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Abstract

Retrieving relevant videos from a large corpus on mobile devices is a vital challenge. This paper
addresses two key issues for mobile search on user-generated videos. The first is the lack of good
relevance measurement, due to the unconstrained nature of online videos, for learning semantic-rich
representations. The second is due to the limited resource on mobile devices, stringent bandwidth, and
delay requirement between the device and the video server. We propose a knowledge-embedded sparse
projection learning approach. To alleviate the need for expensive annotation for hash learning, we investigate
varying approaches for pseudo label mining, where explicit semantic analysis leverages Wikipedia and
performs the best. In addition, we propose a novel sparse projection method to address the efficiency
challenge. It learns a discriminative compact representation that drastically reduces transmission cost. With
less than 10% non-zero element in the projection matrix, it also reduces computational and storage cost. The
experimental results on 100K videos show that our proposed algorithm is competitive in the performance
to the prior state-of-the-art hashing methods which are not applicable for mobiles and solely rely on costly
manual annotations. The average query time on 100K videos consumes only 0.592 seconds.
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1 INTRODUCTION

CONTENT-BASED video search is a long-standing research issue, and the remarkable recent
growth of user-generated online videos has made searching such collections in real-time a

mounting challenge. Furthermore, video applications and search are moving to mobile devices
from desktops. This paper sets off to address two challenges for video retrieval in mobile
platforms. The first one is efficiency – there are limited computing power and bandwidth on the
mobile device, which makes heavy-weight computation on the query video and transmitting
the whole video infeasible (i.e., minutes of uploading time over 3G network) [1]. The second
challenge is relevance – finding semantically related videos is not a new problem, but doing so
in a compact local representation with the help of video metadata is new. This paper proposes
two core techniques, sparse projection learning and pseudo label mining, to address the pair of
related challenges.

To tackle the efficiency challenge for mobile video search, hash-based approach is a promising
way to generate a compact representation (binary codes, fingerprint, signature) from the original
feature [2]. The most widely adopted hash-based method utilizes a (dense) projection matrix
to generate compact representations (cf. Fig. 1(c)). However, if the original feature space is
high dimensional (e.g., the state-of-the-art image/video feature: vector of locally aggregated
descriptors - VLAD [3]), the projection matrix costs large amount of memory (e.g., hundreds of
MBs) in storage and computational time in generating the fingerprint, which is nearly infeasible
on mobile devices. For example, the projection matrix might consume 390MB when the original
feature dimension is 200K and the reduced dimension is 256. In this paper, we present a
novel knowledge-embedded sparse projection learning algorithm to tackle this problem. The



2

X

X

(c) Dense Projection Matrix

(d) Sparse Projection Matrix

=

Binary Codes

Feature

(a) Original Feature
Space

(b) Projected Feature
Space

Fig. 1. The main concepts of the knowledge-embedded sparse projection learning approach. (a)
When given a query (red star), we will retrieve both semantic related data (red circles, connected
by solid lines) and semantic unrelated data (light blue circles) by calculating visual similarity only.
(b) By utilizing contextual information (e.g., surrounding text), we help to retrieve more semantic
related data in the projected (transferred) feature space. To avoid time-consuming manual annota-
tions, the proposed pseudo label mining algorithm can automatically exploit semantic related data.
(c) A widely adopted hash-based approach generates compact representations (binary codes) via
the dense projection matrix. (d) However, for mobile video retrieval, the limited memory space and
computing power motivate us to learn a sparse projection matrix which also considers semantic
relevance in the learning process. Different colors represent different values and white = 0.

advantages of the sparse projection matrix (cf. Fig. 1(d)) are that it can be stored by sparse
representation, be loaded to memory of a mobile device more efficiently, and speed up the
fingerprint generation. Moreover, only the fingerprint of the query video is transmitted to the
server to rank similar videos in real-time. Experimental results show that we can achieve similar
retrieval performance as using only 9.45% of memory consumed by the dense projection matrix.

Furthermore, we observe that users tend to prefer top ranked search results which are semanti-
cally similar than visually similar. If we only utilize visual similarity in the search process, we will
retrieve both semantic related and unrelated videos (cf. Fig. 1(a)). Thus, it is very essential to in-
corporate partial semantic knowledge when learning the projection matrix. Based on the learned
knowledge-embedded projection matrix, we will have better representations in the projected
feature space (cf. Fig. 1(b)). Besides, the generated semantic-rich compact representations (i.e.,
hundreds of bits) can further improve the retrieval accuracy. To incorporate semantic relevance,
the most intuitive way is to annotate labels for each video manually. However, it is intractable to
acquire human-annotated data especially in real and explosively growing data. For video sharing
website, such as YouTube, there are plenty of videos that consist of contextual information (e.g.,
title, description and tags) provided by users. This plentiful contextual information is beneficial
for measuring the semantic relevance between videos. However, the contextual information of
videos are often noisy. To overcome this problem, we investigate different pseudo label mining
algorithms based on the contextual information to measure the semantic relevance (or labels). We
examine the quality of the automated generated annotations, propose how to leverage them for
automatically generating semantic-rich fingerprints, and investigate the successful and failure
cases in our experimental datasets which consist of 10K and 100K videos.

The primary contributions of the paper include,
• Proposing a knowledge-embedded sparse projection learning approach which generates

semantic-rich compact representations for mobile video retrieval under limited resource
(Section 3).
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• Investigating the help of contextual information for the reliable pseudo label mining algo-
rithm which can avoid time-consuming manual annotations (Section 4).

• Conducting experiments on user-generated videos and showing great reduction of compu-
tational cost and memory consumption while achieving similar retrieval accuracy as the
state-of-the-art approaches (Section 5).

2 RELATED WORK
Scalable search on mobile platform has been an active research area in the past few years. It
generally takes at least dozens of seconds to transmit over 3G network in the original image or
video format. Due to the limited bandwidth, it had been argued that instead of sending the entire
video or image (several KBs to MBs) back to the server we should send back the compact features
(hundreds of bits) [1]. Hence, recent researches focus on extracting and compressing features on
mobile devices to reduce the transmission time [1][2]. Progress has been made on the design of
hashing algorithms, semantic similarity estimation, and paradigms for mobile visual search.

A widely adopted hash-based approach generates compact (binary) representations via the
similarity in the original feature space (e.g., visual similarity) [4]. Authors in [5] further propose
to learn the projection matrix and incorporate partial knowledge of the data (label information)
to increase the discriminative power of compact representations. However, their method requires
manual annotated data which generally overfits the dataset and is not scalable to real and large-
scale dataset. Moreover, the learned projection matrix is a dense matrix (cf. Fig. 1(c)), which
imposes high storage requirement for the matrix itself, and is demanding in power consumption
for computing the hash signature on mobile devices. Therefore, we propose a knowledge-
embedded sparse projection learning approach which learns a sparse projection matrix (cf. Fig.
1(d)) with semantic relevance.

Recent advances in online data collection and curation have led to two prevalent methods
for computing the semantic relevance between text segments. One relies on knowledge bases
such as WordNet [6], ConceptNet [7], and Yago [8]. Most knowledge bases consist of many
concepts which are connected to one another as a multi-relational graph. Another approach is
data-driven, where semantic similarity is computed from a corpus, such as using Wikipedia [9]
or web search results [10]. In particular, explicit semantic analysis [9] represents the meaning
of texts in a high-dimensional space of concepts derived from Wikipedia so that the semantic
relevance of sentences can be calculated directly. Since Wikipedia consists of a large amount
of articles with remarkable quality and large diversity, it is suitable for determining semantic
relatedness between videos. Thus, we choose explicit semantic analysis and web-based kernel
function [10] using Google search engine to measure the semantic relevance because the corpus
representation is intuitive to estimate semantic similarity and contains more information for
specific events, persons or objects.

For mobile video retrieval, Chen et al. [11] proposed a dynamic feature-rich frame selection
algorithm from a sequence of viewfinder frames in a very short temporal window determined
by the user-initiated query event. Although it improves search accuracy, the transmission cost of
encoded local feature points is much higher than a low-dimensional binary signature. He et al.
[2] proposed a mobile visual search system based on “bag of hash bits.” The mobile client side
hashes the local features of a query image to a bag of hash bits using multiple hash tables and
transmits it to the server. However, if an image consists of 200 local features, the total transmitted
bits (e.g., 200 x 80 bits) of a mobile query is 83 times larger than our proposed method (e.g., 192
bits).
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3 KNOWLEDGE-EMBEDDED SPARSE PROJECTION LEARNING
To tackle the challenges for mobile video retrieval, we propose a knowledge-embedded sparse
projection learning approach.1 By considering the limited resource and transmission time, we
integrate hash-based method with sparse projection learning to generate compact representation
on mobile devices in Section 3.1 and Section 3.2. To further generate semantic-rich compact
representations, we propose pseudo label mining algorithm which utilizes contextual information
to measure the semantic relevance in Section 4.

3.1 Hash-Based Approaches for Binary Representation
The most widely adopted hashing functions utilize linear projections (projection matrix) to gener-
ate compact representations. Assume the original dataset X = [xi], where xi ∈ RD and X ∈ RD×n

contains n data instances which has D dimensions. The projection-based hashing functions
are calculated by hk(x) = sgn(wT

k x + bk), where W = [wk] and W ∈ RD×K . wk ∈ RD is
the k-th linear projection vector, and bk is a threshold value. The corresponding bit for xi is
expressed as yk(xi) = (1+hk(xi))/2. Note that we can normalize data to have zero mean and set
bk = 0 for mean thresholding [5]. The most simple but effective hashing function is designed by
random projection (RP) [4] which generates W with entries in {−1, 1} with probability {1/2, 1/2}.
Moreover, they also consider the sparsity of the projection matrix to reduce the computational
cost and propose sparse random projection (Sparse RP) which approximates RP by calculating
W with entries in {−1, 0, 1} with probability {1/6, 2/3, 1/6}. To further integrate extra knowledge
(e.g., label information), the authors in [5] propose semi-supervised sequential projection learning
(S3PLH) algorithm. They design the objective function by maximizing the empirical accuracy in
a small portion of neighbor/non-neighbor data pairs and the variance of hash bits in the whole
dataset. Therefore, we will compare RP, Sparse RP, and S3PLH in the experiments.

3.2 Sparse Projection Learning (SHP)
For mobile video retrieval, it is not feasible to load the dense projection matrix (cf. Fig. 1(c)) on
mobile devices. Prior (linear) projection matrix for generating compact hash bits is only consid-
ered on the server environment rather than on mobiles, which have very limited memory space
and computing power. Besides, as shown in Fig. 1(a), if we directly apply hashing algorithm in
visual domain, some semantic unrelated data might be assigned to similar binary representations
as the query. Therefore, we propose to embed the automatically generated semantic relevance
with sparse constraint (i.e., sparse projection matrix in Fig. 1(d)) in the learning process. Thus,
we can obtain semantic-rich compact representations in the projected feature space as shown in
Fig. 1(b). Motivated by [5] which utilizes true label information, we design the automatically
generated semantic relevance (pseudo label) matrix (S) as follows

Sij =






1 : SIM(xi,xj) > Tu

−1 : SIM(xi,xj) < Tl,
0 : otherwise

(1)

where SIM(xi,xj) is the semantic similarity between xi and xj . Tu (Tl) is the similar (non-similar)
threshold. We will show that such automatically mined pseudo labels (i.e., Sij - semantic rele-
vance) have competitive performance with time-consuming manual annotations in Section 5.3.
Hence, the proposed knowledge-embedded sparse projection learning contains three essential
parts: 1) embedding semantic relevance from partial training data (Xl), 2) integrating maximum
variance of all the training data (X) in the projected feature space, and 3) enforcing the sparsity

1. Similar to prior hashing learning methods, the proposed method can be implemented on the server sides. Nevertheless,
we further consider whether it is feasible for the mobile environment.
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(L1-regularization) for the projection matrix (to be embedded in the mobile device rather than
the server). Therefore, we propose to formulate the hashing functions as

W ∗ = argmax
W

1

2
tr{H(Xl)SH(Xl)

T}+ η

2
tr{H(X)H(X)T}− γ

∑

k

||wk||1, (2)

where η modulates the importance between the first and second terms, and γ is the tuning param-
eter to control the sparsity. The first term attempts to generate similar compact representations
if they have the same pseudo label; therefore, it will embed the knowledge (semantic relevance)
in the learning process. The second term can also be viewed as minimizing reconstruction error
in the original feature space; hence, it will preserve the original visual similarity. The sparse
constraint can not only learn a compact projection matrix (i.e., much less memory consumption)
but also select few essential dimensions to generate the compact representation. As shown in
Fig. 1(d), the first row of the sparse projection matrix (i.e., the first hashing function) only
considers the fourth and sixth dimensions to generate the first binary representation. By the
definition in Section 3.1 and relaxing the sgn() constraint, we can rewrite the formulation as
1
2tr{W

T[XlSXT
l + ηXXT]W} − γ

∑
k ||wk||1. To solve this optimization, we find that is can be

viewed as a sparse principle component analysis (Sparse PCA) [12]. Because we can rewrite the
objective function as

max
e

√
eTMke− γ||e||1, subject to eTe ≤ 1, (3)

where Mk = [XlSkXT
l + ηXXT] and e = wk. Hence, we can solve this optimization problem by

[12], and sequential update the Sk (i.e., Mk) followed by [5].

4 PSEUDO LABEL MINING
The proposed method is for scalable retrieval and needs to scale to new dataset by automatically
exploiting new annotations; while prior hash learning methods are mostly deployed on small
scale data with perfect manual annotations. Therefore, it is essential to generate the semantic
relevance matrix S in Equation (2). We observe that some videos have contextual data provided
by users (e.g., title, description and tags) on video-sharing websites (e.g., YouTube). Although the
context data of videos are noisy, based on the power of knowledge base, the semantic similarity
of data pairs is more convincing. Leveraging semantic relevance measurement, the annotation
process can be fully automated. We choose explicit semantic analysis (ESA) based on Wikipedia
(Section 4.1) and web-based kernel function (WKF) using Google search engine (Section 4.2)
to measure the semantic relevance. Hence, the proposed pseudo label mining algorithm can
automatically exploit the semantic related data.

4.1 Explicit Semantic Analysis (ESA)
Motivated by [9], we utilize the knowledge from Wikipedia to generate semantic representations
for each video. To obtain the most representative Wikipedia articles (concepts), We use the
research-esa [13] library to execute the explicit semantic analysis (ESA) algorithm and an English
Wikipedia snapshot as of April 03, 2012. In order to get more general Wikipedia concepts to
represent the text input, the filter criteria are as follows,

1) The article is not in the main namespace.
2) The name of article is in month year (e.g., January 2008), year in ... (e.g., 2002 in literature),

only digits (e.g., 1998) or list (e.g., List of ...) format.
3) The article with number of inlinks < 5 or outlinks < 5.
4) The article with fewer than 100 unique non-stop words and the article < 3KB.

After the pruning process, there are Nwiki (e.g., 732, 340) Wikipedia concepts left in the semantic
representation. Based on these Wikipedia concepts, we can calculate the similarity between the
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contextual information of videos (V context) and the concepts (Cn). Hence, we can obtain the
semantic representation V wiki = {vwiki

1 , ..., vwiki
Nwiki

} by calculating vwiki
n = V context · Cn. Note that we

can efficiently calculate the similarity by inverted indexing. Finally, the top 1000 largest values
of V wiki are kept as the final semantic representation.

4.2 Web-based Kernel Function (WKF)
Another pre-existing approach for metadata similarity is to use completely unstructured sources
via web search. Web-based kernel function (WKF) [10] utilizes the web search engine’s results to
enrich the semantic meaning of query text effectively. Similarly, we utilize the contextual infor-
mation of videos (V context) to expand more meaningful text from the Google search results. We
can obtain n Google snippets returned by a Google search engine (e.g., n=50 in this work). Then,
we aggregate all the snippets (Rn) to form a new semantic representation V google = 1

n

∑n
i=1 Ri,

where Ri has Ngoogle (e.g., 91, 004) dimensions (words).

5 EXPERIMENTS AND DISCUSSIONS
We evaluate the retrieval performance of the proposed knowledge-embedded sparse projection
learning approach on two (online) video datasets in Section 5.1, and summarize the experimental
settings in Section 5.2. Section 5.3 evaluates retrieval performances in various hashing algorithms
on NUS-WEBV dataset. Section 5.4 reports the discriminative power of pseudo label mining
based on the unstructured text information of YouTube videos. Section 5.5 shows the retrieval
performance and efficiency on 100K video dataset. Finally, Section 5.6 reports the effect of the
sparse constraint for the projection matrix.

5.1 Datasets
To evaluate the performance of our proposed method on retrieving semantic related videos, we
conduct the experiments on NUS-WEBV and DS100K datasets.

NUS-WEBV dataset [14] consists of 10,130 YouTube videos with ground truth labels. The
videos are crawled from 60 predefined event queries, and labeled with the relevance to the
corresponding event query by human annotators. The degree of relevance is divided to 3 levels:
very relevant, relevant and irrelevant. The event queries contain diverse topics from Natural,
Airshow, Political, Entertainment, Social and Sports.

DS100K dataset consists of 104,000 videos which combines with NUS-WEBV, the Iran and
SwineFlu videos [15] (56,834 videos), and additional 37,036 videos randomly selected from
UQ VIDEO [16] dataset except CC WEB VIDEO dataset to evaluate the scalability issue.2

5.2 Experiment Settings
We choose vector of locally aggregated descriptors (VLAD) [3] to describe each video. This is
because our recent work [17] reported that VLAD achieves the state-of-the-art video retrieval
performance, and lowers the computational cost and memory consumption.3 Hence, the VLAD-
based video feature is used as the visual retrieval baseline in our paper. To extract video feature,
the keyframes are extracted by abrupt shot detection. Then, feature points are calculated by
hessian-affine detector with SIFT for each keyframe. Finally, video feature (VLAD) is generated

2. The evaluation of UQ VIDEO is based on CC WEB VIDEO which is for near-duplicate video retrieval. Besides, our work
[17] reported that VLAD-based features achieve 0.96 retrieval accuracy on CC WEB VIDEO so that we do not evaluate on
UQ VIDEO directly.

3. Our work reported that VLAD feature only needs 64 centers to reach the same retrieval performance of bag-of-words (BoW)
using 200,000 centers. Besides, BoW requires large vocabulary to achieve good performance which is not feasible to load it on
mobile devices. The computational cost of computing nearest neighbor of the codebook is reduced significantly using VLAD.
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Fig. 2. Performance comparison on NUS-WEBV dataset: (a) Number of bits vs. MAP. The
proposed SHP outperforms RP and Sparse RP. (b) Storage consumption vs. MAP. The results
show that our proposed SHP algorithm achieves very competitive performance with S3PLH but
using much smaller storage. (c) Performance comparison for S3PLH and SHP using ground truth
labels and pseudo label mining. The retrieval performance using pseudo label mining is very similar
with that of ground truth labels. In (b) and (c), each curve is obtained by varying the number of hash
bits from 32 to 192. (d) Sample retrieval results. The proposed SHP only uses 192 bits to achieve
similar results as VLAD baseline (8,192 dimensions).

by aggregating the difference of the feature points over all keyframes and their nearest centroid
of codebook. The dimension of a VLAD vector is 8,192 and the distance metric is L2. Note that
the proposed method is not limited to use VLAD feature and it can be easily applied to other
state-of-the-art features.

The retrieval evaluation metric is mean average precision (MAP) computed at retrieval depth
10 and averaged over 5 test runs. For the experiment in NUS-WEBV, in each test run, we
randomly select 10 “relevant”/“very relevant” videos of each event as testing data and the
remaining videos are training data. For constructing pairwise relationship matrix S, we randomly
select 25 “relevant”/“very relevant” videos of each event. If the number of the ground truth
videos of an event is lower than 10, we randomly select 1/3 of it as testing data, the remaining
2/3 of it as training data, and 1/2 of the training data for S. For the experiment in DS100k, we
sample 20K videos as the training data and uniformly sample the different numbers of videos
for pseudo labeled training data (Xl).4 The metric to calculate the distance between two semantic
representations is the cosine similarity. Empirically, we choose Tu = 0.7 (Tl = 0.1) as semantic
related (unrelated) pairs. We set γ = 0.3 which will be discussed in the Section 5.6, and utilize

4. We constrain the ratio of neighbor pair:non-neighbor pair to 1:10 for S. The reason for restricting the ratio is that we hope
the neighbor instances in the learned projection vectors can be assigned with the same binary bits.
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ESA algorithm to estimate semantic relevance except the results in Section 5.4.

5.3 The Performance of Knowledge-Embedded Sparse Projection Learning on NUS-WEBV
To evaluate the proposed method, we compare with the state-of-the-art approaches on NUS-
WEBV. As shown in Fig. 2(a), the retrieval accuracy greatly drops by using random projection
(RP) or sparse random projection (Sparse RP) which only considers the visual similarity. To
further utilize extra information (e.g., pseudo label information) in the learning process, the
proposed SHP can achieve similar retrieval accuracy (e.g., 192 bits) as original high-dimensional
VLAD feature (0.182).5 Besides, our proposed algorithm achieves very competitive MAP per-
formance with S3PLH which needs true label information in the learning process, and out-
performs RP and sparse RP. Because we aim at learning a sparse projection matrix which
is more applicable for mobile devices, we compare the storage consumption versus MAP by
various hashing methods in Fig. 2(b). The MAP increases with the number of compact bits for
representation. We find that the proposed method only contains 9.45% non-zero elements in the
learned projection matrix; hence, the storage consumption (projection matrix + video features) is
much smaller than S3PLH (2.48MB vs. 12.23MB for 192 bits) while achieving competitive MAP
performance. The MAP might be low in our experimental results (unlike those near-duplicate
cases in CC WEB VIDEO dataset, where our VLAD-based features achieve 0.96 retrieval accu-
racy); however, the top-ranked results are almost relevant to the query as shown in Fig. 2(d).
This is because there are too many semantic related videos in the dataset; therefore, the retrieval
results will suffer from high precision but low recall. Nevertheless, it is still feasible for mobile
video retrieval because users usually care about those top-ranked retrieval results.

To demonstrate the effectiveness of pseudo label mining, Fig. 2(c) shows the MAP performance
in different storage for S3PLH and our proposed algorithm between human annotations (true
labels, semi-supervised learning) and pseudo label mining (unsupervised learning) for generat-
ing compact representations. Note that the mined (pseudo) label information can be applied to
S3PLH. It is clear that the MAP of pseudo label mining algorithm is very competitive with the
methods using human annotations. The results show that the proposed SHP has similar retrieval
accuracy compared to S3PLH but using much smaller storage consumption. This phenomenon
is more obvious when we use more bits to describe each video (i.e., the gap between two curves
is widening). For example, the reduced storage of 32 and 192 bits is 1.62MB (S3PLH: 2.04MB
- SHP: 0.42MB) and 9.75MB, respectively. This also represents that the proposed method only
needs a small amount of memory space as increasing the bit numbers. Because we integrate
the sparse constraint into the learning process, we can focus on few important dimensions to
generate the binary codes (cf. Fig. 1(d)) and achieve similar codes as the dense projection matrix
(cf. Fig. 1(c)).

5.4 The Discriminative Power of Semantic Representation by ESA and WKF
To investigate and compare the discriminative power of ESA and WKF for generating the
semantic representation, we evaluate the quality of retrieval results by precision at Ne (i.e.,
Ne = the number of ground truth) for each event category in the NUS-WEBV. The semantic
representations of queries are built from the name of the event category. We apply ESA (V wiki)
and WKF (V google) to generate three semantic representations based on title, tags, and description
(V context) for each video in DS100K, and also compare with early fusion (average 3 vectors) and
two late fusions (average/maximum 3 similarity scores). As shown in Fig. 3(b), the precision of
ESA outperforms WKF significantly in all configurations. The best precision values of ESA and

5. We assume the VLAD baseline is done on the server side because it is a high-dimensional feature which needs higher
storage cost (around 633MB for NUS-WEBV).
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Fig. 3. (a) Average pair-wise similarity of ESA and WKF for 60 NUS-WEBV categories. (b)
Classification precision over 60 categories using ESA and WKF alone. Results show that ESA is
notably more discriminative than WKF for different event categories. (c) Performance comparison
on DS100k dataset: memory consumption vs. MAP. Each curve is obtained by varying the number
of hash bits from 128 to 512. Results show that using SHP with ESA achieves better retrieval
performance while using less resource than other hashing methods and VLAD baseline. (d) The
density of projection matrix and MAP in different γ on NUS-WEBV. The generated semantic-rich
representation is fixed at 192 bits.

WKF are 0.435 (early fusion) and 0.217 (late fusion max), respectively. Note that the precision of
WKF with description is only 0.049 because the search engine does not support very long query,
which returns a large portion of empty search results. Based on the best configuration in Fig.
3(b), we further compute the average similarity confusion matrix of ESA and WKF for labeled
event categories in Fig. 3(a). The ideal case of the confusion matrix should only have black color
(similarity = 1) in the diagonal. It is obvious that ESA is more suitable and discriminative than
WKF in estimating semantic relevance. Moreover, we find that some ambiguous cases in ESA
come from very related categories, such as “2008 Monaco Grand Prix” and “2008 Singapore
Grand Prix.”

5.5 Retrieval Performance and Efficiency on DS100K
Instead of evaluating on a small dataset (NUS-WEBV), we further experiment on DS100K in
Fig. 3(c). Similar to the results shown on NUS-WEBV, the proposed method achieves better
retrieval performance while using less resource than other hashing methods and VLAD baseline.
Moreover, our SHP (512 bits) further outperforms the VLAD baseline (0.131 vs. 0.118) because the



10

learning process integrates both visual and semantic information. Besides, the learning process
is sequentially learned by solving the Equation (3) so that we can easily include new data (auto-
matically exploited semantic relevance) when increasing the bit numbers. Hence, the proposed
method is more scalable than prior hash learning methods which rely on manual annotations.
We also investigate the effect by different number of pseudo labeled training samples (Xl) in the
right top of Fig. 3(c). The results show that the proposed method only utilizes a small number of
Xl (1000 ∼ 5000 samples) for generating semantic relevance and achieves good retrieval accuracy.

To examine the video retrieval efficiency between VLAD feature and compact signature, we
show the retrieval speed on DS100K dataset. We execute 100 queries and average the query
time (distance computation + ranking). The average query time of VLAD (L2 distance) and our
SHP (hamming distance) is 3.201 seconds and 0.592 seconds, respectively.6 We can not only
greatly reduce 81.5% query time but also achieve good retrieval results. The time for calculating
hamming distance only takes 0.075 seconds (i.e., 3.13% of the time as VLAD - 2.398s); hence,
it is applicable for scalable mobile video retrieval. Moreover, we can further reduce the query
time by retrieving videos with the same binary representation (i.e., hamming distance = 0) via
lookup table.

5.6 Parameter Sensitivity (γ)
We evaluate the effect of sparsity for the projection matrix by controlling different γ in the
experiments on NUS-WEBV. To observe the density of projection matrix, we calculate the number
of non-zero elements in the projection matrix. For γ = 0.3 in Fig. 3(d), we can achieve similar
retrieval accuracy as the state-of-the-art S3PLH (0.172) while using 9.45% non-zero elements
of the projection matrix. The projection matrix is expressed by sparse matrix representation to
reduce the storage cost and computational cost significantly since the zero elements are ignored
in the storage and computation. Besides, the generated semantic-rich compact representation
(i.e., hundreds of bits) can greatly reduce the transmission time. These properties are especially
applicable for the case of high-dimensional features and mobile video (or image) retrieval.

6 CONCLUSION
We propose a similar video pair generation algorithm based on explicit semantic analysis aug-
mented by contextual data for some of videos, and the experimental result shows this algorithm
is effective to generate meaningful similar video pairs without human annotations and still
effective in helping unsupervised hash learning. We present a novel sparse projection learning
algorithm to reduce the storage and fingerprint computational cost for incorporating knowledge
from pseudo label mining and sparsity. The learnt sparse projection matrix is feasible on mobile
devices and the retrieval accuracy is ensured. We evaluate our proposed algorithms in NUS-
WEBV and a combined video dataset with 100K YouTube videos. The experiment results show
the learned projection matrix of our method not only reduces huge storage cost but also re-
duces the computational cost of fingerprint generation. The MAP performance of our proposed
knowledge-embedded sparse projection learning is very competitive to the original video feature.
In the future, we will investigate how to incorporate more knowledge to improve retrieval
performance systematically.
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