirically effective in sparse representation of signals.

We choose the orthogonal Haar wavelet basis and the classical quad-tree structure
on the 2D wavelet coefficients. We use PSNR := log10(

2552

MSE ) to measure the quality of
recovery. The benchmark set consists of five standard testing images: house, Lenna,
boat, Barbara and pepper. We added Gaussian white noise N (0, 252) to the original
images. The PSNR of the resulting noisy image is around 20. The images were divided
into non-overlapped patches sized 64× 64. Each patch is recovered independently with
six levels of 2D Haar wavelet basis. For each method, we selected the parameters with
the highest PSNR.

The recovery result is shown in Table 2. SCP delivers the highest PSNR in denoising
on all test images, demonstrating the power of hierarchical structure prior to improve
the recovery accuracy. Figure 15 in Appendix C of [37] shows a visual comparison of
the denoising results, and it can be observed that SCP outperforms other methods in
removing noise and preserving details in the image.

6 Conclusion and Discussion
We proposed a framework of set cover prior for modeling structured sparsity with over-
lapped groups. Its behavior is analyzed and empirically it outperforms existing compe-
tent structured priors. For future work, it will be interesting to further model sparsity
within each group [18, 44]. Extension to other learning tasks is also useful, e.g. multi-
task learning [45, 46].
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