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Abstract

In this paper we study the following problem: given
two source images A and A’, and a target image B, can
we learn to synthesize a new image B’ which relates to
B in the same way that A’ relates to A? We propose an
algorithm which a) uses a semi-supervised component
to exploit the fact that the target image B is available
apriori, b) uses inference on a Markov Random Field
(MRF) to ensure global consistency, and c) uses image
quilting to ensure local consistency. Our algorithm can
also deal with the case when A is only partially labeled,
that is, only small parts of A’ are available for training.
Empirical evaluation shows that our algorithm consis-
tently produces visually pleasing results, outperforming
the state of the art.

1. Introduction

Consider the following situation: during your vaca-
tion you shoot pictures of several beautiful spots, some
of which turn out to be blurred. Standard tools like
Photoshop provide filters to sharpen such images. Un-
fortunately, these filters are far from perfect: the re-
sulting images need to be hand touched to achieve a
visually pleasing outcome. This process is tedious, er-
ror prone, and time consuming, especially when many
similar photographs have to be deblurred. In order
to automate this type of processes, the image analo-
gies paradigm was proposed by [5]. The basic idea is
simple yet elegant: The algorithm takes as input two
images A, A’ (the unfiltered and filtered source images
respectively). Now, given a new image B, it synthe-
sizes a new filtered target image B’ which relates to B
in the same way that A’ relates to A. For instance, if
A’ is a deblurred version of A, then B’ is a deblurred
version of B. The algorithm in [5] can be described
as follows: each pixel in image B is assigned the label
(i.e. the corresponding pixel value in image A’) of a
similar pixel in A. Similar pixels are found using a

(a) A: low resolution

(e) Resulting B’ of our algorithm (f) Ground truth

Figure 1: An image super resolution example. Patch A,
and its corresponding high resolution counterpart A’ are
sampled from a larger image. Given the large image and
a few such high resolution parts, our algorithm transforms
target patch B. The output of our algorithm is contrasted
with that of image analogies, which had access to the large
image as well as its entire high resolution counterpart.

Euclidean metric search as well as a coherence search
both of which employ an approximate nearest neighbor
algorithm. Furthermore, pixels are coarsened at vari-

(d) Resulting B’ of image analogies



ous levels, and this assignment is carried out at each
level to ensure consistency.

As demonstrated by [5], the image analogies
paradigm is rather successful in learning visually pleas-
ing transformations on a wide range of tasks including
image deblurring, super resolution, and style transfer.
Unfortunately, this elegant paradigm also suffers from
a few drawbacks. First, it requires the user to pro-
vide an exemplar image and a fully filtered output.
Obtaining a fully filtered image might be very expen-
sive. Second, since the algorithm uses a simple nearest
neighbor query to label each pixel, there are marked
boundary effects and the resultant images are generally
noisy and ineffective to preserve texture structure un-
der larger context (see Figure 1). This problem is par-
tially mitigated by a multi-scale query and a coherence
search to enforce local consistency among neighboring
patches, but a principled solution is lacking. Finally,
the algorithm does not exploit the fact that the unfil-
tered target image B (such as Figure lc) is available
at training time, and hence can be used as a source of
unlabeled examples.

To address the issue of local consistency, especially
around the boundaries, [2] proposed the image quilting
algorithm. Given a texture A and a target image B,
the algorithm divides B into small overlapping patches
and produces candidate textures for these patches by
randomly sampling from A. These candidate patches
are then stitched together by a dynamic program which
minimizes the error boundary. The image quilting algo-
rithm produces impressive results for texture synthesis
and transfer. However, since the emphasis is on local
consistency, the internal structure of the whole image
is ignored.

Freeman et al. [3, 1] propose a method that treats
image inference as a Markov Random Field (MRF)
problem, using multiple candidate patches found with
nearest neighbor. It considers global consistency and
is employed in applications such as super-resolution
where abundant training images are available, however,
it does not suit well to scenarios where it is expensive to
obtain labels. By exploiting unlabeled examples, our
algorithm gives consistently better results as shown in
the experiments section. In the passing, we note that
Rosales et al. [8] discuss an unsupervised method of
this problem.

The aim of this paper is to address the problem
of learning locally and globally consistent image filters
from patches in a principled and unified manner. First,
we exploit the fact that the target image B is available
apriori, to warp the metric used to compare patches.
Second, we encode local consistency conditions as edge
potentials and propagate them across the label state

space of a MRF to produce globally consistent assign-
ments. Finally, we employ the image quilting algorithm
to ensure that our assignments are locally consistent
and visually pleasing. Figure 1 presents an illustrative
example on image super resolution where our algorithm
produces visually more appealing result (e) than that
of image analogies (d), although both can be very dif-
ferent from the ground truth.

(c) Stitching two neighboring patches together

Figure 2: Our algorithm divides an input image into over-
lapping octagons as illustrated in (a). Each pixel either
belongs to exactly one octagonal patch (these pixels are
shaded red) or two octagonal patches (shaded blue). In
contrast, if the image is divided into square patches as
shown in (b), then each pixel may belong to one square
patch (shaded red), two square patches (shaded blue), or
four square patches (shaded green). (c) demonstrates the
minimum error boundary when stitching two neighboring
patches together by dynamic programming (see text for de-
tails).

2. Our Algorithm

As in the image analogies paradigm [5], we assume
that we are given three images: A the unfiltered source,
A’ the filtered source, and B the unfiltered target. The
aim is to produce the filtered target B’. As opposed
to the image analogies setting, which requires the user
to provide a fully labeled image, A’, our algorithm also
allows the following more user-friendly scenarios: a)
Given an image and some partially revealed labels, la-
bel the rest of the image, and b) Given a source im-
age and partially revealed labels, label other images
with similar content. In fact, as will be explained in



Section 2.2.1, our algorithm exploits both labeled and
unlabeled examples to modify the metric used for the
nearest neighbor search. This enables us to produce vi-
sually pleasing results with very limited input. We will
illustrate various steps with a running example shown
in Figure 3. The resultant superresolved B’ of the
comparison algorithms are presented in panels (¢)—(f),
where a portion of these B’ corresponding to the blue
rectangle region of B are displayed here.

2.1. Dividing the Image into Patches

We divide all three images into overlapping octago-
nal patches as illustrated in Figure 2. Let A = {x;}7,,
B = {x;}}_, 41, and A" = {y;}7~, denote the patches
in images A, B, and A’ respectively, and denote X =
AUB. In this case, we are given m labeled observa-
tions {z;,y;} and n —m unlabeled observations {x;}.
On the other hand, if only d < m patches of image A’
are revealed to us, that is, the algorithm has access to
only d labels, then we assume without loss of general-
ity that {x;,y;}% , are the d labeled observations and
{z;}7_4., are the n — d unlabeled observations.

Each patch z in X is represented by a feature vector
¢(z). Following standard practice, we assume that the
feature space is a Reproducing Kernel Hilbert Space
(RKHS) H, whose kernel k(z,z") := (¢(x), p(2')),, is
readily available; for our experiments we used local tex-
ture features and a Gaussian kernel (see Section 3).

2.2. Nearest Neighbor Query

Next we perform a nearest neighbor query. A naive
implementation simply uses the metric induced by the
kernel k(z,z’), and labels each patch in B by the label
of its nearest neighbor in A. Unfortunately, this leads
to a visually unsatisfactory result as shown in Figure
3e. Instead, our algorithm exploits the fact that besides
labeled patches in A4, unlabeled patches in A and B are
also available, and hence the metric can be modified
appropriately via semi-supervised learning (SSL).

2.2.1 Modifying the Metric via Semi-

Supervised Learning

Semi-supervised learning refers to the problem of learn-
ing from both labeled and unlabeled data. It has
attracted considerable attention in recent years (see
[11] for a comprehensive survey). We work with the
graph based methods of [I] which construct a fea-
ture graph, G(V,&). Each node of the feature graph
represents an observation z (including both labeled
and unlabeled) in feature space ¢(z) and edges en-
code nearest neighbor relationships, i.e. (i,7) € & iff
j is among the k-nearest neighbor of i or vice versa.

(d) B’ of only inference (e) B’ of only inference and quilting

(f) B of image analogies

Figure 3: Another super resolution example. Given the input
image A and a few training parts A’ the output of our algorithm
is contrasted with those of inference, quilting and image analogies
algorithms. See text for details.



The edges are often weighted to quantify the simi-
larity between neighboring observations, e.g. w;; =
exp(—||¢(x;)—d(z;)||?/02) which is used in our experi-
ment. In supervised learning, the following regularized
risk is minimized:

T =B+ Sty ()

i=1

where || f||3, is the RKHS norm of f in X and I(-,-,")
is a loss function. Semi-supervised learning, in addi-
tion, also prefers functions with high smoothness on
the graph, by minimizing the following data dependent
regularized risk! over f € H:

T = MR+ UG+ S Uy ), @)
i=1

where [f|Z = fTLf, f denotes the vector
[f(x1),..., f(@m),..., f(x,)]" and L denotes the
Laplacian of G. L := D — W, where W is the weight
matrix with W;; = w;; and D is a diagonal matrix
with D;; = Zj w;;. Of particular interest to us is

the fact that the semi-supervised learning algorithms
supplement the regularizer ||f||?, with a data depen-
dent regularizer ||f||3. Therefore, it is natural to ask
whether there exists an RKHS H which satisfies: a)
IAIZ, = IIflI3 + [If]Ig; b) its corresponding kernel
k can be computed explicitly and efficiently. This
question was answered affirmatively by [9]. Letting
k, = [k(z1,2),...,k(zm,2),... ., k(zs,z)]T for any
x € X, [9] showed that

k(z,2') := k(z,2') — k] (I + LK) 'Lk,, (3)

and its associated RKHS, H, satisfies our requirements.
The appendix (Section 6) provides a simple proof of (3).
The metric defined by this kernel, which is warped from
the original RKHS H by using unlabeled data, reflects
the intrinsic manifold on which X lies. Labeling each
patch in B by the label of its nearest neighbor in A
under this new metric results in a visually more pleas-
ing result. For instance, several noticeable artifacts in
Figure 3e disappear when using the modified metric as
shown in Figure 3c.

2.3. Inference on a Markov Random Field

A nearest neighbor query does not preserve visual
consistency with respect to the output image, and a
pixel-level query even worsens the result as it also tends
to ignore the higher-order image context. To overcome

LConventionally a term trading off the two regularizers is
used, which we ignore for ease of exposition.

this problem, [5] coarsen the image at various levels,
and perform a nearest neighbor query at each level to
ensure consistency. This often results in noisy target
images, as seen e.g. in Figures 1d and 3f, which are
noticeably different from the target style.

Similar to [3, 4], we cast the problem of global con-
sistency as an inference problem on a Markov Random
Field (MRF). Our scheme works as follows: For each
patch z; in the target image B, we use the (modified)
metric to find its k nearest neighbors in A, denoted by
{Zi1,...,xix}, and labeled as {y;1,...,¥ik}. Next,
we define discrete random variables Z; € {1,... k}.
Every configuration of Z := {Z;} defines a labeling for
the image B by assigning the label y; , to the patch z;
if Z; takes on a value z. This formulation can also be
extended to the case when each Z; € {1,...,k;}, that
is, for each patch z; we find k; nearest neighbors in
A. For notational convenience we simply assume that
k; = k for all 7.

Recall that MRFs are undirected graphical models
[6]. An undirected graphical model is defined by a
graph?, G(V, E), whose node set V is in one-to-one cor-
respondence with a set of random variables, and each
edge in F represents a dependency between the corre-
sponding random variables. We restrict our attention
to MRF's over discrete random variables Z;. There ex-
ists an edge between Z; and Z; if, and only if, patches
x; and x; overlaps in the target image B, i.e. ; Nx; is
a hexagon as in Figure 2c. By the Hammersley-Clifford
theorem, the joint distribution of Z can be written as

p(Z)oc [Teitz) [T iz 2), (4)

i€V (i,4)EE

where 1; and ;; are compatibility functions or po-
tential functions on nodes and edges respectively. Our
node compatibility function ;(z) takes into account
the modified metric between patch z; € B and z; . €
A. Tt is defined as ¢;(z) = cll%(mi,mi,z). The edge
compatibility function measures the compatibility be-
tween label assignments of two adjacent nodes and
is defined as ¥;;(z,2') = caexp(—errss(Yiz, yj ) /02),
where errss(y; ., yj,») € R is the sum of squared dif-
ferences of the overlapping region between the two oc-
tagon patch labels y; ., and y; ... ci,c2, and o, are
positive tunable parameters. Loopy belief propagation
[6] is employed to perform inference on this MRF, and
the MAP configuration results in a globally consistent
labeling of B.

While similar in vein to [3, 4], the inference method
we used are different in several aspects: Instead of the

2This graph is distinct from the feature graph we discussed
in the previous section.



complex multi-resolution representation of label field,
our experiments show that it is visually indistinguish-
able for our algorithm to work on a single label resolu-
tion which removes the need to negotiate labels among
various layers in the decoding phase; Secondly, as the
training labels are sparse we also consider unlabeled ex-
amples and by employing a data dependent metric we
capture smoothness in the feature space. Furthermore,
to deal with overlapping regions, rather than taking
the average ([4]) or simply cutting a straight line in
between (e.g. Figure 3d), we adopted a technique de-
tailed next.

2.4. Image Quilting

Recall that the target image B is divided into over-
lapping octagonal patches, which are labeled with
patches from A’. As a result, the predicted B’ con-
sists of overlapping patches. Let s and ¢t denote the
source and sink vertices of a hexagonal overlap area, as
depicted in Figure 2c. The naive approaches of averag-
ing or cutting an overlapping patch by a straight line
joining s and t are visually unsatisfactory. Here, we
use the simple but effective image quilting algorithm
due to [2]. This ensures local consistency, as shown in
Figure 3e, where the blocky effect is considerably re-
duced as compared to Figure 3e. Similar effects can be
observed in Figure 6Ge and 6f.

Formally, let y and 3’ be the labels of two neigh-
boring patches. For each location (7,7) in the over-
lapping area, we associate a mismatch cost e;; :=
exp(—|pi,j — pi;I[?), where p; j (resp. p} ;) denotes the
labeling of the pixel due to y (resp. y') and ||p; j —p] ;]|
quantifies the discrepancy in label values. In Figure
2¢, let s be the source, and ¢ be the sink. To ensure
local consistency, [2] propose to cut the overlap region
by a path p from the source to the sink such that the
total cost of the path is minimized. This problem can
be solved efficiently by the following dynamic program-
ming;:

Eij=eij+min(Ei_1;-1,E1; Ei—1;41).  (5)

Reading off the entry corresponding to the sink vertex
gives the minimum cost, while the optimal path (cut)
can be found by backtracking. We employ quilting as
the final post-processing step of our algorithm in or-
der to ensure that the output is visually pleasing (see
e.g. Figures 3c and as contrast, see 3d when without
quilting ).

3. Implementation Details

Before presenting our results, we describe some im-
plementation details, including standard techniques of

(b) A’ using styles
sl and s3

(¢) B’ by our algorithm with (e) as A’

(d) A’ using styles
s3 and s2

(e) B’ by our algorithm with (d) as A’(f) B’ by image analogies with (d) as

A

Figure 4: A style transfer example. Our algorithm can learn
how to apply different styles to proper places of the image.

image manipulation, which we employ. Following [7],
we work in the YUV space, where Y is the intensity
(luminance) channel, and U, V are the chrominance
channels that encode color. As noted in section 2, our
algorithm uses octagonal patches instead of pixels as
basic image elements. For all our experiments we fix
the size of each octagonal patch to be 15 pixels in di-
ameter, and set the width of the overlap region on each
side to be 5 pixels.

The feature vector of a patch is composed of the
pixels’ intensity value, as well as its intensity gradient
value after applying a variant of canny edge detector.
Our experiments show that this simple feature vector
representation, coupled with a Gaussian kernel whose
variance is tuned for each experiment separately, is suf-
ficiently rich to capture the local texture context of
each octagonal patch.



The feature graph, G(V, £), used for semi-supervised
learning (see Section 2.2.1) is a t¢-nearest neighbor
graph (with ¢ chosen to be between 5 to 10 depend-
ing on the size of the input images). The o,, used for
defining edge weights w;; is set to 1.

If A contains large homogeneous regions, then all
the k neighbors of a patch x; from the target image B
might be very similar. To add “variety” to the candi-
date label set we randomly sample k candidates from
the ck nearest neighbors of x;. For our experiments,
we fix ¢ = 3 and k = 5. Finally, for the MRF we choose
the tuning parameters g, = 0.3 and ¢; = ¢ = 1.

4. Experiments

Although our algorithm can address a variety of ap-
plications, in this paper we will focus on style transfer.

Style is an important factor that our perceptual sys-
tems routinely identify from input objects [e.g. 10]. For
example, we can identify a speaker from his speech, or
a dancer from her style of dancing. Here we concen-
trate on the following style transfer problem: given an
unfiltered source image A and some parts of A which
are, say, painted by an artist, can we transfer the style
of painting onto a new target image B? This problem is
applicable to image manipulation software, where the
system can learn a style filter for a particular task from
a few examples.

Arguably, the super resolution experiment we pre-
sented as examples in Figure 1 and 3 is also an instance
of style transfer. Here, we are given an image of a for-
est and some parts of the image transformed via the
application of a texture map. The task is to apply
the texture map consistently to the rest of the image.
As shown in Figure 3, our algorithm delivers visually
pleasing results which are faithful to the original tex-
ture map.

The next experiment shows a scenario where styles
are intended to be transferred from different sources.
In Figure 4, given the input (a) and the partially la-
beled target (b), where the target style of sky is differ-
ent from that of the grass and the trees, our algorithm
is able to produce a transformed image (¢) which min-
gles these styles in a visually consistent way. Similar
results are obtained when we modify the target styles:
B’ in (e) is produced when using styles in (d) where,
again, the target styles of sky, grass, and trees come
from two different sources. Image analogies still pro-
duces visually inferior result as evidenced in (f).

Our final style transfer experiment takes a girl im-
age as input A (Figure 6a) where only a small fraction
has access to the target fabric style as A’ (Figure Gb).
When apply to the same girl image B, comparing to
other methods, clearly the output of our method (panel

(¢)) is visually more pleasing and consistent with the
transferred style. Two more examples are presented in
Figure 7 to illustrate the scenario where entirely differ-
ent images are used as B, the fabric style can still be
consistently transferred.

4.1. Fantasizing Satellite Images

(c) B’ of our algorithm on Brisbane

Figure 5: An example of fantasizing satellite maps.

We now report results on a novel experiment. Given
a map and its corresponding satellite image, we use our
algorithm to fantasize the satellite image given a map.
This is useful in applications like google maps, where
we might have some archived maps but the satellite
images might not be entirely available. Fantasizing
these images can arguably provide perceptually con-
sistent prediction of the missing satellite images. A
similar application is called texture-by-number in [5].

To test the efficacy of our algorithm on this problem
we trained it on maps and the corresponding satellite
images of Braddon, a suburb in ACT, Australia, and
applied it to fantasize satellite images of a suburb in
Brisbane, Australia. Results are shown in Figure 5.
Surprisingly, the fantasized map is visually very con-
sistent and plausible, even though it is not close to the



ground truth as presented in (d).

5. Outlook and Discussion

We presented an algorithm which produces visually
consistent image analogies by employing modern tools
from machine learning. In particular, we use semi-
supervised learning to exploit unlabeled samples, and
a graphical model to ensure global consistency. Results
on a wide range of images demonstrate the efficacy of
our method. Future research directions include appli-
cations in video, and incorporating active learning in
the selection of target parts.

We do note that each stage of our algorithm has
tuning parameters. Fortunately, the output of our al-
gorithm is fairly independent of the choice of these pa-
rameters, and only moderate tuning effort is needed to
produce visually pleasing output.

While graphical models, especially MRF's have a rich
history of application in computer vision, it is only
recently that applications of semi-supervised learning
have emerged. We hope that our research will con-
tribute to popularizing semi-supervised learning in the
computer vision community.
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6. Appendix
6.1. Proof of Equation (3)

The proof we present below is similar to the proof in
[9]. But to make it self-contained, we use our own notation
and it is a little simplified compared with [9]. We also
try to avoid the tricky argument needed for positive semi-
definition inner product in [9].

Restatement of the conclusion:

Given points z; € X for i € [n] := 1, ...,n, and an RKHS
H := (A, (-,-),) with corresponding kernel function k(-,-).
Let V be a linear space with positive semi-definite inner
product and let S : H — V be a bounded linear operator.

Then H := (A, (-,-)5) is also an RKHS under (f, g); :=
(f:9)3 +(SF,59).

Moreover, if (Sf,Sg),, = f' Mg, where f =
[f (z1),..., f (zn)] " (similarly g) and M is a constant
n X n positive semi-definite matrix (e.g. graph Lapla-
cian L), then the kernel function k of H can be writ-
ten as k (z,2') = k(z,2') — k) (I + MK)™' Mk,/, where
k. = [k (z1,2),.... k (zn, z)] "

Proof. Since ||fll;; < ||fll; for all f € A, any Cauchy
sequence in the norm ||-|| ; must also be Cauchy in the norm
[|-[l,;- So completeness of H implies completeness of H, and
H is Hilbert. Furthermore, since ‘H is RKHS, there is a
C € RT such that for any z € X and f € A, |f(z)] <
Cliflly £ Clifllg. Hence H is also RKHS. Denote its
corresponding kernel function as k (-, -).

Let H!' = span{k(z:,-)| € [n]},
span { k (2, )‘ i€ [n]}
are HT and H» respectively. Since <f, k (z4, )>7-2 =
F@) = (£ (@e Yy for all f € A so (fh(@s)) =
0 & (f,k(zi,")),, = 0. Hence HY = H*, and thus
ol — I

For any f € H* = H*, we have f (x;) = 0 for all i € [n].

Thus ||Sf||3, =T Mf =0, and so (Sf,Sg),, =f Mg=0
for any g € A. Hence for any = € X,

ok @ e = F @)= (£ R @)
= <fjc (z, -)>H + <Sf, Sk (z, -)>

and H! =

Suppose their orthogonal spaces

(£k@)

L=
o k(z,-) — k(z,-) € HI, i.e. there are 3 (z) € R, s.t.
(@) = k(@) + 2. Bi (@) k (@i, ). *)



(a) A and B

(¢) B’ by our algorithm (d) B’ by image analogies

: 305 }
(f) B’ by only inference and quilt-
ing

(e) B’ by only inference

Figure 6: A style transfer example (to be continued).

(d) B’ by our algorithm
Figure 7: (Cont. from Figure 6) Take images (a) and
(c) as B, respectively.

To calculate §; (z), just observe

k (i,2) = <k (zi,7) , F (z, .)>72

H
= k(wi:')’k(wv')+Zﬂj(x)k(xjv') +kI¢M’77
J H
where the ;7' element of vector v is v; = k(z,z;) +
Enumerating * = z; over ¢ €

[n] and denoting B(z) = [Bi(z),...,0n (x)]", we have
(I+MK)B(x) = —Mk;, where K is the Gram
matrix (Ki; = k(zi,x5)). Substituting £ (z) =
—(I+MK)™' Mk, back into (*¥), we obtain k (z,2') =
k(z,2') =kl (I + MK) ' Mk, |



