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Abstract
We study basic-level categories for describing visual

concepts, and empirically observe context-dependant basic-
level names across thousands of concepts. We propose
methods for predicting basic-level names using a series of
classification and ranking tasks, producing the first large-
scale catalogue of basic-level names for hundreds of thou-
sands of images depicting thousands of visual concepts.
We also demonstrate the usefulness of our method with a
picture-to-word task, showing strong improvement over re-
cent work by Ordonez et al, by modeling of both visual and
language context. Our study suggests that a model for nam-
ing visual concepts is an important part of any automatic
image/video captioning and visual story-telling system.

1. Introduction
Automatically describing the objects, people and the

scene in an image is one of the most ambitious tasks of com-
puterised image understanding. Progress on this task has
significant practical implications, since there are billions of
pictures on the web, as well as in personal and professional
collections. There are two aspects to this picture-to-words
problem. The first is computational visual recognition –
to recognize or localize thousands of visual semantic cat-
egories. Systems that solve this problem are beginning to
work [13, 6]. The second aspect is to mimic the human de-
scription of categories – recent work by Ordonez et al. [17]
addressed this aspect by identifying basic-level categories.
We note, however, that there are two key limitations of the
recent literature on pictures to words. The first is in as-
suming that the basic-level name for a visual category is
unique, whereas recent work cognitive psychology found
that object names are context-dependent [1, 14, 3] and are
affected by attributes such as typicality [11]. The second
is that the mapping from categories to basic-level names
relies on crowd-sourced explicit labeling. While crowd-
sourcing is an efficient way to gather one name-per cate-
gory for tens thousands of categories, it is not scalable to
cases where different instances of an object have different
basic-level names that vary from one task and context to
another. In this work, we study the interplay between basic-
level names and the visual and language context of each
image, and scale image-to-words systems to millions of im-
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Figure 1. Examples of basic-level name variations due to object
appearance (right) and image context (left). Given an input im-
age, this paper proposes novel methods for assigning context-
dependent basic-level names using object appearance with visual
and language context.

ages. To this end, we make use of millions of online images
with human-supplied descriptions [4, 22], and large-scale
visual recognition systems [8, 13].

1.1. Variations in basic-level categories
The basic level of categorization is “the most inclusive

(abstract) level at which the categories can mirror the struc-
ture of attributes perceived in the world” [19]. However, a
number of factors affect how people name a particular vi-
sual concept, or assign basic-level names.

Visual appearance plays an important role in naming ob-
ject instances which belong to the same category. Psychol-
ogists have identified these factors as typicality [11], or per-
ceptual variability and kind diversity [14]. In images, peo-
ple tend to assign different names for different view points.
As shown in Figure 1, pictures of a cathedral can be called
building given an exterior view, and cathedral given an in-
terior view.

Other objects or the visual setting may also change how
semantically identical objects are named. Psychologists
have observed a similar effect, namely context-independent
and context-dependent properties [1]. For example, an en-
tire field of california poppy flowers is described with the
word poppy, while a single flower is often described with
the word flower (Figure 1 left); in close-up an apple is likely
to be named as an apple, while in the presence of other fruits
it is named as fruit (Figure 4 right, second row).

Cognitive psychology experiments are typically con-
ducted with isolated concepts [20], up to a dozen concepts



with toys or object drawings [11, 14], and with a few dozen
to a hundred subjects due to limitations of experiment con-
dition. Using images with captions generated naturally by
hundreds of thousands of users, we can train algorithms
to predict the most appropriate basic-level names for thou-
sands of semantic categories in context.

1.2. Solution overview
We propose a three step approach to automatically de-

termine the basic-level names of objects in an image. We
first use ImageNet [4] to learn visual concept models from
images for more than 2,000 visual synsets (Section 3.1).
We then learn a model to choose a basic-level name for
a given concept, which explicitly takes into account vi-
sual context, object importance and object appearance (Sec-
tion 3.2.2). Finally, we fine-tune the obtained descriptions
for an image using language context – this is done via a
model for ranking descriptions from different visual con-
cepts, as described in Section 3.3. This system is evaluated
on the SBU 1 Million Flickr image dataset (Section 4-5).
Our system achieves a higher precision and recall than Or-
donez et al. [17] when predicting the 5 most likely basic-
level names. Furthermore, on 1,200+ synsets predicting
basic-level names using visual context leads to more accu-
rate matches with human descriptions.

The main contributions of this work are as follows.
• We produce the first large-scale catalogue of fine-

grained basic-level categories with thousands of visual
synsets and hundreds of thousands of images. This is
automatically constructed by analysing tagged online
datasets with associated natural language descriptions,
and can easily scale to an order of magnitude more
concepts and images.
• We propose a new method to predict context-

dependent basic-level categories taking into account
visual and language information. This is achieved by
decomposing the problem into a set of classification
and ranking tasks.
• We perform experiments and benchmark on a dataset

two orders of magnitude larger than that of prior
work [17], our system shows significant improvement
for the picture-to-word task using context-dependent
basic-level naming of visual concepts.

A catalogue of context-dependent basic-level categories,
and a word prediction benchmark of 150,000 images are
released online.

2. Related Work
Since the late 1970s, psychologists have studied how

people typically name objects. Rosch et al. [20] noted
that people typically describe objects at what is called their
basic-level category. Thereafter, several groups noted con-
text effects for naming objects, including Barsalou [1] and

Rosch herself [19]. More recently, strong experimental ev-
idence of context-dependent categorization is observed in
children [14] and adults [3]. The constraints of experiment-
ing with in-lab subjects means that no comprehensive cata-
logue of basic-level categories is yet available.

Automatically associating images with natural language
is a very active topic within computer vision. Most re-
cent systems rely on visual recognition as a component,
such as state-of-the-art approaches using convolutional neu-
ral networks (CNN) [13, 8]. The approaches for associat-
ing images to words and sentences started with visual de-
tection over a small number of object categories, followed
by language model [23], caption retrieval [18], and explic-
itly capturing syntactic and semantic features [7]. A few
approaches explicitly relate visual semantics to their ex-
pression in words, such as studying how objects, attributes
and visual relations correlate with their descriptions [25],
and learning visual variations of object categories [5]. In
terms of capturing human descriptions of natural images,
our work is inspired by the studies of importance [21, 2]
and the first work to identify basic-level categories from im-
ages [17]. We offer two points of departure from the state-
of-the-art. First, we note that the goal of deciding which
basic-level names describe an image is different from pre-
dicting objects or a visual sentence; the focus here is mod-
eling the psychological processes that affect naming rather
than visual detection or linguistic regularities. Second, a
number of recent works model context [5, 21, 2] or nam-
ing [17], but these two parts have not yet been connected, to
the best of our knowledge.

3. Predicting basic-level categories
We propose a method to predict the basic-level names

of objects given an image, an overview is shown in Fig-
ure 2. We take a probabilistic approach to model the proba-
bility of using a word y to describe an image x, denoted by
p(y = 1|x). However, directly mapping x to y does not take
into account the relationships between visual concept and
words, as well as the context among co-existing concepts.
We exploit the structure of this problem by approximately
modeling this distribution with three main components: first
recognizing visual concepts from images, followed by nam-
ing individual concepts in the second step; and then ranking
these name-and-concept pairs from all concepts using con-
text for each image.

3.1. Detecting semantic visual concepts
The first step towards deciding on descriptive names for

a visual scene is to capture semantics, or meanings. In lin-
guistics, a word sense is “an element from a given set of
meanings (of the word)” [16]. WordNet, the widely-used
lexical database, uses synsets, i.e., synonym sets, to rep-
resent word senses [16]. The well-known ImageNet [4]
database illustrates each WordNet synset with a few hun-
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Figure 2. Method overview of context-dependent prediction of
basic-level names. See Section 3 for details.

dred images. We capture visual semantics by learning a
visual representation of each synset from ImageNet.

Our model uses the output of the last fully-connected
layer of a CNN [8] as feature vector x, and logistic regres-
sion classifiers. Equations 1, 3, and 4 adapt the last super-
vised layer of CNN features to a number of new classifica-
tion tasks – new synsets, new set of training data, and fine-
grained appearance categories. Such adaptation is known to
yield performance competitive to retraining the deep con-
volution network [12]. This learning scheme is efficient
enough to handle a large amount of training data and thou-
sands of target classes.

We first learn a synset classifier to estimate the probabil-
ity that a synset s appears in image x:

p(s = 1|x) = σ(wT
s x) (1)

Here σ is the sigmoid function σ(x) = 1/(1+ e−x), and ws
is a weight vector for distinguishing synset s from all other
synsets.

3.2. Naming individual visual concepts
Given a detected visual concept s in image x, we want

to model the probability of mentioning a word y related
to s. To this end, we define a generative process of nam-
ing each concept as follows. First, given the image and
concept, we generate a distribution over a switch variable
us that indicates whether s would be described at all. If

us is on, we then generate a word ys
i with a distribution

p(ys
i = 1|x,s = 1,us = 1). Here we assume each individ-

ual concept contribute support to only one name. Overall,
the probability of generating a word ys

i given concept and
image can be written as,

p(ys
i = 1|x,s) = ∑

us∈{0,1}
p(ys

i = 1|x,s,us)p(us|x,s)

= p(ys
i = 1|x,s,us = 1)p(us = 1|x,s). (2)

The word probability allows us to select the most likely
name for each individual concept s. We will generate a set
of proposals of word-concept pairs based on these concept
specific probabilities and globally rank them in Section 3.3.

In the following subsection, we describe how to obtain
a set of target nouns ys for each concept. The modelling
of p(us = 1|x,s) and p(ys

i = 1|x,s,us = 1) are detailed in
Section 3.2.2.

3.2.1 Identifying a set of names for a concept
For each synset s, we define a set Ts that contains all words
that can be used as the name for the semantic concept s. For
example, Tcow would include cattle, bovine, and animal
which are the larger categories that it can be classified into,
or moo-cow as an informal name, and kine as an archaic
plural for cow.

We define an indicator vector ys ∈ {0,1}|Ts|, where each
element corresponds to one word in Ts. Then the task of
choosing an entry-level description for an image x becomes
a multi-class classification problem, i.e., estimating the
probability of each choice p(ys

i |x,s,us), for i = 1, . . . , |Ts|,
such that ∑i p(ys

i |x,s,us) = 1.
In this work, we obtain Ts by tracing the WordNet hi-

erarchy up to 5 hypernym (i.e., parent concept) levels, and
obtain a set of lemmas at each level (e.g., ridding horse and
mount are both lemmas of the same synset). The final set Ts
is the union of these lemmas. Such a construction excludes
the hyponyms (i.e. children nodes) of a synset, to avoid con-
fusing this task of choosing context-dependent names with
fine-grained classification (e.g., distinguishing a male horse
from a mare). Note that this construction of Ts does not
include names that may be sibling or other related nodes
(such as zebra or mule for horse). We found this to yield
much cleaner candidates for entry-level descriptions (albeit
lower recall) than simply treating the most frequent words
as candidates. This restriction could be relaxed by looking
at nouns within a certain WordNet distance of the synset of
interest, but we leave this as future work.

Due to its construction using the WordNet hierarchy, set
Ts is henceforth referred to as the trace of s.

3.2.2 Choosing a name for a concept
According to the generative model for concept names in
Equation 2, we learn an is_described classifier to estimate



how likely synset s is to be explicitly described given that it
is visually present.

p(us = 1|x,s = 1) = σ(wT
u x) (3)

The intuition behind the is_described classifier is similar to
that of predicting the importance of an object [2]. We expect
CNN feature x to be able to capture most of the information
that relates to concept importance and describability, as it
has shown state-of-the-art performance in capturing scene
types and contextual factors [13].

We implement the remaining part of Equation 2 by learn-
ing a description classifier, to infer the most likely noun
used to describe synset s.

p(ys
i = 1|x,s = 1,us = 1) ∝ exp(wT

yix) (4)

i = 1, . . . , |Ts|

As one can see from the definitions, these synset,
is_described, and description classifiers are learned on suc-
cessively smaller training sets that are increasingly tuned to
the differences in description generation, i.e. first distin-
guishing s = 0 versus s = 1, then us = 0 versus us = 1 only
when s = 1, and finally choosing among ys when us = 1.
For efficiency reasons, a concept s is considered for an im-
age when p(s= 1|x) exceeds a high threshold. According to
Equation 2, the is_described probability p(us = 1|x,s = 1)
is a shared scaling factor for all possible words ys

i , hence it
is not used for selecting names, and only used for ranking
names across synsets.

3.3. Ranking names and concepts
Equation 2 describes the probability of generating a

name for each synset s, but it does not prescribe ways to
rank the descriptions generated by different synsets. One
way to impose a ranking is with the confidence of the
is_described classifier p(us = 1|x,s = 1). This confidence
does not, however, take into account additional side infor-
mation, such as the reliability of each description classifier,
the prior likelihood of seeing each concept in an image, and
the context of other nouns generated for the same image.

We aim to learn a ranking score r for each triple com-
posed of image xi, synset sm, word yk, referred to by their
respective indexes (i,m,k). We use a linear ranking function

ri,m,k = wT
r hi,m,k.

The optimization problem for obtaining the ranking
weights wr follows the RankSVM formulation [9]. Here the
training data consist of pairs of image-synset-word tuples
(i,m,k) and ( j,q, l), where word k, synset m is associated
with image i, while word l , synset q is not associated with

image j, and ξi,m,k; j,q,l are non-negative slack variables.

min J(wr,ξ ) =
1
2

wT
r wr +C ∑

i,m,k; j,q,l
ξi,m,k; j,q,l (5)

s.t. ∀(i,m,k; j, p, l)

wT
r hi,m,k ≥ wT

r h j,q,l +1−ξi,m,k; j,q,l

ξi,m,k; j,q,l ≥ 0

We use four types of features to capture different infor-
mation that is relevant for ranking words.
SCORES from different classifiers. These include: is-
described-score, probability that a synset description ap-
pears in the list of words as in Eq (3); direct-to-noun-score,
the probability that a word k is used to describe image x
– p(yk|x), obtained using logistic regression; synset-score:
the probability that synset sm, corresponding to word k is in
the image, according to Eq (1).
AUX-iliary information about words and synsets. These in-
clude: in-synset-frequency, the prior of word k within its
corresponding synset m; global-noun-freq, the prior prob-
ability of word k in all images; description-accuracy, the
accuracy of the description classifier for this synset based
on cross-validation performance; is-described-accuracy,
the accuracy of the is_described classifier from cross-
validation; trace-size, or |Ts| in Eq (4).
KNN-rank. We find the k-nearest neighbours in the training
set to image x, we then rank the nouns associated with these
retrieved images by TF-IDF. knn-rank is then 1/rank for the
word in question. k is chosen to be 500 in this work.
WORD2VEC features are used to capture the word context.
We use a modified version of the Word2Vec Continuous
Bag of Words (CBOW) model [15] without the hierarchi-
cal softmax. Our CBOW training method take a random se-
lection of words in each training iteration, thus making our
word-context model order-independent. The CBOW model
projects words into a 100 dimensional feature space.

We extract two different types of Word2Vec features
from the set of candidate nouns for each image, broadly
described as similarity and score features. word2vec-
similarity-max and word2vec-similarity-avg are the maxi-
mum and average cosine similarity between word k and the
top 6 words according to is_described scores. word2vec-
score-max and word2vec-score-avg are the maximum and
average probability of predicting the target word k given a
random subset of context words under the modified CBOW
model, taking max- and average- over 10 random inputs.

We augment these features using non-linear transforma-
tions. Specifically we append the products of all pairs of
features. Augmenting the feature vector of linear SVM is
known to produce competitive performance compared to
SVMs with non-linear kernels [24]. For each image, we
generate the final set of ranked words by removing dupli-
cate words from the ranked list of synset-word pairs (m,k).



4. Experimental setup
Training and testing datasets. We use the IMAGENET-
FLICKR dataset to train synset classifiers and for a prelim-
inary validation of the concept of context-dependent basic-
level names in Section 5.1. This dataset is the subset of
ImageNet[4] originally from Flickr [22], containing over
5.7 million images, with both WordNet synset labels and
Flickr metadata such as caption and tags.

We use the SBU dataset [18] to train our is_described
and description classifiers as well as for evaluation. Origi-
nally this dataset consisted of 1 Million Flickr images with
associated captions; however at the time of collection only
95%, or 950K images were still publicly available. An-
other 2000 images are removed because they form the two
datasets, of 1000 images each, used by Ordonez et al. [17],
here referred to as SBU-1KB and SBU-1KB. We used
80% of the remaining images, or 760,000, for training the
is_described and description classifiers; while 40,000, or
4% were used for training the rankSVM. The remaining
148,832 images were used for evaluation, which we refer
to as SBU-148K. SBU-1KA contains randomly selected
images, while SBU-1KB contains images for which synset
detectors produced high confidences. A list of nouns asso-
ciated with each image is produced by Amazon Mechanical
Turk workers. We evaluate against the union of nouns se-
lected by all Turkers, since the level of agreement across
different Turk workers was not released.
Generating groundtruth descriptions for the SBU
dataset We extract lemmatized nouns from the image cap-
tions and filter out nouns that are not part of ImageNet. The
ground truth is noisy as captions may not directly refer to
the visual content. But they are more realistic for capturing
people’s language use in natural settings than those from the
naming exercises in SBU-1KA and SBU-1KB.
Model learning The image feature x is a 4096 dimensional
vector from the last fully-connected layer of a pre-trained
CNN [8]. We learn 2633 synset classifiers (Equation 1) on
ImageNet. These synsets have enough training examples in
the IMGNET-FLICKR dataset, and have at least 100 positive
instances in the SBU dataset. The threshold on p(s = 1|x),
for considering an image to represent a synset, is chosen
to be 0.95. The is_described classifier for us is trained on
images representing synset s, images associated with any
word in Ts are positives examples, the rest are negatives.
We learn a set of one-vs-one SVM classifiers as the de-
scription classifier for each synset. We use SVMrank [10]
to learn description ranking over different feature settings.
Regularization parameters for all classifiers are tuned with
cross validation.
Evaluation metric For each image, the system outputs a
list of nouns sorted by confidence. For each image we cal-
culate the precision and recall at each position in the list; we
further average these precision and recall points across 10
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Figure 3. Per-synset accuracy improvement of the basic-level
name classification proposed in Section 3.1–3.2.2 over the Fre-
quency+described baseline. See Section 5.1 for discussions.

random testing set partitions – generating the P-R curve and
its standard deviation bars. This is the same metric reported
by Ordonez et al. [17] though they report only the precision
and recall at top 5 words per image.
Four baselines are used for comparison.

• Ngram-biased-SVM, as presented by Ordonez et
al. [17]. This baseline only applies to the SBU-1KA
and SBU-1KB datasets.

• Direct-to-noun , a method consisting of 2,549 separate
logistic regressors which directly predict each noun yi
using CNN feature x as input, calibrated with Platt-
scaling using hold-out data from SBU training set.

• Most-frequent name, a method that outputs the most-
frequent noun yi in each trace Ts for synset s, instead
of using Equation (3–4). Nouns are ranked by their
prior frequency.

• Frequency+described is the same as the Most-frequent
name method except using the is_described classifier
(Eq. 3) for ranking.

5. Experimental Results
We evaluate the performance of word classification and

ranking in three ways: description classification within each
synset trace (Section 5.1), picture to word prediction, and
word ranking method taking into account language context
(Section 5.2).

5.1. Choosing basic-level names with visual context
Preliminary validation. We examine 3,398 synsets from
the ImageNet-Flickr dataset with at least 200 captioned im-
ages, and examine which words on the trace are used in
their descriptions. Among these synsets, the second most
common name is used in at least 10% of image captions for
1,026 synsets. This shows that using multiple names for a
single semantic concept is a common phenomena.
Automatic description classification. We use methods
outlined in Section 3.1–3.2 to detect each synset and choose
descriptions on the SBU dataset. Our per-synset evaluation
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Figure 4. Examples of context-dependent basic-level categories. Left: For each synset, we display crowd-sourced one-name-per-
synset [17], n-gram based most frequent name [17], and context-dependent descriptions chosen according to Sec 3, along with four image
examples. Right: synsets for which no previous results [17] were available.

reports the accuracy of 3-fold cross-validation with an in-
ternal 3-fold cross validation to select the hyper-parameters
for the description classifier. Figure 3 displays accuracy im-
provements of our method over the Frequency+described
baseline. Among the 2,633 synsets in the SBU dataset , our
method improves upon the Most frequent name baseline in
1,222 synsets, among which 783 improved by more than
1%. No change in accuracy is measured for 1190, and 221
synsets exhibiting a small accuracy decrease. We found that
our method provides the most improvement for synsets with
ambiguous basic-level names – two or more names used
with similar frequency. The fraction of improved synsets
is on par with the preliminary validation above. The 221
synsets that exhibit an accuracy decrease are characterised
by ambiguous basic-level names and fewer than average
training examples. The ambiguous basic level names cause
the classifier to choose names other than the most common,
while the small training set size reduces the quality of the
classifier.

Illustrative examples. Figure 4 shows results of basic-level
name classification in comparison to labels from Mechani-
cal Turk workers [17] and N-gram frequency [17] (left ta-
ble). The right table shows a few synsets for which no re-
sults are available from prior work [17]. We can see several
aspects of visual context come into play when choosing the
basic-level names – including view point variation (plant vs
tree; or bird vs heron); the presence of other object or part

(apple vs fruit; door vs screen); and the appearance varia-
tions within the category (art, sculpture vs carving).

This is the first large-scale fully automatic classification
of basic-level names. Using image collections with ob-
jects in their visual context enables us to discern context-
dependent basic-level names previously observed in con-
trolled lab environments [1, 14], and alleviates the need for
crowd-sourced labels [17].

5.2. Predicting nouns
We evaluate basic-level name classification (Sec 3.1–

3.2) in an end-to-end noun prediction task on three SBU
test subsets described in Section 4. The proposed approach,
BasicName-Visual, uses description classifiers (Equation 4)
to choose names from the traces, and the is_described
scores (Equation 3) for ranking. We remove duplicate nouns
appearing in multiple traces, and generate precision-recall
curves by allowing 1, 2, 3, . . . nouns per image.

Figure 5 (left and middle) compares BasicName-Visual
to four baselines (Section 4) on SBU-1KA and SBU-
1KB. When predicting 5 words per image on SBU-1KA,
BasicName-Visual achieves a precision of 0.26 with 0.13
recall, while Ngram-biased-SVM [17] achieves a precision
of 0.20 with 0.10 recall. Detailed statistics for SBU-
1KB are available in the supplemental material. Fur-
thermore, BasicName-Visual is slightly better than Most-
frequent name and Frequency+described while Ngram-
biased-SVM is on par with Direct-to-noun. The same eval-
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Figure 5. Left+Middle: Precision-recall curves for our method and the four baselines on SBU-1KA and SBU-1KB. Right: Precision-recall
curves on SBU-148K. Error bars show standard deviation.
uations are carried out on SBU-148K (Figure 5 right). With
more than two orders of magnitude more testing data -
hence lower variance for performance estimates - we can
see a significant difference between BasicName-Visual and
Most-frequent name and Frequency+described. This shows
that both Equation 3 and 4 contribute to choosing the right
description. Further restricting predictions to the 783 no-
ticeably improved synsets from Section 5.1 leads to a signif-
icant and consistent gain of 0.02 precision across the recall
range (Figure 1 in supplemental material).

Figure 5 (right) shows the effect of language context and
auxiliary information for ranking words in the same im-
age, denoted as BasicName-Visual+Lang. This approach
significantly out-performs BasicName-Visual across the re-
call range. The average precision of BasicName-Visual is
0.336± 0.003, improved to 0.341± 0.002 with SCORES
features, and further improved to 0.347±0.002 with KNN,
WORD2VEC and AUX features.

Figure 6 shows several examples of description clas-
sification. The first four rows show examples where
BasicName-Visual+Lang correctly predicts more specific
names than the most frequent name, such as preferring
church over building in row 3 and sunflower over flower
in row 4. Row 5 contains an example where synset classi-
fiers break down, here the main objects (bikes and people)
are small and subject to poor lighting. Row 6 shows a dif-
ficult case where the scene contains several objects that do
not usually appear together. The prediction ball can be con-
sidered correct but is not in the groundtruth.

6. Conclusion
We studied context-dependent basic-level categorization

for objects in natural images, and proposed a method to pre-
dict basic-level names using visual and language context.
We produced the first automatically generated catalogue of
basic-level categories for thousands of visual concepts and
hundreds of thousands of images. Our approach to basic-
level naming of concepts showed superior performance in a
few picture-to-word tasks. Future work includes using ba-
sic level names for image-to-sentence applications, gener-
alized trace construction by expanding the candidate names
beyond direct ancestors, and learning interpretable context
using constructs such as visual attributes.
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Figure 6. Example images from the SBU-1KA and SBU-1KB datasets with Amazon Mechanical Turk labels. We show the top few nouns
predicted by our method, BasicName-Visual, and three baselines. Words are printed in green if they are present in the list of labels. The
first four images are examples of where our method performs well, the last two images are examples of where our method performs poorly.
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