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i Structured output prediction

X
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Max-margin Markov networks
‘L and conditional random fields

= Structured feature/label joint map: ¢(x',y")
= Linear discriminant: (w, ¢(x%,y%))

= Structured label loss: 4(y,y"; x")

= MS3N:

A 1 — o o |
J(w) =3 Iwll5 + - Zr;lg Uy, y"x") — (w, o(x",y") — d(x",y))}
=1

s CRF:
A n o o |
J(w) =3 Iwll; + %ZlogZexp Uy, v x")—(w,o(x",y") — ¢(x",y)))
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i Max-Margin Markov Networks

= Major challenges

= Large space of )/, so need to (carefully) keep factorization
= Loss is not smooth

J(w) = g lwll; + % Zglgg {0y, y";x") —(w,p(x".y") — d(x",y))}

1= 1 J

-~
not smooth



Factorization for
i structured output space ¥

@%9%@

Y1 Y2 Ys Ya Ys Ye

s Factorization
= Feature factorization: ¢(x',y) = @ o (x", ye)
= Loss factorization

Uy,y';x") Zﬁ(yc Y x')

= Probability factorization

p(y;x) o< | [ exp (ve(ye, x))
ceC
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Non-smooth solvers:
* State of the art for M3N

BMRM / SVM-Struct

O (G2 log |y|>
Extragradient A€
Exponentiated Gradient (qu(xzv Ye) H < G)
1 1
SMO pd: O (n | V| log —) psd: O (n V| v
€ €

Our algorithm O (G 10§|y|)
€
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i Intuition of smoothing

= Find a smooth and tight approximation of the non-smooth

objectives
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Q: general
procedure for
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A: Fenchel
conjugation
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i Key observation

= Loss for M3N has rich structure (though non-smooth)

1 < i\ i i i

— max{f(y,y;X)—|-<W7¢(X:Y)_¢(va»}

ni Yy h - .
u;lr:<W=Ai,y)

= Can be rewritten
= A:amatrix stacking ¢ features

RS i i ; T
E;I;lgf{f(y,y,x)—l—uy} u=A'w
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i Key observation

= Loss for M3N has rich structure (though non-smooth)

1 < i\ i i i

— max{f(y,y;X)-|-<W7¢(X:Y)_¢(X>yj)>}

n < yeY \ ~ -
u;:<W=Ai,y>

= Can be rewritten
= A:amatrix stacking ¢ features
lZ:max {¢(y,y";x") —I—U;,} u=A'w
n

yYey

1=1
= Further written as ¢*(u)
where g is a convex function with a compact domain @

17



i Key observation

= Loss for M3N has rich structure (though non-smooth)

mn

- ma {
— max
n yey

1=1

= Empirical risk
= A:amatrix st

Uy, ¥y %) + (w, ¢(x',y) — p(x',y") |

.

"

u;:(w,A@'jy)
can be written as g*(4' w)
acking ¢ features

= g .Isaconvex function with a compact domain @

Q = <

g(a) = 4

[ i i 1 :
a:ay, >0, and Zayzﬁ’ ‘v’z}
\ y

— iyl ifaeq

+o0 otherwise.

\
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Significance of this ¢*(A™w)
i reformulation: smoothing

= |t helps us to design a tight and smooth approximation

= Use a prox-function d

= d is strongly convex with modulus 1 (wrt some norm on Q@)

= mind(a) =0, let D = maxd(a)
acQ) acQ

= Desirable properties
= (g + 1d)™ has Lipschitz continuous gradient (Icg)
= (g+pd)" —g" €[-uD,0]
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Example approximation:
‘L tight and smooth

= Example: hinge loss
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Example approximation:

i tight and smooth

= Example: hinge loss
= Entropic prox- functlon logistic loss
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Example approximation:
i tight and smooth

= Example: hinge loss
= Quadratic prox-function
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—Hinge loss
---Quadratic smoothing
0.4-
B
8 0.2
O_
-0. ‘ ) ‘
8.4 0.7 1 1.3 1.6

Classifier's prediction



‘L Smoothing M3N into CRF

= M3N loss
Zmax{fyy X" —u}

yey

= Use entropic prox-function
= ZZO&; loga; + logn + log | )],

=1 ¥y

then
u —|—€
(9 + pd)*( Zlogzexp( ) — plog ||
yeY

CRF
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‘L Excessive Gap Technique
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‘L Excessive Gap Technique

prD J(W)

T (W= 5 Wl + (g + prd)* (A" w)
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‘L Excessive Gap Technique

weD J(w)
D(C}:k)
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‘L Key technical challenges

J(wi) — D(ag) < D

= Key challenges of excessive gap minimization

= Let px approach O as rapidly as possible
= Still allow Wi and o to be updated efficiently
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i Rates of convergence

= Rates when using Euclidean prox-function d(a) = 1 ||a|’

6D |AlI"
k+1)(k+2) X

J(Wk) — D(Ozk) <

= But, Euclidean prox-function does not work for M3N
= Key issue: cannot maintain factorization in the updates
= Need to evaluate the smooth objective

(94 pd)*(ATw) = max {(ATwy, @) = g(@) — pd()}

= Maximizer must factorize over the graphical model.
= Intuition: arithmetic mean of two 1id densities i1s not iid.
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Using Bregman divergence
i prox-function

= \We show Bregman divergence maintains factorization
= Intuition: geometric mean of two iid densities is still iid

= We show same - rates hold for Bregman divergence
prox-function

. -1
Q:{Q:Q;EO, and ZQ;ZE, Vz}
y

n

d(a) = Y allogai, +logn +log |V,

1=1 y

J(wa) — Diay) < 81081V maxiy l¢(xi, y)I°

(k+1)(k + 2) )
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‘L Comparison

= Resulting rates

= Ours

6KL(a*||ay)
max i, ) ] 2
LYy €

= (Collinsetal, 2008)

2 KL(a*||a)
A€

max || p(xi, y)||
6y
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Kernelization

= w enters the objective only via inner products
(w,d(x",y))

= Sokernelizeon x x Yy

= Further factorize the kernel onto X x {J.}.
= Key idea: implicitly represent w in terms of 3

= Roughly speaking: i

w=> ) Bio(xy)
i=1yey
= This 3, factorizes over the graphical model
= Then (w,¢(x',y)) can be computed by using kernels
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i Conclusion

. . . 1
= EXcessive gap technique enjoys accelerated rates e

= But only shown for Euclidean prox-function

= Euclidean prox-function is problematic for M3N
= Does not allow computations to factorize

= We extend prox-function to Bregman divergence
= Efficient computation by graphical model factorization
= Improved rates compared with state-of-the-art M3N solvers
= Admits kernelization
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