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ABSTRACT

Unsupervised Pattern Discovery

for Multimedia Sequences

Lexing Xie

This thesis investigates the problem of discovering patterns from multimedia se-

quences. The problem is of interest as capturing and storing large amounts of

multimedia data has become commonplace, yet our capability to process, interpret,

and use these rich corpora has notably lagged behind.

Patterns refer to the the recurrent and statistically consistent units in a data

collection, their recurrence and consistency provide useful bases for organizing large

corpra. Unsupervised pattern discovery is important, as it is desirable to adapt to di-

verse media collections without extensive annotation. Moreover, the patterns should

be meaningful, since meanings are what we humans perceive from multimedia. The

goal of this thesis is to devise a general framework for finding multi-modal tem-

poral patterns from a collection of multimedia sequences, using the self-similarity

in both the appearance and the temporal progression of the content. There, we

have addressed three sub-problems: learning temporal pattern models, associating

meanings with patterns, and finding patterns in multimodality.

We propose novel models for the discovery of multimedia temporal patterns. We

construct dynamic graphical models for capturing the multi-level dependency be-

tween the audio-visual observations and the events. We propose a stochastic search

scheme for finding the optimal model size and topology, as well as unsupervised

feature grouping for selecting relevant descriptors for temporal streams.



We present novel approaches towards automatically explaining and evaluating

the patterns in multimedia streams. Such approaches link the computational rep-

resentations of the patterns with words in the video stream. The linking between

the representation of audio-visual patterns, such as those acquired by a dynamic

graphical model and the metadata, is achieved by statistical association.

We develop solutions for finding patterns that reside across multiple modalities.

This is realized with layered dynamic mixture model, and we address the modeling

problems of intra-modality temporal dependency and inter-modality asynchrony in

different parts of the model structure.

With unsupervised pattern discovery, we are able to discover from baseball and

soccer programs the common semantic states, play and break, with accuracies compa-

rable to their supervised counterparts. On large broadcast news corpus we find that

multimedia patterns have good correspondence with news topics that have salient

audio-visual cues. These findings demonstrate the potential of our framework of

mining multi-level temporal patterns from multimodal streams, and it has broad

outlook in adapting to new content domains and extending to other applications

such as event detection and information retrieval.
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Chapter 1

Introduction

This thesis presents a computational framework for the unsupervised organization

of large collections of multimedia streams.

1.1 Motivation

With the rapid advances in recording devices and disk drives, large amounts of

multimedia data now seem commonplace in personal, educational, business or en-

tertainment environments. Affordable consumer and pro-sumer cameras allow us to

capture our daily events with ease. Advances in storage devices make archiving large

amounts of produced and consumer content no longer a luxury. As a result, many

of us have tens of thousands of digital pictures or hundreds of hours of home videos

on our home PCs; many educational institutions have thousands of hours of lectures

on tape; large corporations have archives for seminars, meetings, and presentations;

security and intelligence departments monitor tens or hundreds of channels of news

or closed-circuit surveillance at any time. As shown in Figure 1.1, these multimedia

corpora are already commonplace with camcorder/cameras at several hundred US

dollars and personal video recorders (PVR) that can store 200∼400 gigabytes. It
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is convenient to preserve the raw data and casually consume them whenever we

like, but we often found ourselves in a practical paradox that much more bits do

not lead to more useful information. At this scale, linear access seems infeasible

already, yet annotating all the streams are even more daunting as it will require

around ten times real-time. i.e., it would have taken us more than three months

to look through and annotate four years’ worth of personal photos, three years and

seven months for an entire semester’s lecture videos, and two and a half months

for news programs from any one channel, assuming twenty-four hour working days

non-stop. Furthermore, linear browsing and simple tagging would not be able to

meet our daily needs for accessing the data. For instance, it would not be a quick

task if we were to count: how many people went for the camping trip last summer;

in how many different ways have color representation being covered each year in

the digital image processing class; what were the types of discussions that usually

happen in a project meeting or an executive meeting; how many times have topics

related to greenhouse effect been mentioned in today’s news.

Identifying and recognizing important concepts for a multimedia corpus are

among the ultimate goals of multimedia analysis. They are however extremely

difficult tasks, given that they rely on many of the open issues in computational

vision, audition, linguistics, knowledge representation and information retrieval.

The goal of this thesis is necessarily much more modest and limited in scope – we

resort to data-driven approaches and use the self-similarity in a domain to discover

patterns, the recurrent and statistically consistent units in a data collection.

Patterns are ubiquitous across many domains. For example, textures are spatial

patterns in images; association rules are relational patterns in transaction databases;

melodies and rhythms are patterns in music; wedges and cycles are temporal pat-

terns in time series. Multimedia patterns distinguish themselves from patterns from
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a personal album

2001~2005

corpus

amount

storage 

access time

annotation 

time

engineering lectures

cvn.columbia.edu

spring 2005

ABC news

year 2005

3,000 photos/yr × 5 yrs =

15,000 photos

2½hr/week × 13weeks ×

114courses/semester =

3,075 hrs/semester

½hr/day × 365 days/yr =

183 hrs/yr

8.8GB 1,482GB 120GB

250 hrs @1sec/photo

2,500 hrs ~ 3.5 mo.

3,075 hrs 183 hrs 

30,750 hrs ~ 3.6 yrs 1830 hrs ~ 2.54 mo.

Figure 1.1: The accumulation of content in different domains.

earlier data mining domains in two ways: they exist across multiple input modali-

ties in addition to being persistent in space and time1, and they represent semantics

in addition to the apparent syntactic structures. Multimedia patterns form useful

representations for detecting events, as well as summarizing and browsing multi-

media content. For instance, most sports videos consist of regular plays, highlights

and breaks; many news programs include a weather forecast, a financial report, sev-

eral well-structured stories and a few headline briefings; surveillance videos can be

categorized into the background, the frequent actions and the rare events.

In order to identify these patterns, it would be desirable to prepare sufficient

training data and learn computational representations for each domain. However,

1The multi-modal perspective is seen in problems from a few other domains such as multi-sensor
fault diagnosis [77].
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this is not always possible, because (a) we may not have extensively annotated data;

(b) the domain may be unknown (e.g., content from different TV broadcasters, sur-

veillance systems to be deployed at a new site, video and still cameras used by

different households); (c) the set of ground truth varies both across different col-

lections and even over time for the same collection, making it necessary to handle

recognition targets not previously defined. Hence the flexible alternative of unsu-

pervised pattern discovery is preferred, as unsupervised approaches will be able to

adapt to new data without retraining. In this approach, we learn a statistical de-

scription for the patterns and simultaneously identify the instances of such patterns

in the content.

1.2 Problems addressed

We address three connected subproblems within multimedia pattern discovery. In

the following subsections we shall overview the scopes and the intuitions behind our

solutions to each of them.

1.2.1 Mining statistical temporal patterns

In this work we are interested in finding patterns from video that are of consistent

statistical characteristics. Literally, pattern is defined as “an example, an instance,

esp. one taken as typical, representative, or eminent.” from Oxford English Dictio-

nary [123].

The multimedia pattern discovery problem can be decomposed into two sub-

problems with inter-related solutions: choosing suitable representations of the raw

data, and learning a model from these representations. The first problem can be for-

mulated as choosing a subset from a pool of representations (features). This problem
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is due to the sheer volume and the high redundancy in the raw media signals. Unlike

the electrocardiogram signals or the transaction itemsets for a supermarket, it is less

obvious how to abstract audio-visual data into symbolic or numerical representa-

tions. The second problem is concerned with learning a model to capture the salient

recurrence in the data streams without supervision. The statistical recurrence in

audio-visual sequences differs from clusters of data points in two ways: (1) the data

are often highly correlated in time, and the patterns are in the relationships between

data points as well as in the data values themselves; (2) the patterns are continu-

ous segments in the long media sequence with unknown boundary, and we cannot

assume a fixed pattern length or known temporal cycles a priori. Our solution of

the feature selection problem builds on top of the model-learning problem.

We use hierarchical hidden Markov model (HHMM), a special form of dynamic

Bayesian network, to tackle the model-learning problem. HHMM is versatile enough

to handle the dependency between adjacent audio-visual observations, the flexible

temporal boundaries, and model the dependency between events, yet it is simple

enough that we can carry out exact inference. In order to adapt to new domains with

varying descriptive complexity, the size of the model is automatically determined us-

ing the minimum description length principle in conjunction with stochastic search.

For the feature selection problem, algorithms abound under supervised learning

scenarios, while the unsupervised learning scenario over temporal data sequences

is rarely addressed, due to the difficulty in evaluating relevance without ground

truth. We alter the notion of feature relevance to allow multiple relevant feature

subsets, since different patterns in the same sequence may require different represen-

tations. For example, the plays or breaks in sports videos are reflected in the visual

cues, while the highlights are more identifiable from the audio cues (e.g., the ex-

cited commentary and the cheers from the audience). We also re-define relevance to
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be relative among the candidate features using information-theoretic criteria, with

which we partition the original feature pool into several subsets. We then evaluate

Bayesian dependencies within each subset so as to filter out the redundancies.

1.2.2 Assessing the meanings of audio-visual patterns

Multimedia patterns are only useful when the syntax is interpreted with respect to

the underlying semantics. These interpretations link the model and the semantic

concepts in a particular domain. Such links can be hard to identify when the seman-

tics are diverse, complex or unknown. In news videos, for instance, we would not

immediately know which ones of the hundred labels generated by the model should

correspond to politics, war, hurricane coverage, weather reports, or the financial

sections. It is hence desirable to have computational models automatically establish

the links from the syntactic patterns to the semantics.

This process of interpreting patterns is enabled by the associated text tran-

scripts or other metadata. The information they carry complements those in the

audio and visual channels, and they are much easier and natural for humans to

understand. We devise statistical models to estimate the probabilities of associat-

ing certain words given the audio-visual patterns (and vice versa) via co-occurrence

analysis and statistical machine translation. In news videos this association ex-

plains a few audio-visual clusters with groups of words, and these word groups in

turn indicate consistent topical themes such as politics or weather.

1.2.3 Discovering multi-modal patterns

Watching video is a multisensory experience, salient recurrent patterns in video will

necessarily involve the visual, audio, and text channels. For example, anchor shots

in news videos are salient visual patterns, however if jointly viewed with the audio or
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closed captions these very similar shots may cover very different stories. Moreover,

the different modalities in video are asynchronous as the signal rates vary from a

few dozen bits (e.g., words) to a few thousand bits (e.g., audio) per second, and the

semantics are often not aligned in time due to production syntax, making the fusion

of different streams and the discovery of patterns across modalities is a non-trivial

task.

We propose a layered dynamic mixture model for finding multi-modal patterns.

The model is designed with a multi-layer structure that separates temporal correla-

tion and cross-modal dependence, with one of the layers accounting for the temporal

correlation and the variability within each modality, and the other fusing the infor-

mation from all the modalities with loose temporal binding.

1.3 Summary of findings

We now summarize the findings of this thesis in solving the three sub-problems. In

temporal pattern discovery we have proposed novel models for pattern discovery,

model selection and feature selection, in sports videos the patterns discovered using

low-level audio-visual features correspond to the basic semantic units play and break

in different games. In news videos we have identified a few meaningful audio-visual

clusters associated with a group of related words, furthermore we have found a few

multi-modal patterns that have better correspondence to news topics than text-

based techniques.

1.3.1 Summary of contributions

The original contributions of this thesis are as follows:

• A computational model for the unsupervised discovery of temporal patterns.
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• A stochastic model adaptation scheme for determining the optimal model

complexity.

• An unsupervised feature selection algorithm for temporal streams.

• A model for the automatic annotation of temporal video patterns with meta-

data.

• A model for the fusion of asynchronous multi-modal streams.

1.3.2 Prospective applications

Multimedia temporal patterns can reveal the unique syntax in a given domain, so

naturally it is useful for browsing and frequent event detection, as shown in chapter 3

and chapter 5, respectively. The domain-specific patterns can also provide global

structure information that can help rare event detection, multimedia retrieval, and

summarization applications. In addition to the few domains tested, the pattern

discovery problem is applicable to a much wider scope, including unstructured video

recordings such as surveillance videos, home videos, as well as other multi-modal

streams such as personal lifelogs and business logs.

1.4 Organization of the thesis

The rest of this thesis is organized as follows. In chapter 2 we review relevant

prior work in data mining, machine learning and multimedia analysis. In chapter 3

we discuss the problem of discovering syntactical patterns in temporal sequences.

We use hierarchical hidden Markov model as the computational tool for pattern

discovery, we present stochastic search strategies with Markov chain Monte Carlo

for automatic adaptation of model complexity, and we also present the unsupervised
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partition and selection from a pool of features for optimal pattern representation. In

chapter 4 we discuss the problem of identifying meanings for the patterns and present

our solution using co-occurrence analysis and statistical translation. In chapter 5

we discuss the problem of finding patterns across multiple streams, and we present

the layered dynamic mixture model for the clustering of multiple asynchronous

modalities in video. In chapter 6 we present the conclusions and discuss a few future

research directions. Appendix A introduces the inference of the hierarchical hidden

Markov model, appendix B provides the details for the stochastic search algorithm

for model selection, and appendix C include the feature extraction algorithms for

the low-level color and motion features specially designed for sport videos.
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Chapter 2

Prior work

The problem of multimedia pattern discovery closely relates to research in several

areas. The abstract problem closely resembles the data mining problem of extract-

ing frequent recurrences in various data collections. Multimedia pattern mining

draws upon techniques from multi-modal perception so as to extract meaningful

representations from the raw media streams. It uses unsupervised learning to un-

cover the target concept subject to the non-deterministic content characteristics and

measurement noises.

In section 2.1 we shall review some of the prior work in data mining and comment

on the similarities and differences between patterns in multimedia and those in con-

ventional domains. In section 2.2 we shall briefly mention human and machine per-

ception principles and summarize common multimedia features. section 2.3 include

a few statistical pattern recognition techniques, with an emphasis on unsupervised

and semi-supervised models that are most relevant to our pattern discovery task.

In section 2.4 we shall discuss prior research efforts in multimedia content analysis.
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2.1 Connection to other data mining problems

The problem of mining unknown recurrent patterns from massive datasets is being

solved in many domains.

The celebrated shopping-basket problem [1] in database mining is concerned with

the problem of finding association rules among the “transactions” in the space of

“supermarket goods”. In this problem, interesting structures takes the form of large

itemsets, where an itemset is an n-tuple of items, large is defined with the notion of

confidence and support to characterize how often items appear together. Fast algo-

rithms [2] for discovering large itemsets rely on the property that an itemset can be

large if and only if all of its subset are large, thus reducing the search complexity.

Temporal constraints in transaction time [3] and the lexical structure of items [113]

(such as apple, fruit, produce) can be incorporated as additional dimensions to help

expand sensible correlations. Additional speed-up on huge collections of transac-

tions can be achieved via sampling [125] or asynchronous update of the candidate

sets [20]. These association rules and constraints are deterministic in nature, and

the original notion of confidence and support, however, does not cover exclusion

relationships between items. In fact, association rules shall generalize as finding

the correlations [19] and implications [20] in data with statistical tests, which are

dependency relationships, conditional probabilities, or likelihood ratios in spirit.

Biological sequence analysis faces similar challenges: a few interesting and rela-

tively conserved motifs (e.g., short DNA or protein segments that are similar) are

hidden among the majority of background “noise” in a large number of long gene

sequences. Motif sampler [73, 71] posed the motif discovery problem as “align-

ing” all sequences in the database at the position of the (only) motif, learning a

product-of-multinomial model for the motif. The i.i.d (independently and identi-
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cally distributed) assumption in the motif sampler seems too restrictive, so MEME

(motif-based hidden Markov modeling of biological sequences) [8] and HMM [26] use

a markov model to model the sequential dependency of the sequence observations.

In this context, the motif and the background models are probabilistic, while the

raw observations are symbolic and uni-dimensional in nature.

In Internet traffic analysis and performance modeling, patterns are directly de-

rived from the continuous-valued measurements. They are often analyzed in the

forms of periodicity, peaks, tail and trend behavior and so on. Continuous state-

space statistical temporal models such as the auto-regressive moving average model

(ARMA) [58] model can be learned to capture the structure of interest while at the

same time taking into account the noise.

Intuitively, video mining tries to find consistent subsegments that re-occur in

the collection. It may well be cast as finding association rules in an audio-visual

concept space, aligning video motifs, or identifying trends in video while filtering

out noise. A dynamic video structure model can be a “dense” version of the motif

sampler [71] without explicit modeling of the background, and a generalization from

the MEME [8] model by introducing dependencies across different features measured

at the same time. Note however, there are a few domain differences: (1) The noise

in the data entities. The shopping basket and motif finding problem are concerned

with clean signals in that “coffee” would not be confused with “milk” and neither

would “G” with “I” in amino acids, while measurement noise (such as the noise in

CCD sensors and the impreciseness in camera motion estimation) must be taken into

account in multimedia. Therefore, the uncertainty lies only in structure for data

mining yet both in the structure and the measurement for multimedia. (2) The

absence of known temporal boundaries and fixed time scales. In the data mining

examples, the notions of “baskets” or long candidate sequences or the fixed daily or
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weekly cycles are unambiguous. However, many video sequences do not have a clear

boundary for “patterns”, nor does the time scale agree even within the same video

genre (e.g., the length of a news story or a movie scene would vary [117, 66, 53]).

(3) The need for identifying meanings. The interestingness, or evaluation criteria

for the target patterns are better-defined for domain experts, so that signal-level

representations such as ”coffee and cream” (a shopping habit) or “VGIIGAG” (a

biological control signal) or “a high peak around noon” (a browsing pattern) are

readily useful. On the contrary, the meaning of “a human scream and a face closeup

followed by fast camera pan” can vary across content collections, users, or tasks.

2.2 Multimodal processing

The processing units for multimodal signals are the necessary front end for any recog-

nition systems. In this section we first give an overview of the general principles

of visual, audio and language processing, followed by a review of common features

used in video and multimedia analysis that make use of these principles. Through-

out this work, the word “modality” is used somewhat liberally in its psychological

sense, “a category of sensory perception” from Oxford English Dictionary [123]. For

the multimedia analysis in particular we are mainly concerned with the computer

sensories of vision, audition and text, although other modalities (such as touch,

gesture, handwriting or biometrics) can be incorporated in appropriate occasions.

2.2.1 Machine Perception

Mimicking or reproducing the human processing of multi sensory signals is the holy

grail of machine perception. On one hand it is natural to base our algorithm on

the understanding of human perception obtained by psychological and physiological
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studies, on the other under the currently incomplete picture of human perception

there are many useful algorithms that can approximate simple perceptual tasks.

Vision and audition The generation and perception of light and sound in

the environment share a similar trilogy in their life-cycles : the production of the

mechanical or electromagnetic waves, the interaction of the signal with the envi-

ronment, and the neurophysiological and psychological process of perception and

understanding. Hence it is natural to look at vision and audition side-by-side.

The first two processes of signal generation and transmission are studied in

acoustics and optics, the results of which have been very useful in graphics and sound

rendering to synthesize visual and aural experiences. The fact that satisfactory

synthesis is possible by implementing only a subset of the signal production and

transmission constraints is because of the compensation for impreciseness during

third process, human perception.

The studies in aural and visual perception [136, 129, 18] recognize similar princi-

ples such as constancy, perceptual grouping and hierarchical processing structures.

One useful model of vision is presented in Vision [78], one of the first viable theoret-

ical foundations for computational models of perception, where Marr mandates that

the analysis hierarchy in vision lies in three increasingly abstract layers: implemen-

tation, algorithm and computational theory. This is a purely bottom-up view that

our visual system works by building up progressively complex representations of the

visual world until a full world model is constructed in our heads. Although use-

ful, its correctness was later disputed psychologically and philosophically [108, 28],

nonetheless the idea of having world models at different but not necessarily inde-

pendent levels still stands on neurophysiological grounds measured by e.g. neural

response time [22].

Natural language processing and information extraction. The percep-
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tion of language differs from vision and audition in that text generation and con-

sumption does not involve a physical process. Furthermore the language represen-

tation is already symbolic, rather than numerical. Although generally regarded as

a more faithful representation of meanings, text still needs to go through a few

stages of processing [65] in order to better approximate the semantics. These stages

include: morphological (word-stemming), syntactical (part-of-speech tagging), se-

mantic (lexicon, word sense disambiguation) and pragmatic (discourse and dialogue

analysis). The goal of these processing steps are to summarize the content and

reveals the underlying intention of the speaker/writer that is not obvious from the

words.

Multi-modal fusion. We encounter the world as a multi-sensory experience,

the machine analysis of this experience should also be multi-modal. Multi-modal

phenomena have been investigated extensively in psychology and neuroscience, using

both behavioral studies and neuroimaging measurements of neuronal activities. In

behavioral studies the subjects are presented with the stimuli and are asked to

either describe their experience or answer related questionnaires. Examples of cross-

modal influence of the human percepts have been found in the literature, such as

the McGurk effect for audio-visual hearing where the overlay of an audible syllable

(“ba”) onto videotape of a speaker mouthing a different syllable (“ga”) would result

in a perception of “da” [79]. Neuroimaging studies builds upon the knowledge of

the functional division in the brain and measures the metabolic or electromagnetic

signals in the regions of interest. And these studies have found additional localized

brain activities during multi-modal or cross-modal tasks, such as audio-visual object

recognition [44] or silent lip-reading [23]. Studies also suggest that multimodal fusion

not only happens in both the early and the late stages of neural perception, but

also happens both in the bottom-up and the top-down fashion where the attention
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and context can influence what are being “perceived” [22]. While there is still a

large gap between the current understanding of the multi-modal neural systems

and the capability of our algorithms, there are useful references for computational

fusion strategies that we may draw from existing observations, such as a preference

for flexible computational architectures in the information fusion process over pure

early or late fusion only, or a uni-directional information flow.

2.2.2 Extracting multimedia features

Features (or descriptors) are “the measurements which represent the data” [83].

Features not only influence the choice of subsequent decision mechanisms, their

quality is also crucial to the performance of the learning system as a whole. Con-

siderable amounts of work have been, and are continuing to be put into extracting

good features from image sequences, audio clips and text documents.

We view features as either the bottom-up or the top-down type depending on

the absence or presence of infused semantics and domain knowledge. Distinguish-

ing features based on the knowledge they need emphasizes the general process of

information fusion regardless of the perceptual modality being addressed, while de-

emphasizing the distinction in each modality. Examples of the bottom-up type in-

clude generic color histogram, edge descriptor, spectral features and word frequency;

the top-down type include face detection score, audio types or named-entity extrac-

tion. Features in the former category rely on generic assumptions about perception,

and those in the latter use the infused knowledge in the forms of a training corpus

or additional domain assumptions. The bottom-up features are more generalizable

to different domains, while the top-down ones can better capture the saliency within

domains of interest. In the rest of this section we shall review a few features used

in the subsequent chapters.
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Common bottom-up features include:

• Color and texture descriptors. These descriptors can be categorized as global

or local depending on the range of spatial information used. Global color de-

scriptors captures the global distribution or statistics of colored pixels, such

as the color histogram [48], the distribution of pixels in quantized color space,

or the color moments [114], the moment statistics in each color channel. Lo-

cal descriptors contain information on a small region in the image, such as

directional filter responses at different scales [76], or the principal components

of the patch intensity values. Global descriptors are computationally efficient

and compact in their representation and invariant to scale changes, while lo-

cal descriptors can more accurately reflect object or region level information.

Texture features describe the rate of change in image intensity, and are usu-

ally captured by filter responses. Popular filters include Gabor filters [95]

and steerable filters [42]. The color correlogram [55] captures both color and

spatial variation by globally expressing how the spatial correlation of pairs of

colors changes with distance, and it has been shown to out-perform color his-

tograms alone in image retrieval tasks. These features have been effective in

texture or color image classification and retrieval [110, 126], object matching

and detection [40, 76] tasks under controlled conditions, and are being actively

used in state-of-the-art visual retrieval systems. For specialized domains, we

can achieve further reduction of dimensionality with content constraints. For

example, dominant color ratio ([33, 132], appendix C) computes the percent-

age of the most-frequent color in a frame, where the value and range of the

dominant color are learned by aggregating the global color histogram over a

long segment of video. This feature is useful for content domains constrained
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in their scene location which have only a limited number of distinct colors,

such as most types of sports.

• Motion features. Accurate estimation of true motion in the scene from one

single view is a hard problem [51], solutions are often hard to generalize and

computationally expensive. Various schemes have been proposed to gener-

ate fast approximations to the true motion field, such as a motion intensity

descriptor that computes the mean and variance of block-based translation

estimates [60], and a camera motion estimate from a least-squares fit to the

motion field ([119], appendix C).

• Audio features. Generic audio features [45] captures some aspects of the sound

generation or propagation process, and they have been very useful in speech

recognition [98] and general classification tasks [105]. These features can in-

clude: waveform features such as the zero-crossing rate (ZCR); energy features

such as volume or sub-band energy; spectral features such as spectral roll-off

and mel-frequency cepstral coefficients (MFCC) [56]; model-based features

such as the linear prediction coefficients (LPC) [98].

• Text features. The simplest feature from text documents shall be the unigram

or n-gram frequency, i.e., the counts for words and adjacent n-tuple of words,

usually after stemming [96] and stop-word removal [104]. Though simplistic,

the unigram is still widely used since it suffers less form the sparsity than the

higher-order statistics, and it does not propagate noise due to recognition and

parsing errors.

The top-down features, sometimes are also referred to as mid-level features.

The term mid-level is adopted to signal its difference with low-level perceptual
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quantities, and high-level semantics, e.g. green color and hairy texture versus grass

versus picnic in a park. The extraction of such features often requires some training,

either in the form of learning a model over a set of labeled data or specific domain

knowledge. Reliably extracting mid-level features has been an active topic both in

research explorations [130, 5, 127] and in common benchmarks [122]. The recent

progress on this end has enabled our use of multimedia concept detectors to infer

high-level semantics. Examples of visual detectors include [40, 5] face, car, vehicle,

people, sports, animal, flag and so on; audio detectors include [100] speech, music,

noise, male/female voice etc.; detectors on text document include named-entity

extraction [9]; multi-modal detectors include monologue [5]. If we were to set a

threshold for reliable detector performance at around 50% in order to be usable

by higher-level analysis algorithms, a number of the detectors such as face, car,

people, sports, or weather have good performances if sufficiently trained across

diverse datasets or in controlled domains.

While we choose not to focus on developing feature detectors in this thesis,

improvements in detector quantity and quality will certainly help high-level inference

tasks.

2.3 Unsupervised learning

The majority of research in pattern recognition techniques has been on learning

a decision function over a labeled corpus [36], however collecting such a corpus is

often expensive, and the simple abstraction of learning labels from independent

instances may not be adequate for complex data structures. Therefore learning

unobserved or partially observed labels from large quantities of data has been a topic

of much theoretical and practical interest. The solution to this problem is generally
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formulated as optimizing a model fitting criteria (likelihood, margin, distance, and

variants) over both the (partial) labels of the data and the model parameters.

The models we use in the next three chapters clearly belongs to the genera-

tive model category below. While this choice is based on the considerations of

its flexibility in handling complex dependencies and the computational efficiency,

we shall also briefly summarize two potential alternatives for unsupervised learn-

ing, namely, discriminative learners with close ties to support vector machines, and

spectral methods.

Generative mixture models [64]. Assuming that the data come from some

identifiable mixture distribution, and clusters under each mixture represent the un-

derlying labels. The Gaussian mixture model (GMM) and mixture of multinomials

are the simplest form of such models for continuous and discrete-valued observa-

tions, respectively, where k-means is a degenerative case of the GMM with isotropic

covariance and “hard” cluster assignment. The mixture models are learned via the

Expectation-Maximization (EM) algorithm [32] that iterates between the mixture

posterior estimation and update of the mixture parameters, and it converges to a

local maximum in the log-likelihood landscape. The mixture model is actually the

simplest graphical model by treating the unknown label of a data point as a hid-

den variable. A general graphical model is composed of more variables (hidden or

observed) and additional dependency constraints among them, and missing labels

or uncertainty in existing labels can be incorporated as additional hidden variables

into this process [72, 90]. The complexity of the inference of an i.i.d. M -mixture

models on N samples is O(MN), the complexity of exact inference on a more com-

plex model scales linearly with the number of examples N and exponentially with

respect to the clique size in the triangulated graph [64], i.e., the size of the mu-

tually “dependent” set of variables. This complexity can be significantly reduced
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with approximation algorithms or carefully designed structures. Graphical models

have found much practical use in many semi-supervised and unsupervised learning

tasks such as object recognition [130], models of human motion [112] and speech

recognition [99, 11].

Transductive support vector machines (SVM) [63] aim to simultaneously

find both a set of labels for the unlabeled data points and the maximum margin

linear separation in the labeled and unlabeled data. Intuitively, unlabeled data shall

guide the separation boundary to avoid densely populated regions, and maximum

margin reduces the generalization error bound. Finding the exact transductive SVM

is NP-hard, but approximation algorithms seem to work well in practice. The com-

plexity of training an SVM is dominated by solving the quadratic program, which

scales between linear and cubic of the sample size requiring quadratic memory, but

sequential optimization techniques [94] can reduce the memory requirement to O(N)

while reducing the time complexity from O(N3) up to O(N). For the purpose of mul-

timedia analysis, while SVMs are effective in separating labeled data and handling

high-dimensional observations [126], they require custom designs to incorporate de-

pendency within the data (e.g., specialized kernels [75]), the results are harder to

interpret, and they can incur a higher computational cost than generative models.

Graph cut [12, 89, 107] methods define graphs where the nodes are the labeled

and unlabeled examples and the edge weights represent the proximity among these

examples. The optimal partition of the data is the one that minimizes the edge

weights (or normalized weights) that cross the partition boundaries, and the solution

can be found with eigenvalue methods. This framework is flexible in that it handles

clusters of non-isotropic shapes, or clusters in a non-metric space. It also has an

intuitive connection between the data distribution and the labels. The complexity

involved is generally O(N3) in time and O(N2) in memory for solving the eigenvalue
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problem, and extra efforts are needed for scaling up the algorithm to more than

a few thousand samples. Random walk [118, 80] methods traverse the manifold

structure in the dataset with a Markov random walk. Its transition probabilities are

determined by the distances between examples, and this Markov transition matrix

is connected to the Laplacians of the graph in spectral clustering algorithms [27,

81]. The Markov random walk method is useful in exploiting non-isotropic cluster

structures, however it is difficult to scale up to high dimensions where the distances

are ill-defined.

2.4 Video content analysis: from syntax to semantics

The analysis of multimedia content, video streams in particular, can be categorized

into parsing the syntax and recognizing the semantics. The syntax and semantics of

multimedia content are analogous to their original definitions in linguistics. There,

syntax refers to the study of rules, or patterned relations that a (word) sequence is

formed, and semantics refers to the meanings, or relationships of meanings in the

sequence [82]. In multimedia, syntax includes the quantities, actions or operations,

or the relations of multiple such entities during the generation of the multimodal

signals or the capturing of multimedia sequence. Examples of syntactic elements

include a shot change, a camera zoom, loud music, a long pause, cue words, or the

co-presence and precedence of a few of these. Semantics are the abstract descriptions

of a scene or a multimedia sequence that are natural to a human comprehension and

often require context and knowledge to interpret. Examples include a story on the

progress of Hurricane Dennis, a home run, the cheering audience in a rock concert,

or sunset at a tropical beach.
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2.4.1 The syntactic gap and the semantic gap

Neither of the general tasks of syntactic parsing and semantic understanding are

solved problems. Smeulders et. al. [109] proposed the notions of “sensory gap”

and “semantic gap” under the image retrieval context. There, sensory gap refers to

the gap between the object in the world and the information in a (computational)

description derived from a recording of that scene, and semantic gap refers to the

lack of coincidence between the information that one can extract from the visual data

and the interpretation that the same data have for a user in a given situation.

In multimedia analysis, these definitions are generalized and extended. “Sensory

gap” readily generalizes to multiple modalities. In auditory, visual, text and tactile

senses, gaps exist in either or both of the following two stages (1) between the

physical existence of objects and the recording of this existence and (2) between

those recorded by the device and the computation descriptions that we can derive

from it.

In the interest of our problems, Smeulders’ notion of “semantic gap” can be

refined into two sub-categories. Let “syntactic gap” refer to the gap between the

computational description that one can extract from the multimedia data and the

interpretation with respect to its syntax. “Semantic gap”, in this narrower sense,

would be the the lack of coincidence between an aggregate of the computational

descriptions and the syntax, and the human interpretations of the content within

the context and knowledge assumed by the analysis system.

These refined notions of the sensor, syntactic and semantic gaps are the gaps

that the tasks of feature extraction techniques in subsection 2.2.2, syntax parsing

and semantic understanding face, respectively. And in practice the lines between

sensory and syntax, syntax and semantics, as well as the lines between their analysis
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are not always clean-cut.

In the rest of this section, we shall review examples of prior research on multime-

dia syntax parsing and semantic recognition, and then briefly discuss the position

of our work under this perspective.

2.4.2 Parsing multimedia syntax

Syntactic video analysis processes the feature streams in order to identify syntactical

elements, many of which can be unambiguously defined. Some of the syntactic

elements can currently be detected with high accuracy (e.g., shot changes [138],

text overlays [137], speaker turns [102]), while the reliable chracterization of many

others are still under active research (e.g. camera motion in a general scene [122]).

Take shot boundary detection, for example. A shot is defined as a continuous

camera take in both space and time. The detection algorithms can be either rule-

based schemes [139, 14, 138] analyzing the changes in the appearance features such

as color, edge, motion and map them to the shot transitions, or learning based

approaches [30, 97] that use supervised classification techniques to map feature

sequences to shot.

2.4.3 Understanding multimedia semantics

Semantic analysis tries to establish mappings from the descriptors and the syntac-

tical elements to the domain semantics. Though the full interpretation of semantics

will necessarily rely on knowledge and context, in many practical cases the meanings

in the media are identifiable within broad domain constraints.

Within the domain constraints, semantic multimedia analysis often tries to find

a many-to-one mapping from the feature descriptors to the target semantic concept.

Given the target concept, there are numerous ways to establish this mapping, such
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as automatically generating multiple exemplars by perturbing an initial description

from a query [24], or training belief networks [92, 87]. The approaches towards de-

tecting semantics can be generally categorized into rule-based and statistical meth-

ods. Take sports video analysis, for example, rule-based detection include mapping

edges, lines and motion patterns to corner kicks and shots on the goal [46], or map-

ping lines and player tracks to tennis rallies and passing shots [115]; statistical event

detection include detecting baseball highlights with audio analysis [103], or parsing

soccer videos into generic event categories [35, 132]. Note that there are multimedia

elements that are both syntactically functional and semantically meaningful, such

as video genre [128] and news story boundaries [15, 53].

2.4.4 Discussions

A fully-automatic understanding of the syntax and semantics in multimedia would

require a full AI (artificial intelligence) solution. Therefore practical approaches

towards semantics will necessarily be data-driven and task-dependent. This shall

involve a suitable definition of the domain semantics and their relations (i.e., an

ontology), together with good feature extraction techniques and model designs.

There are two apparent paths to realizing data-driven recognition systems. One

would be to start with a subset of a representative ontology and build a sufficient

training corpus, such as the one jointly undertaken by the LSCOM concept ontology

for broadcast news [49] and the TRECVID video retrieval benchmark [122]. The

other would be to start with few domain assumptions, try to learn the data syntax

without explicitly infusing semantics, and assume that the salient syntax would

closely resemble semantics under the domain constraints. Examples include text

topic detection and tracking (TDT) [121] and the work in this thesis.

Regardless of the path being taken, the goal of multimedia semantics understand-
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ing, and hence the interpretation and evaluation of results would at present remain

domain-specific, due to the diversity and multiple interpretations of meanings in

unconstrained scenarios.
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Chapter 3

Mining statistical temporal patterns

This chapter presents models for uni-modal temporal patterns as a basis for the

modeling of multimedia patterns. We would like to have a model that can represent

self-similar subsegments from long temporal streams, and that can easily generalize

to different domains.

In the sections that follow, we first examine different types of patterns found in

video in order to clarify our scope, assumptions and limitations. We then present the

hierarchical hidden Markov model for unsupervised pattern discovery, along with

a strategy that automatically adapts the model complexity to different domains.

We will also present an unsupervised feature selection scheme for grouping relevant

features into optimal subsets.

3.1 Patterns in video

Video patterns take many different forms. In a single video stream, temporal pat-

terns are sparse if they do not cover the entire time axis, such as dialogue scenes in

films [116]. They are considered dense if the entire video stream can be described

as an alternation of different pattern elements with no gaps in time, such as the
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state of the game in sports videos [132]. In addition, patterns can be determinis-

tic [117] or stochastic [131] depending on their appearance, temporal progression,

and the description scheme chosen. In multiple video streams, patterns can reside

across streams to represent the causal or co-occurrence relationship – for instance, in

multi-camera surveillance, an accident in location A will cause traffic jam in location

B within time T .

In this chapter, we focus on learning stochastic descriptions of dense patterns.

Being stochastic means that the models will try to describe the patterns probabilisti-

cally and allow for small deviations from the most-typical cases. Being dense means

modeling constituent structures with a common parametric class, and representing

their alternation would be sufficient for describing the whole data stream. In other

words, we will not need an explicit background class to fill in the “gaps” in between

the interesting events.

We now clarify a few assumptions before building a model for video patterns.

This is a joint classification and segmentation problem since the locations of the sub-

sequences are unknown a priori, making the sequence clustering algorithms [39, 111]

inapplicable. Compared to domains such as biological sequences or web sequences,

meaningful patterns or events in video have variable durations, they can start and

end at any time, and this rules out models that rely on a known pattern length [8, 72]

or those relying on a global system clock [58]. In order to find generic video patterns,

we would also like to accommodate video events of arbitrary temporal progression

without constraining the allowed transition beforehand, such as those suggested by

left-to-right models [29, 86, 8].
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3.2 Summary of our approaches

The arguably most widely-used model for event recognition in temporal sequences

has been the hidden Markov model (HMM) [99], which models a finite hidden state

sequence with a Markov assumption, and the observed signal as conditionally inde-

pendent given the state sequence. The Markov assumption is actually not as limiting

as it may seem, since an HMM with a large enough state-space can asymptotically

converge to the true distribution of the sequence regardless of the actual memory

length. HMMs created via supervised training have been successfully applied to

solve many problems such as speech recognition [99], human action recognition [57],

video genre recognition [128] or sports event analysis [132] as reviewed in chapter 2.

We extend the hidden Markov model to multiple levels for the unsupervised dis-

covery task. The intuition is to model the recurring events in video as HMMs, and

the higher-level transitions between these events as another level of Markov chain.

This hierarchy of HMMs forms a hierarchical hidden Markov model (HHMM). Com-

pared to a one-level HMM with the same number of states1, a HHMM introduces

additional transition structure and uses fewer parameters. We have developed effi-

cient methods based on the expectation-maximization (EM) [32] for inference and

parameter estimation. This algorithm scales linearly with respect to the sequence

length T , it is scalable to events of different complexity, and it is also flexible in that

prior domain knowledge can be incorporated in terms of state connectivity, number

of levels of Markov chains, and the time scale of each state.

We have also developed algorithms to address model selection and feature se-

lection problems in order for the pattern discovery scheme to generalize to different

domains. Bayesian learning techniques are used to learn the model complexity au-

1Here we compare the case when the number of states in the HMM equal to the total number
of bottom-level states in the HHMM.
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tomatically, where the search over model space is done with reverse-jump Markov

chain Monte Carlo, and the Bayesian Information Criteria (BIC) is used to evalu-

ate the fitness of the model. Moreover, a combined filter-wrapper method is used

for feature selection. The wrapper step partitions the feature pool into consistent

groups that are relevant with respect to each other according to the mutual infor-

mation criterion; the filter step eliminates redundant dimensions in each group by

finding an approximate Markov blanket; finally the resulting groups are ranked with

modified BIC with respect to their fitness. Our approach combines parameter es-

timation, model and feature selection, sequence labeling, and content segmentation

in a unified process. To the best of our knowledge, this is the first work to have

addressed all the above issues under the unsupervised scenario.

Evaluation on broadcast video data showed promising results. We tested the al-

gorithm on multiple sports videos, and evaluated our unsupervised approach against

the generic high-level structures of the game, namely, plays and breaks in soccer and

baseball. The unsupervised approach achieves comparable or even slightly higher

accuracy than our previous results using supervised classification with similar HMM

model structures. In addition, the average accuracy of the proposed HHMM with

generic topology is significantly better than prior work using unsupervised HMM

learning with constrained structures [29, 86]. The feature selection method auto-

matically finds a compact relevant feature set that matches the features manually

selected in prior work using domain knowledge. It is encouraging to see that the

hierarchical structure based on the HHMM not only provides more modeling power

than prior approaches, it has also been effective in discovering patterns without

supervision.
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Figure 3.1: Graphical HHMM representation at level d and d + 1: (A) Tree-
structured representation; (B) DBN representations, with observations Xt drawn
at the bottom. Uppercase letters denote the states as random variables in time t,
lowercase letters denote the state-space of HHMM, i.e., values these random vari-
ables can take in any time slice. Shaded nodes are auxiliary exit nodes that turn
on the transition at a higher level - a state at level d is not allowed to change unless
the exiting states in the levels below are on (Ed+1 = 1).

3.3 Hierarchical hidden Markov model

We design a multi-layer hierarchical hidden Markov model for structures in video.

Intuitively, the higher-level structure elements correspond to semantic events, while

the lower-level states represent variations that can occur within the same event. The

lower-level states produce the observations, i.e., measurements taken from the raw

video, with mixture-of-Gaussian or multinomial distributions. Note that the HHMM

model is a special case of Dynamic Bayesian Networks (DBN), also note that the

model can be easily extended to more than two levels. In the rest of this section we

will discuss algorithms for inference and parameter estimation for a general D-level

HHMM.

Hierarchical hidden Markov model was first introduced [41] as a natural gener-
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alization of HMM with a hierarchical control structure. As shown in Figure 3.2(A),

every higher-level state symbol controls a number of symbols produced by a HMM;

a transition at the high level is invoked only when the lower-level model enters an

exit state (shaded nodes in Figure 3.2(A)); observations are only produced at the

lowest level states.

This bottom-up structure is general, and it includes several other hierarchi-

cal schemes as special cases. One such special case uses the stacking of left-right

HMMs [29, 86] (see Figure 3.4), where across-level transitions can only happen at

the first or the last state of a lower-level model. Another special cases the discrete

counterpart of the jump Markov model [34] with a top-down (rather than bottom-

up) control structure, where the level-transition probabilities are identical for each

state that belongs to the same parent state.

Prior applications of HHMM can be found in three categories: (1) Supervised

learning where manually segmented training sequences are available. There, each

sub-HMM is learned separately on the segmented sub-sequences, and cross-level

transitions are learned using the transition statistics across the subsequences. Exam-

ples include extron/intron recognition in DNA strings [54] or action recognition [57]

from image sequences. (2) Unsupervised learning, where segmented data at any level

are not available for training, and parameters of different levels are jointly learned.

(3) A mixture of the above, where the state labels at the high level are given (with

or without sub-model boundary), yet parameters still need to be estimated across

several levels. This can be seen as a combination of (1) and (2). Examples in-

clude speech recognition systems that support word-level annotation [120] and text

parsing and handwriting recognition [41]. No general solutions for (2) are found in

the literature. Our work represents a unique approach for learning generic video

patterns with no supervision.
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3.3.1 Representing an HHMM

For notation convenience we introduce a single index for all multi-level state con-

figurations in the HMM. Denote the maximum state-space size of any sub-HMM

as Q, we use the bar notation (Equation 3.1) to write the entire configuration of a

hierarchical state from the top (level 1) to the dth level with a Q-ary d-digit integer,

with the lowest-level states at the least significant digit.

q(d) = (q1q2 . . . qd) =
d∑

i=1

qi ·Qd−i (3.1)

Here 0 ≤ qi ≤ Q−1; i = 1, . . . , d, and we drop the superscript for q when there is no

confusion. Take a two-level HHMM with two top-level states and three sub-states

each, for example, the second state in the second model would have q = 4.

We represent the whole parameter set Θ of an HHMM as: (1) Emission parame-

ters B that specifies the distribution of observations given the state configuration.

i.e., the means µq and covariances σq when emission distributions are Gaussian. (2)

Markov chain parameters λd in level d indexed by their parent state configuration

q(d−1). λd in turn include: (2a) Within-level transition probability matrix Ad
q , where

Ad
q(i, j) is the probability of making a transition to sub-state j from sub-state i,

and i, j are dth-level state indexes having the same parent state q(d−1). (2b) Prior

probability vector πd
q , i.e., the probability of starting in a child state upon “entering”

q. (2c) Exiting probability vector ed
q , i.e., the probability “exiting” the parent state

q from any of its children states. All elements of the HHMM parameters are then

written as in Equation 3.2. For notation convenience and without loss of generality

we assume that there is only one state at the very top level and thus there is no
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need to define the transition probabilities there.

Θ = (
D⋃

d=2

{λd})
⋃
{B}

= (
D⋃

d=2

Qd−1−1⋃
i=0

{Ad
i , π

d
i , e

d
i })

⋃
(

QD−1⋃
i=0

{µi, σi}) (3.2)

3.3.2 Overview of HHMM inference and estimation

The graphical structure of HHMM in Figure 3.2(b) can be factored into a generalized

chain structure without loops, thus we implement the model inference using the EM

algorithm.

The estimation step evaluates the expectation of complete-data log-likelihood

based on the current parameter set Θ, and the estimation step finds a set of new

values Θ̂ that maximizes this expectation. Given the observation sequence x1:T we

compute the posterior probabilities of the D-level hidden state sequence q1:T using

a generalized forward-backward algorithm.

We write the expectation of the complete-data log-likelihood Ω(Θ̂, Θ) in Equa-

tion 3.3, iteratively maximizing its expected value leads to the maximization of the

data likelihood L = P (x1:T |Θ̂). The generalized chain structure of the HHMM al-

lows a factorization of this expectation into a sum-of-unknowns form, we can then

maximize each model parameter separately.

Ω(Θ̂, Θ) = E[ log(P (q1:T , x1:T |Θ̂)) | x1:T , Θ ] (3.3)

= L−1
∑
q1:T

P (q1:T , x1:T |Θ) log(P (q1:T , x1:T |Θ̂)) (3.4)

The E step and M- step of the algorithms are detailed in appendix A. Note each

iteration of this algorithm runs in linear time, or more specifically, O(DT ·Q2D).
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3.4 Model adaptation

Parameter learning for HHMM using EM is known to converge to a local maxima of

the data likelihood since EM is a hill-climbing algorithm, and it is also known that

searching for a global maxima in the likelihood landscape is intractable. Moreover,

this optimization for data likelihood is only carried out over a predefined model

structure, and in order to enable the comparison and search over a set of model

structures, we will need not only a new optimality criteria, but also an alternative

search strategy, since exhausting all model topologies is obviously intractable.

In this work, we adopt randomized search strategies to address the intractability

problem on the parameter and model structure space; and the optimality criteria is

generalized to incorporate Bayesian prior belief on the model structure. Specifically,

we use Markov chain Monte Carlo(MCMC) method to maximize the Bayesian in-

formation criteria (BIC) [106]. The motivation and basic structure of this algorithm

are presented in the following subsections.

We are aware that alternatives for structure learning exist, such as the deter-

ministic parameter trimming algorithm with entropy prior [17], which ensures the

monotonic increase of model priors throughout the trimming process. However, we

would have to start with a sufficiently large model in order to apply this trimming

algorithm, which is undesirable for computational complexity purposes and also

impossible if we do not know a bound of the model complexity beforehand.

3.4.1 An overview of MCMC

MCMC is a class of algorithms that can solve high-dimensional optimization prob-

lems, and there has been much recent success in using this technique to solve the

problem of Bayesian learning of statistical models [7]. In general, MCMC for
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Figure 3.2: Visualization of the MCMC stochastic search strategy for model selec-
tion.

Bayesian learning iterates between two steps: (1)The proposal step gives a new

model sampled from certain proposal distributions, which depends on the current

model and statistics of the data; (2)The decision step computes an acceptance prob-

ability α based on the fitness of the proposed new model using model posterior and

proposal strategies, and then this proposal is accepted or rejected with probability

α.

MCMC will converge to the global optimum in probability if benign constraints [7]

are satisfied for the proposal distributions, yet the speed of convergence largely de-

pends on the goodness of the proposals. In addition to parameters learning, model

selection can also be addressed in the same framework with reverse-jump MCMC

(RJ-MCMC) [47], by constructing reversible moves between parameter spaces of

different dimensions. In particular, Andrieu et. al. [6] applied RJ-MCMC to the
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learning of radial basis function (RBF) neural networks by introducing birth-death

and split-merge moves to the RBF kernels. This is similar to our case of learning

a variable number of Gaussians as the emission probabilities by models of different

sizes.

In this work, we use EM for model parameter update and MCMC for model

structure learning. We choose this hybrid strategy in place of a full Monte Carlo

update of the parameter set and the model for efficiency, and the convergence be-

havior does not seem to suffer in practice.

3.4.2 MCMC for HHMM

Model adaptation for HHMM involves moves similar to [7] for changes in the state

space that involve changing the number of Gaussian kernels that associate states in

the lowest level with observations. We included four general types of movement in

the state-space, as can be illustrated from the tree-structured representation of the

HHMM in Figure 3.2(a): (1)EM, regular parameter update without changing the

state space size. (2)Split(d), to split a state at level d. This is done by randomly

partitioning the direct children (when there are more than one) of a state at level

d into two sets, assigning one set to its original parent, the other set to a newly

generated parent state at level d; when split happens at the lowest level(i.e. d = D),

we split the Gaussian kernel of the original observation probabilities by perturbing

the mean. (3) Merge(d), to merge two states at level d into one, by collapsing their

children into one set and decreasing the number of nodes at level d by one. (4)

Swap(d), to swap the parents of two states at level d, whose parent nodes at level

d − 1 was not originally the same. This specific new move is needed for HHMM,

since even if two HHMMs have the same size in the state-space, the exact multi-level

structure can still be different. Note we are not including birth/death moves, since
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these moves can be reached with a few steps of split/merge.

Model adaptation for HHMMs is carried out as follows:

1. Initialize a HHMM model Θ0 of given size from data, as described in appen-

dix A.

2. At iteration i, based on the current model Θi, compute a probability profile

PΘi
= [pem, psp(1 : D), pme(1 : D), psw(1 : D)] according to equations (6.27)-

(6.30), and then propose a move among the types {EM, Split(d), Merge(d),

Swap(d)|d = 1, . . . , D}

3. Update the model structure and the parameter set by appropriate operations

on selected states and their children states as described in appendix B, and

then perform a few iterations of EM if the state-space has been changed;

4. Evaluate the acceptance ratio ri for different types of moves according to

equations (6.37)–(6.36) in the appendix. This ratio takes into account the

model posterior computed with BIC (equation 3.5), and alignment terms that

compensate for the fact that the model spaces before and after each move

may have unequal sizes. Let the acceptance probability of this move be αi =

min{1, ri}, we then sample u ∼ U(0, 1), and we accept this move if u ≤ αi,

stay to the previous configuration otherwise.

5. Stop if the BIC criteria does not change in a few consecutive iterations, oth-

erwise goto step 2.

BIC [106] is a measure of a posteriori model fitness, it is the major factor that

determines whether or not a proposed move is accepted. Intuitively, BIC trades off

data likelihood P (X|Θ), the model complexity |Θ| and the amount of data available
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log(T ), T being the sequence length, with weighting factor λ. Larger models are

penalized by the number of free parameters in the model |Θ|. We empirically choose

the weighting factor λ as 1/16 in our experiments, in order for the change in data

likelihood and that in model prior to be numerically comparable over one iteration.

We have also observed that the resulting model size is not sensitive to the value of

λ. Note that we can also consider λ as a representation of the inherent complexity

of the model class, hence information-geometric schemes [85, 4] for choosing λ are

also possible.

BIC = log(P (x|Θ))− λ · 1

2
|Θ| log(T ) (3.5)

3.5 Feature selection for unsupervised learning

Feature extraction methods for audio-visual streams abound, as a result we are

usually left with a large pool of diverse features without knowing which ones are ac-

tually relevant to the important events and structures in the data sequences. A few

features can be selected manually if adequate domain knowledge exists. Yet very

often such knowledge is not available in new domains, or the connection between

high-level structures and low-level features is not obvious. In general, the task of

feature selection is divided into two aspects - eliminating irrelevant features and

redundant ones. Irrelevant features usually disturb the classifier and degrade classi-

fication accuracy, while redundant features add to the computational cost without

bringing in new information. Furthermore, for unsupervised structure discovery, dif-

ferent subsets of features may relate to different events, and thus the events should

be described with separate models rather than being modeled jointly.

The scope of our problem is to select relevant and compact feature subset that

fits the observations well in unsupervised learning over data with dependency under
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the HHMM model assumption. There has been prior research in feature selection

for supervised learning where features can be either turned “on” or “off” [70], or

weighted linearly [69, 13]. For unsupervised learning, Xing and Jordan [133] has ex-

tended Koller and Shahami’s algorithm [70] and presented a feature selection scheme

over i.i.d samples. In this work we address the feature selection problem under the

binary (“on-off”) scenario for unsupervised learning over temporal streams, which

to the best of our knowledge has not been explored.

3.5.1 The feature selection algorithm

Denote the feature pool as F = {f1, . . . , fn}, the data sequence as XF = X1:T
F , then

the feature vector at time t is X t
F . The feature selection algorithm proceeds goes

through two stages, as shown in Figure 3.3.

W rapper

(mutual info.)

Filter
(markov blanket)

Original Feature Pool Relevant Subsets Ranked subsets with

redundancy eliminated

1

2

3

Figure 3.3: Feature selection algorithm overview

The first stage partitions the original feature pool according to their relative

relevance, and thus grouping mutually relevant features in to the same subset. The

feature relevance is measured by mutual information (a.k.a. information gain), and

the measurement is taken over the maximum-likelihood state sequence rather than

the original feature stream, thus avoiding explicitly addressing the correlation in

the temporal data stream. This is called a wrapper stage as the parameter learning

for the model (to obtain the state sequence) is carried out as an inner loop in the
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process of partitioning of the feature pool. After the pair-wise mutual information is

obtained, we can use any clustering to partition F into NF subsets. Detailed steps

for computing the mutual information is covered in subsection 3.5.2.

The second stage eliminates the redundancy within each relevant subset gener-

ated in the previous stage. This is done by identifying features that do not con-

tribute to the maximum-likelihood labeling of the sequence, and this is put formally

as finding the Markov blanket for the redundant features [70], as detailed in subsec-

tion 3.5.3.

After the feature-model combinations are generated automatically, a human op-

erator can look at the structures marked by these models, and then come to a deci-

sion on whether a feature-model combination shall be kept based on the meaningful-

ness of the resulting structures. Alternatively we can use the modified BIC criteria

taking into account not only the data likelihood, the model complexity, but also the

feature representation, covered in subsection 3.5.4.

3.5.2 Evaluating the information gain

Information gain, or mutual information [31], is one suitable measure to quantify

the the degree of agreement between different (subsets of) features.

A model Θf learned over a feature set f generates a labeling of the original se-

quence xf , i.e., the maximum-likelihood hidden state sequence q1:T
f . When there are

at most Q possible labels, we denote the label sequence as integers qt
f ∈ {1, . . . , Q}.

We compute the probability of each label using its empirical portion, i.e. counting

the samples that bear label i over time t = 1, . . . , T (Equation 3.6). Compute sim-

ilarly the conditional probability of the labels qf given the partition qe induced by

another feature subset e (Equation 3.7) by counting over pairs of labels over time

t. Then the information gain between feature subsets f and e is computed as the
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mutual information between qf and qe (Equation 3.8).

Pqf
(i) =

#{t | qt
f = i, t = 1, . . . , T}

T
; (3.6)

Pqe|qf
(i | j) =

#{t | (qt
e, q

t
f ) = (i, j), t = 1, . . . , T}

#{t | qt
f = j, t = 1, . . . , T}| ; (3.7)

I(qf ; qe) = H(Pqe)−
∑

j

Pqf
·H(Pqe|qf=j) (3.8)

where i, j = 1, . . . , N

Here H(·) is the entropy function H(p) = E(− log p) where E(·) is the expec-

tation function. Intuitively, a larger information gain suggests that the partition

qf closer to qe, i.e. feature subsets f and e are more relevant to each other. After

computing the information gain I(qf ; qe) for each feature pair e and f , we use a

clustering algorithm to compute a clustering for the feature pool using I as the

similarity matrix, and partition them into NF subsets. Popular clustering algo-

rithms can include agglomerative clustering using a dendrogram [59], K-means [36],

or spectral clustering [89].

Note that if the mutual information were to be directly evaluated on the original

feature streams we would have to estimate the joint probability of the entire se-

quence P (x1:T
f ), this would quickly become intractable and no reliable estimate can

be obtained with a reasonable number of sequences. In this work we measure mutual

information on the labeling of the stream instead, thus take into account the feature

stream temporal correlation in the HHMM state labeling process, while making re-

liable estimates. Recent development in machine learning have proposed to directly

compute distances between models to define kernels in the model space [61], such

approach is also potentially applicable here.
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3.5.3 Finding a Markov Blanket

After partitioning the original feature pool with the information gain criteria, we

are left with a subset of features with consistency yet possible redundancy. The

approach for identifying redundant features naturally relates to the conditional de-

pendencies among the features. For this purpose, we need the notion of a Markov

blanket [70].

Definition Let f be a feature subset, Mf be a set of features that does not contain

f , we say Mf is the Markov blanket of f , if f is conditionally independent of all

variables in {F ∪ C} \ {Mf ∪ f} given Mf .

Computationally, a feature f is redundant if the partition q of the data set is

independent to f given its Markov Blanket Mf . In prior work [70, 133], the Markov

blanket is identified with the equivalent condition that the posterior probability

distribution of the class given the feature set {Mf ∪ f} should be the same as that

conditioned on the Markov blanket Mf only. i.e.,

∆f = D( P (q|Mf ∪ f) || P (q|Mf ) ) = 0 (3.9)

where D(P ||Q) = ΣxP (x) log(P (x)/Q(x)) is the Kullback-Leibler distance [31] be-

tween two probability mass functions P (·) and Q(·).
For unsupervised learning over a temporal stream, however, this criteria cannot

be readily employed. This is because (1) The posterior distribution of the labels

depends not only on the current observed features but also on adjacent samples.

(2) We would have to condition the state label posterior over all dependent feature

samples, and such conditioning quickly makes the estimation of the posterior in-

tractable as the number of conditioned samples grows. (3) We will not have enough
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data to estimate these high-dimensional distributions by counting over feature-class

tuples since the dimensionality is high. We therefore use an alternative necessary

condition that the optimum state-sequence q1:T should not change conditioned on

observing Mf ∪ f or Mf only.

Koller and Sahami [70] have also proved that sequentially removing feature one at

a time with its Markov blanket identified will not cause divergence of the resulting

set, since if we eliminate feature f and keep its Markov blanket Mf , f remains

unnecessary in later stages when more features are eliminated. In addition, as few if

any features will have a Markov Blanket of limited size in practice, we sequentially

remove features that induces the least change in the state sequence given the change

is small enough (< 2%). Note this is a filtering step in our HHMM learning setting,

since we do not need to retrain the HHMMs for each candidate feature f and its

Markov blanket Mf . Given the HHMM trained over the set f ∪ Mf , the state

sequence qMf
decoded with the observation sequences in Mf only, is compared with

the state sequence qf∪Mf
decoded using the whole observation sequence in f ∪Mf .

If the difference between qMf
and qf∪Mf

is small enough, then f is removed since

Mf is found to be a Markov blanket of f .

3.5.4 Ranking the feature subsets

Iterating over the procedures in subsection 3.5.2 and subsection 3.5.3 results in

disjoint subsets of features {Fi, i = 1, . . . , NF} that are non-redundant and relevant.

It will still be desirable to be able to compare the different HHMMs learned over

these different subsets, since this would filter out the subsets that may be obviously

unfit for the model assumptions in HHMM, and provide a reference for a human

operator to look at the pool of models.

Existing criteria for comparing clustering algorithms [38] include scatter separa-
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bility and maximum likelihood (ML). Note the former is not suitable to temporal

data since multi-dimensional Euclidean distance does not take into account tem-

poral dependency, and it is non-trivial to define another proper distance measure

for temporal data; while the latter is also known [38] to be biased against higher-

dimensional feature sets. Here we use a normalized BIC criteria (Equation 3.10) to

quantify the trade-off between normalized data likelihood L̃ with model complexity

|Θ| and feature dimension. Note the model complexity term is modulated by the

total number of samples log(T ); and L̃ for HHMM is computed in the same forward-

backward iterations, except all the emission probabilities P (x|q) are replaced with

P ′
x,q = P (x|q)1/n, i.e., normalized with respect to data dimension n, under the

naive-Bayes assumption that features are independent given the hidden states.

B̃IC = L̃− λ

2
|Θ| log(T ) (3.10)

3.6 Experiments and Results

In this section, we report tests of the proposed methods in automatically finding

salient events, learning model structures, and identifying informative feature set in

soccer and baseball videos.

Sports videos represent an interesting domain for testing the proposed techniques

in automatic structure discovery. Two main factors contribute to this match between

the video domain and the statistical technique: the distinct set of semantics in one

sport domain exhibit strong correlations with audio-visual features and the well-

established rules of games and production syntax in sports video programs poses

strong temporal transition constraints. For example, in soccer videos, plays and

breaks are recurrent events covering the entire time axis of the video data. In
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baseball videos, the different events and their transitions, such as pitching, batting,

and running, indicate the semantic state of the game.

Clip Name Sport Length Resolution Frame rate (f/s) Source
Korea Soccer 25’00” 320× 240 29.97 MPEG-7
Spain Soccer 15’00” 352× 288 25 MPEG-7

NY-AZ Baseball 32’15” 320× 240 29.97 TV program

Table 3.1: Sports video clips used in the experiment.

All our test videos are in MPEG-1 format, their profiles are listed in Table 3.1.

For soccer videos, we have compared with our previous work using supervised meth-

ods (scheme 1 below and [132]). The evaluation basis for the structure discovery

algorithms are two semantic events play and break, defined according to the rules

of soccer game. These two events are dense since they cover the whole time scale of

the video. Distinguishing break from play will be useful for efficient browsing and

summarization, since break takes up about 40% of the screen time. Viewers may

browse through the game play by play, skipping all the breaks in between, or ran-

domly access the break segments to find player responses or game announcements.

For baseball videos, the model was learned without any labeled ground truth or

manually identified features a priori. A human observer (the author) reports ob-

servations on the automatically selected feature sets and the resulting structures

afterwards. This is analogous to the actual application of structure discovery to an

unknown domain, where evaluation and interpretation of the result is done after

automatic discovery algorithms are applied.

It is difficult to define general evaluation criteria for automatic structure dis-

covery results that are applicable across different domains, this is especially true

when only domain-specific semantic events are of interest. This difficulty lies in

the gap between computational optimization and semantic meanings: the results of
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unsupervised learning are optimized with measures of statistical fitness, yet the link

from statistical fitness to semantics needs a match between general domain char-

acteristics and the computational assumptions imposed in the model. Despite the

difficulty, our results have shown success for constrained domains such as sports.

This is encouraging since models built over statistically optimized feature sets have

good correspondence with semantic events in the selected domain.

3.6.1 Parameter and structure learning

We first test the automatic model learning algorithms with a fixed feature set man-

ually selected based on heuristics. The selected features, dominant color ratio and

motion intensity, have been found effective in detecting soccer events in our prior

works [134, 131]. Such features are uniformly sampled from the video stream every

0.1 second. We compare the performance of the following learning schemes against

the ground truth.

1. HMM: (a) with supervised training as developed in our prior work in [132].

One HMM per semantic event (i.e., play and break) is trained on manually

labeled segments. For test video data with unknown event boundaries, the

data likelihood of each 3-second segment is evaluated with each of the trained

HMMs. The final event boundaries are refined with a dynamic programming

step taking into account the model likelihoods and the transition likelihoods

between every 3-second segments in the training set. (b) unsupervised. Learn

a HMM with Q states, with the value of Q taken as the total number of bottom

level states automatically learned with model adaptation in scheme 4.

2. Supervised HHMM: Individual HMMs at the bottom level of the hierarchy are

learned separately, essentially using the models trained in scheme 1; the level-
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exiting and top level transition statistics are also obtained from segmented

data; then, segmentation is obtained by decoding the Viterbi path from the

hierarchical model on the entire video stream.

3. Unsupervised HHMM without model adaptation: An HHMM is initialized

with a fixed size of state-space as learned in scheme 4; the EM algorithm is

used to learn the model parameters; and segmentation is obtained from the

Viterbi path of the final model.

4. Unsupervised HHMM with model adaptation: An HHMM is initialized with

arbitrary size of state-space and random parameters; the EM and RJ-MCMC

algorithms are used to learn the size and parameters of the model; state se-

quence is obtained from the converged model with optimal size. Here we

will report results separately for (a) model adaptation in the lowest level of

HHMM only, and (b) full model adaptation across different levels as described

in section 3.4.

5. K-Means clustering.

For supervised schemes 1 and 2, K-means clustering and Gaussian mixture fitting

is used to randomly initialize the HMMs. For unsupervised schemes 3 and 4 (as well

as all HHMM learning schemes with feature selection in subsection 3.6.2), the initial

emission probabilities of the initial bottom-level HMMs are obtained with K-means

and Gaussian fitting. We then estimate the one-level transitions probabilities by

counting over the MAP Gaussian labels, the multi-level Markov chain parameters

are factored from this flat transition matrix using a dynamic programming technique

that groups the states into different levels by maximizing the number of bottom-level

transitions, while minimizing top-level transitions among the Gaussians.
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For schemes 1-3, the model size is set to six bottom-level states per event, iden-

tical to the optimal model size automatically learned by scheme 4a. We run each

algorithm for 15 times with random start and compute the per-sample accuracy

against manual labels. The median and semi-interquartile (SIQ) range 2 of event

detection accuracy across five rounds are listed in Table 3.2.

Learning Supervised? Model Adaptation? Accuracy
Scheme type Bottom-level High-levels Median SIQ2

(1a) Y HMM N N 75.5% 1.8%
(1b) N HMM N N 75.2% 0.8%
(2) Y HHMM N N 75.0% 2.0%
(3) N HHMM N N 75.0% 1.2%
(4a) N HHMM N Y 75.7% 1.1%
(4b) N HHMM Y Y 75.2% 1.3%
(5) N K-means N N 64.0% 10%

Table 3.2: Evaluation of learning schemes (1)-(4) against ground truth on clip Korea

Results show that the performance of the unsupervised models are comparable

to those of the supervised learning, and sometimes it achieved even slightly better

accuracy than the supervised learning counterpart. This is quite surprising since the

unsupervised learning of HHMMs is not tuned to the particular ground-truth. The

results maintain a consistent accuracy, as indicated by the low semi-interquartile

range. Also note the comparison basis using supervised learning is actually con-

servative since (1) unlike prior supervised results [132], the HMMs are learned and

evaluated on the same video clip and results reported for schemes 1 and 2 are actu-

ally training accuracies; (2) the models without structure adaptation are assigned

the a posteriori optimal model size that are actually discovered by the unsupervised

approach.

2Semi-interquartile as a measure of the spread of the data, is defined as half of the distance
between the 75th and 25th percentile, it is more robust to outliers than the standard deviation.
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For the HHMM with full model adaptation (scheme 4b), the algorithm converges

to two to four high-level states, and the evaluation is done by assigning each resulting

cluster to the majority ground-truth label in the cluster. We have observed that the

resulting accuracy is still in the same range without knowing how many interesting

structures there are to start with. The reason for this performance match lies

in the fact that the additional high level structures are actually a sub-cluster of

play or break, they are generally of three to five states each, and two sub-clusters

correspond to one larger event of play or break (refer to a three-cluster example in

subsection 3.6.2).

3.6.2 With feature selection

On top of the model parameter and structure learning algorithm, we test the per-

formance of the automatic feature selection method (section 3.5). We use the two

test clips, Korea and Spain as profiled in table 3.1. A nine-dimensional feature

vector sampled at every 0.1 seconds are taken as the initial feature pool, details for

extracting these features are found in appendix C:

Dominant Color Ratio (DCR), Motion Intensity (MI), the least-square es-

timates of camera translation (Mx, My), and five audio features - Volume,

Spectral roll-off (SR), Low-band energy (LE), High-band energy (HE), and

Zero-crossing rate (ZCR).

We run the feature selection method with the model learning algorithm on each

video stream for five times, with one or two-dimensional feature set as the as initial

reference set in each iteration. After eliminating degenerate cases that only consist

of one feature in the resulting set, we evaluate the feature-model pair that has the

largest Normalized BIC value as described in section 3.5.4. In our experiments,
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other feature-model pairs are mostly low-level audio features. They may represent

alternative meanings in the video, while we do not possess relevant ground truth to

evaluate them, we have observed that the other labels has a rate of change much

higher than the highest-ranking feature subsets, and hence would not represent to

play-break.

For clip Spain, the selected feature set is {DCR, Volume} The model converges

to two high-level states in the HHMM, each with five lower-level children states.

Evaluation against the play/break labels shows a 74.8% accuracy. For clip Korea,

the final selected feature set is {DCR, Mx}, with three high-level states and {7, 3,

4} children states respectively. If we assign each of the three clusters to the semantic

event with a majority rule (which would be {play, break, break} respectively), per-

sample accuracy would be 74.5%. The automatic selection of DCR and Mx as the

most relevant features actually confirm the two features DCR and MI, manually

chosen in our prior work [132]. Mx is a feature that approximates the horizontal

camera panning motion, the most dominant factor contributing to the overall motion

intensity (MI) in soccer videos. Horizontal panning is also the most popular camera

movements used to track the ball in a soccer field, this motion cue is intuitively

useful for following the overall game status [134].

The accuracies are comparable to their counterpart (scheme 4) in section 3.6.1

without varying the feature set (75%). Yet the small discrepancy may due to (1)

Variability in RJ-MCMC (section 3.4), for which convergence diagnostic is still an

active area of research [7]; (2)Possible inherent bias may exist in the normalized

BIC criteria (equation 3.10) where we have used the same weighting factor λ for

models of different state-space size or different parameters. While it did not take

into account the inherent complexity of the parametric class [85], the discrepancy is

empirically small and did not affect our results significantly.
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3.6.3 Testing on a different domain

We have also conducted a preliminary study on the baseball video clip described in

table 3.1. The same 9-dimensional features pool as in section 3.6.2 are extracted

from the stream also at 0.1 second per sample. The learning of models is carried

out without having labeled ground truth or manually identified features a priori.

Observations are made based on the selected feature sets and the resulting structures

of the test results. This is a standard process of applying structure discovery to an

unknown domain, where automatic algorithms serve as a pre-filtering step, and

evaluation and interpretation of the result can only be done afterwards.

HHMM learning with full model adaptation and feature selection is conducted,

resulting in three consistent compact feature groups: (a) HE, SR, ZCR; (b) DCR,

MX; (c) Volume, LE. It is interesting to see audio features falls into two separate

groups, and the visual features are also in a individual group.

The BIC score for the second group, dominant color ratio and horizontal camera

pan, is significantly higher than that of the other two. The HHMM model in (b) has

two higher-level states, each has six and seven children states at the bottom level,

respectively. Moreover, the resulting segments from the model learned with this

feature set correspond to interesting semantic events, with one cluster of segments

mostly corresponding to pitching shots and other field shots when the game is in

play, while the other cluster contains most of the cutaways shots, score boards and

game breaks, respectively. Evaluation against play and break in baseball showed an

accuracy of 82.3%. It is not surprising that this result agrees with the intuition that

the status of a game can mainly be efficiently inferred from visual information.
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(a) HHMM with left-right transition constraint
 (b) Fully-connected HHMM


Figure 3.4: Comparison with HHMM with left-to-right transition constraints. Only
3 bottom-level states are drawn for the readability of this graph, models with 6-state
sub-HMMs are simulated in the experiments.

3.6.4 Comparing to HHMM with simplifying constraints

In order to investigate the expressiveness of the multi-level model structure, we

compare unsupervised structure discovery performances of the HHMM with a similar

model with constrains in the transitions each node can make [29, 86].

The two model topologies being simulated are visualized in Figure 3.4:

(a) The simplified HHMM where each bottom-level sub-HMM is a left-to-right

model with skips, and cross level entering/exiting can only happen at the

first/last node, respectively. Note the right-most states serving as the single

exit point from the bottom level eliminates the need for a special exiting state.

(b) The fully connected general 2-level HHMM model used in scheme 3, sec-

tion 3.6.1, a special case of the HHMM in Figure 3.2). Note the dummy exiting

cannot be omitted in this case.

Topology (a) is of interest because the left-to-right and single entry/exit point

constraints allows the use of learning algorithms for regular HMMs by collapsing

this model and setting hard constraints (zeros) on the transition probability. The
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collapsing can be done because unlike the general HHMM, there is no ambiguity

in whether or not a cross-level has happened in the original model given the last

state and the current state in the collapsed model. Equivalently, the flattened HMM

transition matrix can be uniquely factored back to recover the multi-level transition

structure. Note the trade-off here for model generality is that parameter estima-

tion of the collapsed HMMs is of complexity O(T |Q|2D), while HHMMs will need

O(DT |Q|2D), as analyzed in section A.6. With the total number of levels D typi-

cally a fixed small constant, this difference is not significant and does not prevent

the application of HHMM to long sequences.

Topology (a) also contains models in two prior work as special cases: [29] uses a

left-to-right model without skip, and single entry/exit states; [86] uses a left-to-right

model without skip, single entry/exit states with one single high-level state, i.e. the

probability of going to each sub-HMM is independent of which sub-HMM the model

just came from, thus eliminating one more parameter than [29]. Both of the prior

cases are learned with standard HMM learning algorithms.

Both models in Figure 3.4 are tested and compared on the soccer video clip

Korea. It performs parameter estimation with a fixed model structure of six states

at the bottom level and two states at the top level, over the pre-defined features set

of DCR and MI (subsection 3.6.1). Results obtained over 5 runs of both algorithms

showed that the average accuracy of the constrained model (Figure 3.4(a)) is 2.3%

lower than that of the fully connected model (Figure 3.4(b)).

This result demonstrates that adopting a fully connected model with multi-level

control structures indeed brings in extra modeling power for the chosen domain of

soccer videos.
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Figure 3.5: HHMM model visualization with feature distributions and video story
board.

3.7 Visualizing and interpreting multimedia patterns

The HHMM models, once learned, can be used not only to label the videos and as

a navigation aid for exploring and revealing the structure in the videos.

Figure 3.5 shows an example visualization interface for video navigation using

the model. The HHMM state-space is visualized as a two-level tree structure on the

top left panel; the feature emission probabilities associated with the bottom-level

states are shown on the bottom-left panel; frames from the video are shown on the

right. The emission probabilities and video keyframes are color-coded according to

their state labels. The nodes in the HHMM model, the feature distributions, and

the corresponding video segments are hyperlinked in the data structure so that we

can query a state or a transition in the model to browse the key frames associated

with the state label, we can also query a keyframe to browse and play back the
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actual video segment.

From the baseball video in Figure 3.5 for example, we noticed that state 1-1 has a

compact distribution in the feature space (medium value in grass color percentage,

low value in global motion) and is only connected to state 1-4 through temporal

transition. When mapped into the video keyframes and segments, we can see that

state 1-1 corresponds to preparation of the pitchings with high accuracy, and the

subsequent state 1-4 labels correspond to the actual pitching that are of higher

motion and similar color layout.

In this example, HHMM (or similar generative models) not only serves as a

clustering, browsing and indexing engine, but also provide an intuitive explanation

of the data. Such unsupervised approach to finding patterns embedded in video

sequences is very useful in defining domain-specific events, which can then be used

to guide the development of supervised solutions for event detection.

3.8 Chapter summary

In this chapter, we presented the problem of unsupervised pattern discovery in

temporal sequences. We used hierarchical hidden Markov model for unsupervised

learning of patterns in videos. We have devised a strategy to automatically adapt the

model complexity to different domains, as well as an unsupervised feature selection

scheme for grouping relevant features into optimal subsets. Our approach has shown

comparable performance with its supervised counterparts on various sport videos,

we have also shown an visualization interface that visualizes the learned models and

explains the patterns discovered.
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Chapter 4

Assessing the meanings of audio-visual patterns

In this chapter we look at the problem of automatically finding the meanings of the

discovered audio-visual patterns. This problem of interpreting and accessing the

quality of the results arises in many unsupervised discovery tasks, yet the perspec-

tive of having meaningful patterns is specific to multimedia. This is because the

consumption of media content by humans is leading not to statistics or abstract

relationships but to meanings and semantics.

In the sections that follow we first look at the need for finding meanings in

multimedia, we then present algorithms for the statistical association of tokens from

different streams, we examine the experiment results on news video corpus, and we

finally discuss possible extensions and the relations with other work that associates

image/video with textual terms.

4.1 The need for meanings in multimedia

Unsupervised learning algorithms use the internal structure of the data for grouping,

consequently the outcome lacks the explicit interpretations that the training labels

provide in a supervised learning scenario. Thus interpreting the meanings of the
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resulting clusters and assessing their quality become unavoidable sub-problems for

unsupervised clustering. In nicely constrained domains, this assessment can usually

be addressed with expert knowledge or domain assumptions. For the sports videos

discussed in the previous chapter, for example, we found the best association from

the HHMM labels to the handful of meanings in the sport by searching through all

possible correspondences between patterns and domain-specific event classes. For

other data analysis tasks such as mining the shopping basket [1] or the web-logs [58]

the resulting patterns are examined by human experts to confirm that they are

“meaningful” with respect to the particular domain.

For the task of multimedia data mining in general, however, evaluation with

expert knowledge is not always possible, because: (1) The number of interesting

patterns may be unknown and large, making the search over all permutations im-

practical. (2) The set of interesting patterns in the domain may change over time,

and the emerging new meanings and the vanishing old meanings make any assess-

ment to quickly become obsolete, resulting in a constant demand for refreshing the

expert knowledge. One such domain is news videos. There the represented mean-

ings are so diverse and dynamic that coming up with a stable and precise news event

ontology is a challenging task in itself.

To our advantage, audio-visual streams in many domains comes with metadata,

such as the closed caption in TV broadcasts or the descriptions surrounding an image

on a web page. These metadata, especially the surrounding textual descriptions,

provide potential information to annotate and explain the audio-visual content. On

the other hand, the audio-visual content enriches the users’ experiences, and serves

to illustrates the text descriptions. While textual data themselves do not equate to

semantics, a text summary in a few words is more succinct in representation (than

the raw audio and images) and easy for a person to grasp.
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In this chapter, we explore the statistical association of temporal audio-visual

patterns with text using co-occurrence analysis and machine translation techniques.

We use news videos as the test domain and find promising associations from the

video patterns to distinct topics such as el-nino or politics, we have also demon-

strated the advantage of using a dynamic structure model over a plain clustering

alternative.

4.2 Cross-modal association in temporal streams

In this section we describe models for establishing statistical multimodal association.

This association will enable the selection of words for annotating a given audio-visual

segment or vice versa. Our algorithm follows three steps: we start from a sensible

division of the multimodal stream in time; we then pre-process both the audio-visual

stream and text stream and discretize them into “tokens” in either stream; finally

we associate the tokens in the same temporal segment with co-occurrence analysis

and further refine the co-occurrence statistic with machine translation models.

4.2.1 The temporal division of the multimodal streams

News videos are in the form of time-stamped streams that are not synchronous

across the modalities. In the visual channel, the signal is typically sampled at 30

frames per second. There, a natural temporal syntactical unit is a shot, defined as

a continuous camera take in space and time, which typically lasts from just a few

seconds to tens of seconds. In the audio channel, the signal is sampled at several

thousand times per second, where the spoken content typically has a few syllables

per second, and a continuous background ambience lasts a few seconds to tens of

seconds. In the text stream, the closed caption comes at roughly the same rate as
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the spoken content, i.e. we can expect to see one to four words each second, and

each phrase or each sentence will have a few to a few dozen words.

In order to establish correspondence across multiple modalities, a common tem-

poral division would help us computing the correspondence with enough information

and less noise by restricting them into a reasonable temporal range. Note under the

above cross-modal asynchrony there are no common natural boundaries in the mul-

timodal signals. And if we choose the consistent unit in one modality, such as a

shot, a word, or a sentence, as the reference for the other modalities, it would imply

insufficient statistics or redundancy for others.

To this end, we can make use of the higher level semantic units defined for many

domains of multimedia, such as scenes in film or stories in news. A news story

is defined as “a segment of a news broadcast with a coherent news focus which

contains at least two independent, declarative clauses” [122]. In news broadcasts,

story boundaries do not necessarily coincide with shot boundaries or sentences end-

ings [53], however they represent a common meaningful temporal division in news,

and the transition of semantic topics happens at these boundaries. In this work, we

try to establish correspondence between the audio-visual channel and the text within

each story. Our evaluations show that co-occurrence statistics on stories yields word

precisions about ten times that of the shots while producing comparable recalls.

4.2.2 Tokenizing each modality

We need to tokenize each of the audio-visual stream and the text inputs before

starting to estimate their correspondence. This process is needed because (1) Some

of the observations can be continuous both in value and in time (e.g. color, motion,

or audio volume values), while our perception of these stream are discrete events

(e.g. an anchor, a scream, or an explosion). The building blocks in each stream
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shall resemble our perception for the correspondence to be more meaningful. (2)

For temporally correlated noisy streams the tokenization process also serves to de-

correlate and denoise the raw observations, such as the use of HHMM modeling and

shallow parsing operations described below.

The tokenization of multi-dimensional continuous or discrete observations can

be easily done with clustering or vector quantization algorithms such as K-means or

Gaussian mixture modeling [59]. In temporally correlated streams such as video, it is

also desirable to take the temporal dimension into account, and this can be achieved

with dynamic models such as the HMM or the HHMM as described in the previous

chapter. This tokenization process can be guided by two factors: (1) To minimize

the distortion or maximize the data likelihood, as done in typical quantization or

clustering algorithms; (2) To identify algorithms that are more suitable for the

domain, and that reveals meaningful clusters, which is done with domain knowledge

and via evaluations with other modalities, such as association with semantic tags.

In this chapter we experiment with HHMM and K-means. The algorithm of using

HHMM to label the sequence was presented in chapter 3. Details for the specific

features for news videos and the conversion from features to tokens are covered in

section 4.3.

The text streams already come in the discrete form of time-stamped words. The

discourse style of a news program is usually concise and direct, hence it suffices

to stay at the level of individual words rather than going to higher-level concepts

via linguistic or semantic analysis, to represent the topic of discussion. We choose

to focus on a lexicon of frequent and meaningful words, freeing ourselves from the

noise introduced by stop words and statistically insignificant ones. The lexicon is

obtained from the corpus after a few shallow parsing operations: (1) Stem the words

from a speech-recognizer output or the closed caption with an off-the-shelf stemming
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Figure 4.1: Generating co-occurrence statistics from the HHMM labels and word
tokens. The grayscale in the co-occurrence matrix indicate the magnitude of the
co-occurrence counts, the brighter the cell, the more instances of word w and label
q that were seen in the same story.

algorithm such as the Porter Stemmer [96]; (2) Prune stop words taken from popular

stoplists [124], and domain-specific stop words such as “news” or “today”; (3) Prune

the rare word stems that appear no more than a few times.

4.2.3 Co-occurrence analysis

One simple and widely-used method for establishing statistical association is via co-

occurrence analysis. This method has been popular in many other problem domains

such as mining item correlations in shopping baskets [1]. As illustrated in Fig. 4.1,
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we obtain the co-occurrence statistic C(q, w) for a HHMM state label q and a word

token w by counting the number of times that the state label q and the word w

both appear in the same temporal segment, and this statistic is accumulated across

all video clips.

Denote the index for all video clips in the corpus as k = 1, . . . , K, we partition

each video into non-overlapping temporal intervals (news stories in this chapter,

from automatic segmentation [53]) Sk = {s(k)
j , j = 1, . . . , Lk}, where j indexes the

stories and Lk is the number of stories in video k. Denote the stream of audio-visual

labels, i.e. the maximum-likelihood state sequence of HHMM or the cluster labels,

as q
(k)
u , where u is the time index for the tokens in the audio-visual channel, and q

takes values from the label set Q. Denote the word tokens in video k as w
(k)
v , where

v is the time stamp for the words, and w takes it value from the lexicon W . The

co-occurrence statistic C(q, w) is simply calculated as the counts of simultaneously

observing symbols q and w in the same temporal interval

C(q, w) =
K∑

k=1

∑
j,u,v

I{q(k)
u = q, w(k)

v = w, u ∈ s
(k)
j , v ∈ s

(k)
j } (4.1)

∀ q ∈ Q, w ∈ W

Here I(·) is the indicator function, and the notation u ∈ s
(k)
j and v ∈ s

(k)
j means

that the temporal index u and v are contained in the story interval s
(k)
j .

Once the co-occurrence statistics are in place, we normalize the co-occurrence

counts to obtain empirical estimates for the conditional probabilities of seeing the

words given labels and vice versa, denoted by lower-case symbol c(q|w) and c(w|q),
as shown in Equation 4.2 below. These quantities can serve as a basis for predicting

words that annotate an audio-visual segment with label q, or for retrieving best
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video shots to illustrate a certain word w.

c(w|q) =
C(q, w)∑
w C(q, w)

, c(q|w) =
C(q, w)∑
q C(q, w)

(4.2)

Note that the co-occurrence counts necessarily ignores the temporal orders that

the tokens appear in either stream. This is assumption greatly simplifies the model,

and it may not be as restricting as it seems, given the nature of the multimedia

streams: there is no apparent order (or grammar) that the audio-visual narrative

elements observe in order to illustrate a story, as a story can start with anchor shots

but is also very likely to start in a middle of an anchor or no anchor at all [53]. While

more complex co-occurrence models for languages exist [21], we choose the simple

co-occurrence since the grammars in multi-modal streams, if exist, are weaker and

more diverse.
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4.2.4 Machine translation

In co-occurrence analysis, every label receives one increment from every word in

the same story. As illustrated in Figure 4.2(a), the co-occurrence matrix from this

calculation is a “smoothed” version of the ideal associations, because words and

labels of different meanings can appear in the same news story, and thus receiving

extra counts from the temporal co-location. It will be desirable to “un-smooth” the

co-occurrence counts and recover a clean version of the association.

This problem has been addressed in the context of machine translation (MT) [21].

As illustrated in Figure 4.2(b), statistical machine translation tries to learn from

data the word-level probabilities of French words f given an English word e. The

corpus is sentence-level aligned bi-text, no word-level alignment information is avail-

able. Brown and colleagues proposed a unigram model (referred to as Model 1 in

the original text) for the sentence generation, as illustrated in Figure 4.3.

The unigram translation model consist of conditional probabilities t(f |e) of the

French words f ∈ F given the English words e ∈ E . Given an English sentence

(i.e. a collection of words {e1, e2, . . . , eNe}), a French sentence can be generated

by independently drawing fi ∼ t(f |ei), i = 1, . . . , Ne. Given the two sentences in

each language, a complete likelihood would involve the prior unigram probabilities

p(e), “translation” probabilities t(f |e) and the alignment information as for which

English word generates the observed French word f . Since the alignment is hidden in

general, we can obtain a partial data likelihood by marginalizing all possible hidden

alignments between the words in each language. It is easy to see that under the

simple unigram assumption the marginalization is separable for each position in the

sentence, and the sufficient statistics for this model only contain the co-occurrence

counts C(f, e).
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We follow the inference of the unigram model, and use it to estimate the condi-

tional probability for both the words given the labels, and vice versa. The E-step

for the posteriors is easily derived from the current model:

t̄(q|w) =
t(w|q)∑
q t(w|q) , t̄(w|q) =

t(q|w)∑
w t(q|w)

(4.3)

The M-step computes a new estimate of the conditionals based on both the poste-

riors and the observed co-occurrence counts:

t(w|q) ← C(q, w)t̄(q|w)∑
w C(q, w)t̄(q|w)

, t(q|w) ← C(q, w)t̄(w|q)∑
q C(q, w)t̄(w|q) (4.4)

Each EM iteration above gives more weight to the larger co-occurrence counts.

Intuitively, this becomes a “sharpening” process that suppresses the smaller counts
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that come from the co-occurring but unrelated words, as will be seen in the next

section.

4.3 Experiments

In this section, we discuss the results of predicting the correspondence using the co-

occurrence statistic and the probabilities refined by MT on TRECVID news video

data-sets [122].

4.3.1 Visualizations of co-occurrence and machine translation

We first report a few observations on the TRECVID 2003 corpus, which consist of

44 half-hour programs from ABC World News and CNN Headline News. Each video

comes with the audio-visual stream, the ASR words, and the ground-truth for story

boundaries that came from the text transcript [121]. We divide the data into four

sets each having 11 programs from the same channel. We rotate the roles of these

sets as the training set, from which the HHMM models and the correspondences

are learned (without additional supervision), and the test set where the models are

used to predict words in the new videos.

On the audio-visual channel, we use automatic visual concept detectors scores on

each shot as the features for learning the HHMM state labels. The concepts used are

{weather, people, sports, non-studio, nature-vegetation, outdoors, news-subject-face,

female speech, airplane, vehicle, building, road}, selected from the 16 Trecvid2003-

evaluated concepts that have a reported average precision greater than 50%. The

concept detection outputs [5] are the fusion results from multiple SVM classifiers

on image features. These concept fusion scores are obtained via various strategies

(min., max, linear combination, etc.), and we normalize the scores to between 0 and
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1 and uniformly quantize them into three levels. These mid-level detector results

are preferred in place of low-level audio-visual concepts, because the news videos

have two notable differences compared to the sports programs in chapter 3: (1) The

settings in news programs are much more diverse than sports, and the camera view

does not directly relate to the color, texture, and motion cues . (2) The syntax in

news videos is mostly controlled by the change of cameras (and hence the location

and the objects it may contain), not by the temporal trend in low-level cues such

as zoom and camera pan.

On each of the 11-video sets (the training set), we learn M = 10 different HHMM

models using different subsets of the 12 concepts. These subsets are generated with

hierarchical agglomerative clustering on the mutual information metric (section 3.5);

the number of models is set to traverse into considerable depth into the clusters; the

HHMM models on this dataset typically has 5 ∼ 10 distinct bottom-level states, as

determined by the model selection algorithm in section 3.4, the ten HHMMs have

59 states in total. For comparison, we also use the same features subsets and (the

automatically selected) number of clusters to learn 10 clusterings via K-means.

The correspondence of the state labels in all models to a 155-word-stem lexicon

in the ASR transcript (in the training set) is then estimated according to Equations

(4.1-4.4) to produce conditional confidence values c(w|q), c(q|w) and t(w|q), t(q|w),

respectively. These probabilities can be interpreted in two complementary contexts.

One is auto-annotation, i.e., predicting words upon seeing an HHMM label, c(w|q) is

the precision value of this token-prediction process on the testing set by the counting

processing in Equation (4.1); the other is retrieval, i.e., producing possible labels

upon seeing a word, and c(q|w) is recall of this label-retrieval process. It is easy

to see, however, that the precision is biased towards frequent words or infrequent

labels, while the recall tends to be large with infrequent words or frequent labels.
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To compensate for the prior bias in the co-occurrence matrix, we examine an

alternative measure, the likelihood ratio L, computed as the ratio of the conditional

to the prior probabilities. Equation 4.5-4.6 computes in ratio for the statistic before

and after machine translation, where the prior probabilities are estimated as p(q) =
∑

w c(q, w) and p(w) =
∑

q c(q, w). Intuitively L(q, w) takes value from 0 to +∞,

where a value of 1 means that the two events q = q and w = w are independent, a

large L implies strong association, and a small L implies strong exclusion.

Lc
w(q, w) =

c(w|q)
p(w)

, Lc
q(q, w) =

c(q|w)

p(q)
; (4.5)

Lt
w(q, w) =

t(w|q)
p(w)

, Lt
q(q, w) =

t(q|w)

p(q)
; (4.6)

Note that for the co-occurrence statistic the likelihood ratio on either variable is the

joint probability normalized by the product of the two marginals, i.e.,

Lc
w(q, w) = Lc

q(q, w) =
c(q, w)∑

q c(q, w) ·∑w c(q, w)
.

Figure 4.4 visualizes the likelihood ratio before and after machine translation.

We can see that the EM algorithm “un-smoothes” the raw co-occurrence counts as

expected, resulting in more bright (strong word-label associations) or dark (exclu-

sions) sports in the association matrix.

Figure 4.5 visualizes the likelihood ratio of co-occurrence counts for the audio-

visual labels generated by HHMM and K-means. We can see that operating on the

same feature sets and the same model sizes, there are much more strong associations

(bright peaks) and exclusions (dark valleys) in the labels obtained with HHMM than

that of the K-means, and this shows that temporal modeling is indeed more capable

of discovering patterns that correlate to the semantic tags for the news domain.
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Figure 4.4: Word-association with likelihood ratio before and after machine trans-
lation. The likelihood ratio function L is rendered in log-scale.

4.3.2 Word prediction and correlation with topics

We now examine the models and associations in the previous subsection in detail

and see how they can be interpreted in terms of the meanings in the news. We sort

all the (label, token) pairs based on Lc, Lt
w and Lt

q, respectively, we then examine

the salient pairs that lie in the top 5% of each L values.

One interesting label as shown in Table 4.1 is (m, q) = (6, 3) (the third state

in the sixth HHMM model), indicating high confidence in both of its raw concepts

{people, non-studio-setting}. With the list of predicted words as {storm, rain,

forecast, flood, coast, el, nino, administr, water, cost, weather, protect, starr, north,

plane, northern, attornei, california, defens, feder, gulf }, it clearly indicates the

topic weather. In fact, it covers the news stories on el-nino and storms that prevailed

the United States in the spring of 1998 with 80% and 78% recall on the training and
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Figure 4.5: Word-association with labels generated by hierarchical HMM and K-
means. The likelihood ratio function L is rendered in log-scale.

testing set, respectively. Note this weather cluster is found without including the

“weather” concept as input to the HHMM or using the specific weather segments

via supervised procedure.

The second half of Table 4.1 shows details of another interesting label (m, q) =

(9, 1), the first label (among a total of seven) in a model learnt over the visual

concepts {outdoors, news-subject-face, building}. The HHMM emission probabilities

for this state shows low probability for the concept outdoors and high probability

for news-subject-face and building. The word-level precision and recall are around

20% and 30 ∼ 60%, respectively; the list of words intuitively indicate the topic of

politics and legal affairs, the audio-visual content of which often contains scenes

of news-subjects and buildings; and the word list is effectively expanded by MT.

Further examining the actual stories that contain this label (42 out of a total 216),

we find that these 42 stories cover stories on Iraqi weapon inspection with 25.5%



72

Automatic Manual

HHMM Visual Predicted Word-stems News threads
Label Concepts

people, storm, rain, forecast, flood, El-nino98
(6,3) non-studio-setting coast, el, nino, administer,

water, cost, weather, protect,
starr, north, plane, . . .

outdoors, murder, lewinski, congress, allege, Clinton-Jones
(9,1) news-subject-face, jury, judge, clinton, preside, Iraq-Weapon

building politics, saddam, lawyer, accuse,
independent, monica, white, . . .

Table 4.1: Example word-label correspondences. HHMM label (m, q) denotes the qth

state in the mth HHMM model; the visual concepts are the features automatically
selected for model m; the predicted word-stems are the entries of Lc(w, q) that have
values in the top 5%.

recall and 15.7% precision, and simultaneously contain the stories on Clinton-Jones

lawsuits with 44.3% recall and 14.3% precision.

4.4 Discussions

Having presented our algorithms and observations for metadata association for ex-

plaining and assessing temporal audio-visual patterns, we now briefly discuss related

work and possible extensions along similar directions.

4.4.1 Related work in multi-modal association

Cross-modal association has been a recent topic of interest spanning the vision,

learning, and information retrieval community. Duygulu et. al. [37] posed the

problem of object recognition as using words to annotation regions in the image,

given a training set that contains images with the object and keywords associated

with the entire image. The learning process also rely on co-occurrence statistics
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and machine translation un-smoothing using the EM algorithm. Jeon et. al. [62]

approached the same image-region annotation problem using the relevance model

in information retrieval by treating the words and image regions as independently

generated terms in a document, the conditional probabilities of regions and words

were obtained with empirical counts and background smoothing. Our work differs

from the above in modeling the temporal structures within the audio-visual streams,

instead of treating the video segments as independent entities.

4.4.2 Word association and beyond

It’s worth noting that words are not equal to meanings. While the words associated

with a few labels are easy to decipher, most labels are associated with diverse words

from which distinct topics are not easy to find. The inherent co-occurrence in related

words can be used to further reveal the meanings of words, and natural language

processing techniques such as latent semantic analysis can be employed to compute

these correlations (e.g., “white” and “house” often appear together) and to resolve

the ambiguity of words (e.g., “rise” can refer to the stock index, the temperature, a

higher elevation, or even an angry political reaction). In news videos, the concepts

in the audio-visual stream may not be those present in the speech transcript. It

maybe that different streams are at apparently different perceptual levels, such

as “people” and “building interior” in the video frame actually correspond to an

press conference held in Washington D.C. Although this is unlike the sentence-wise

aligned bi-text between two languages [21], or the individual words annotating the

visual content [37], we can explore the inherent correlations in both the audio-visual

stream and the text stream, and use these inherent uni-modal patterns to influence

the composition of cross-modal associations. Some of these issues lead us to the

topics to be addressed in chapter 5.
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4.5 Chapter summary

In this chapter we examined the problem of finding meanings for multimedia pat-

terns. We presented algorithms for the statistical association words and recurrent

patterns in audio-visual streams. Experiments on news video corpus supports the

existence of meaningful audio-visual clusters with consistent text terms.
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Chapter 5

Discovering multi-modal patterns

Having addressed the discovery of temporal patterns in chapter 3 and tagging mean-

ings to these patterns in chapter 4, we wonder whether the information in the audio

visual channel and the text streams can be more tightly integrated. Can text be

used to influence the patterns being discovered, instead of just as tags to the audio-

visual clusters? Can we also exploit the internal patterns in text, instead of looking

at individual words?

5.1 Multi-modal patterns in video

The problem of finding meaningful patterns using all the modalities leads to mul-

timodal fusion, and this problem is better understood by taking a closer look at

the video data. As shown in Figure 5.1, the audio, video, and text streams in pro-

duced media streams are naturally asynchronous at both the signal level and at the

semantic level: At the signal level, the information rates vary from a few dozens

to a few thousands of bits per second because of the different processing rates in

hearing, vision and reading systems. At the semantic level, the audio-visual content

(e.g., an anchor person or a reporter on the street) may not immediately reflect the
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Figure 5.1: Asynchronous multimodal streams in news.

topics in the text, yet those spoken content may closely associate with the visuals

a few shots later (e.g. a paper showing a newly passed bill, or the dashboard in the

stock market). In addition, the semantics in audio, video, and text are at diverse

levels among which direct associations may not exist. For instance, loud speech,

background cheering, crowds at night, and words like tonight, people, three hours

may imply a “sports fan celebration” event, yet they may also imply a “protest”.

Prior work addressed unsupervised pattern discovery on one input stream, such

as finding the latent dimensions in text [50] or mining temporal patterns from audio-

visual observations (chapter 3). Multi-modal fusion also appeared in various con-

texts, such as audio-visual speech recognition [88] where the audio and video are

in exact sync, and cross-media annotation [62] where different modalities bear the

same set of meanings. None of these models readily handles multi-modal fusion

across the asynchronous and semantically diverse audio, visual and text streams.

We propose a layered dynamic mixture model for unsupervised asynchronous
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multi-modal fusion. The model first groups each stream into a sequence of mid-level

labels so as to account for the temporal dependency and noise. It then addresses the

cross-stream asynchrony by allowing loose correspondence across different modalities

and infers a high-level label from the mid-level labels in all streams.

Layered, or hierarchical models have come to the context of many research prob-

lems, our model is certainly not the first such structure, and hopefully not the last

one either. This layered structure is similar to the commonly-used input-output

model [10] or coupled temporal model [16] in that states are influenced by multi-

ple streams, yet this structure is different from the prior models in that it infers

additional hidden states that represent multiple streams instead of maintaining sep-

arate states for each modality. It is similar to the layered HMM for multi-modal

user interaction [91], except that the layered HMM only handles fixed-rate inputs

and enforces that the audio/visual information is only allowed to influence the user

input for the same short time period. Another similar model is the dynamical

system trees [52], where subset of the nodes in the model explicitly encode group

structures. Our use of text information resembles those in multimedia annotation

([37, 62], chapter 4), except that we explicitly model the correlations in text, and

the text information directly influences the composition of the multi-modal clusters

instead of just serving as an explanation to the visual content.

We evaluate this model on Trecvid 2003 broadcast news videos. Results show

that the multi-modal clusters have better correspondence to news topics than the

clusters using audio-visual features only; on a subset of topics that bear salient audio-

visual cues, they have even better correspondence than text. Manual inspection of

the multi-modal clusters reveals a few consistent clusters that capture the salient

syntactic units typical of news broadcasts, such as the financial, sports or commercial

sections. Furthermore, for these clusters, the mixture model is able to predict audio-
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different colors represent nodes in different modality.

visual features and words that are indeed salient in the actual story clusters.

5.2 Unsupervised asynchronous multi-modal fusion

Multi-modal fusion for unsupervised learning differs from those for supervised learn-

ing [53] in that no labeled ground-truth is available to guide the fusion model.

Therefore we use the data likelihood in generative models as an alternative criterion

to optimize the multi-level dynamic mixture model.

5.2.1 The layered representation

The structure of the layered mixture model is shown in Figure 5.2. The layered

dynamic mixture representation consists of the low-level feature streams, the mid-

level labels, the high-level fused clusters, and the two layers of probabilistic models in

between. We use the layers to divide the multi-modal fusion problem into two parts:
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(1) modeling noise and temporal dependencies in the individual modalities and (2)

fusing the modalities of different temporal resolution. This separation enables the

use of different model structures in the lower layer so as to take advantage of the

domain knowledge in each individual modality. A layered model is more flexible

in its structure of representation and yields better clustering results than one-level

clustering as seen in subsection 5.3.3. Aside from enhancing the robustness and

reducing parameter tuning as argued in [91], introducing layers in unsupervised

learning intuitively conforms with the layered perceptual model, which allows more-

efficient staged computational optimization in the different layers.

The layered mixture model has a set of different temporal indexes. As shown

in Figure 5.2, it allows different temporal index tm for each input modality m. The

lower layer models group each input stream xm
t into a mid-level label stream ym

t

using generative models tailored to each modality, and ym
t has the same temporal

resolution as xm
t .

We further partition the time axis into a set of non-overlapping loose temporal

bags τ , and each bag contains a number of continuously indexed samples in each

stream (assumed non-empty without loss of generality), denote as {tm | tm ∈ τ}.
We assign one top layer node z to each bag, and with a somewhat loose notation,

we also use τ to index the top-layer nodes as zτ .

5.2.2 Unsupervised mid-level grouping

The audio-visual streams exhibit temporal dependency, while independence between

the keywords in adjacent stories can reasonably be assumed as they are often on

different topics. For the former we use Hierarchical HMM for unsupervised temporal

grouping as described in chapter 3; for the latter we use probabilistic latent semantic

analysis (PLSA) [50] to uncover the latent semantic aspects.
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The HHMMs, described in chapter 3 and graphically reproduced in Figure 5.3(a),

are learned over the corpus with automatic model and feature selection using the

mutual information and Bayesian information criteria (BIC). The resulting HHMM

typically has two to four top-level states. With this model, we can incorporate

existing partial knowledge of news video syntax and make the learned states in

the HHMM more meaningful. This is achieved by taking into account the known

news story boundaries: the HHMM inference algorithm only allows highest-level

state transitions at these boundaries, hence restricting the segment coming from

the same story to stay in the same branch of the Markov chain hierarchy. The

learned HHMM then labels the videos stream with the most likely state sequences.

The PLSA model [50] is shown in Figure 5.3(b). Observing the words x in

story d, the model learns the conditional dependencies between the hidden semantic

aspects y and both observed variables. The double mixture structure of PLSA

provides more flexibility for capturing word distributions than a simple mixture

model, and this is achieved by replacing a single conditional parameter p(x|y) with

a linear combination of conditionals involving the documents d, i.e., p(x|y)p(y|d).

The inference of PLSA is carried out with the EM algorithm. We have observed
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that the PLSA distributions more accurately capture sets of semantically related

words, rather than being deluged by the frequent words.

5.2.3 The fusion layer

In the top-level fusion layer, the boundaries for the temporal bags τ lie on syntac-

tically meaningful boundaries in the video, such as scene transition points or news

stories boundaries. For efficiency, the clustering in each layer is carried out in sepa-

rate stage, i.e., the values of mid-level labels y are taken as the maximum-likelihood

value from the lower-layer model and considered as “observed” when inferring the

high-level node z.

Denote the set of mid-level labels within each bag (given a priori) as yτ =

∪m{ym
t , tm ∈ τ}. The model prescribes that the mid-level nodes yτ in each modal-

ity are influenced by zτ , and given zτ , the different modalities are conditionally

independent. i.e.,

p(yτ , zτ ) = p(zτ )
∏
m

∏
tm∈τ

p(ym
t |zτ ) (5.1)

Under this assumption, the temporal orders within each bag no longer influence the

value of zτ ; when each of ym
t takes discrete values, yτ can be represented by a set of

multi-dimensional co-occurrence counts

c(m, τ, y) = #{ym
t = y, tm ∈ τ}.

Intuitively, this is to treat the mid-level labels ym, obtained by de-noising xm, as if

they were generated by multinomial draws conditioned on the high-level meaning z.

According to this definition, we rewrite the complete-data log-likelihood of y
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and z in bag τ from Equation 5.1, and estimate the model parameters with the EM

algorithm:

l(τ, z)
∧
= log p(yτ , zτ = z)

= log p(z) +
∑

(m,y)

c(m, τ, y) log p(ym|z). (5.2)

The E-step reads:

p(zτ = z|yτ ) =
exp l(τ, z)∑

z∈Z exp l(τ, z)
(5.3)

The M-step follows:

p∗(z) =
1

T

T∑
τ=1

p(zτ = z|yτ ) (5.4)

p∗(ym|z) =

∑T
τ=1 c(m, τ, y)p(zτ = z|yτ )∑

y

∑T
τ=1 c(m, τ, y)p(zτ = z|yτ )

(5.5)

We can extend this basic fusion model to include a joint inference from observa-

tions xm
t to the highest level zτ , to model dependency within each temporal window,

or to allow flexible temporal bags to be learned while performing model inference.

5.3 Experiments

We test the proposed fusion model on TRECVID news corpus [122]. This data set

contains 151 half-hour broadcasts of CNN Headline News and ABC World News

Tonight from January to June, 1998. The videos are encoded in MPEG-1 with

CIF resolution; also available are the ASR transcripts produced by LIMSI [43]. We

partition the dataset into four quadrants each containing half of the videos from one



83

channel.

5.3.1 Multi-modal features

We extract from each video the following sets of low-level audio-visual descriptors,

visual concepts, and text terms as the base layer in the hierarchical mixture model:

1. The color histogram of an entire frame is obtained by quantizing the HSV color

space into fifteen bins: white, black and gray by taking the extreme areas in

brightness and saturation; equal-width overlapping bins on the hue values re-

sembling the six major colors red, yellow, green, cyan, blue and magenta in

high and low saturations, respectively. Since the histogram is normalized with

respect to the size of each frame (and hence is linearly dependent), we exclude

an arbitrary bin (yellow with low saturation) to make a linearly independent

14-dimensional feature vector, in order for the Gaussian observation proba-

bilities not to degenerate in the later learning stage. The color histogram is

averaged over a time window of one second.

2. Motion intensity consists of the average of motion vector magnitude and the

least-square estimate of horizontal pan from the MPEG motion vectors, ex-

tracted every second (appendix C).

3. The audio features contain a four-dimensional vector every half a second: the

mean pitch value; the presence/absence of silence and significant pause, the

latter obtained by thresholding locally normalized pause length and pitch jump

values; six-class audio category labels from a GMM-based classifier (silence,

female, male, music, music+speech, or other noise) [100].
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4. A visual concept vector contains the confidence scores modeling how likely

the keyframe of a shot is to contain a set of visual concepts. The concepts

used in this work are pruned from a lexicon of over a hundred in order to

make them as specific as possible while having reasonable detection accuracy.

They include: five events - people, sport, weather, cartoon, physical violence;

five scenes - studio setting, non-studio setting, nature-vegetation, nature non-

vegetation, man-made scene; twelve objects - animal, face, male news person,

male news subject, female news person, female news subject, person, people,

crowd, vehicle, text overlay, graphics. These concept scores are the fusion

results of SVM classifiers via various strategies (min., max, linear combination,

etc.) [5], we normalize the scores to between 0 and 1 and uniformly quantize

them into three levels.

5. Keyword features can be obtained from either the closed captions or the auto-

matic speech recognition (ASR) transcripts. Stemming, part-of-speech tagging

and rare word pruning are performed, retaining a 502-token lexicon of frequent

nouns, verbs, adjectives and adverbs. The tf-idf score of the words within a

news story are used as the feature vector.

After feature extraction, one HHMM is learned on each of the color, motion and

audio features. The visual concepts, due to their diverse nature, yield three HHMMs

grouped by the automatic feature selection algorithm. The words in all stories are

clustered into 32 latent dimensions with PLSA. The fusion model then infers a most-

likely high-level hidden state from all the mid-level states in each story, taking one

of 32 possible values (chosen as in approximately the same order of magnitude with

the number of news topics in subsection 5.3.3). The multi-level clustering algorithm

runs in linear-time, and it typically takes less than three hours on a 2GHz PC for
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Figure 5.4: Example clusters, each row contains the text transcript and the
keyframes from a story. Left: cluster #5, sports, precision 16/24. Right: cluster
#29, weather, precision 13/16. The models are learned on CNN set A, evaluated
on set B.

19 hours of video.

5.3.2 Inspecting the clusters

We first inspect a story-board layout of each cluster. A weather forecast cluster

(shown in Figure 5.4) results from the consistent color layout and similar keywords,

while the sports cluster is characterized by the motion dynamics and visual concepts

regarding people. Other interesting clusters include segments of CNN financial news

(precision 13/18 stories) with similar graphics, anchor person and common transi-

tions between them. There is also a commercial cluster (7 out of 8) characterized

by audio-visual cues, since there are no consistent text terms across different com-

mercials. These observations suggest that meaningful multi-modal clusters can be

captured by modeling recurrent syntax within and across multiple input streams.

We also inspect the distribution of the multi-modal features. We compare the

most likely feature distribution predicted by the model and those observed in the

actual story clusters. An agreement between these two would suggest that this

may be a salient feature that the model manages to capture. In Figure 5.5 we plot
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Figure 5.5: The most probable features predicted by the model (red) and observed
in the clusters (navy). A magenta cell results from the joint presence from both,
and a blank one indicates that neither has high confidence. The features retained
during the automatic feature selection process are shown in blue. The models are
learned on CNN set A, evaluated on set B.

the predicted and observed cluster-feature pairs with high statistical confidence

into two color channels by applying simple cut-off rules for having high prediction

confidence. We require: p >0.8 for both the top-level mixture model p(ym|z) and

the emission probabilities p(x|y) of the discrete-valued features, a peak greater than

twice the second-highest mode for the continuous features described by a mixture of

Gaussians, or the intersection of the top 20 words in the PLSA probabilities p(x|y)

with those in the text transcript. This visualization intends to provide intuition by

linking the features at the bottom level and the cluster labels z at the top level, and

by-passing the mid-level cluster labels y that mostly encode the syntactic pattern

but not semantic meanings.

In the sports cluster (show in Figure 5.4, left; and Figure 5.5, row #5), we can see
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that (1) both the model and the actual stories in the cluster agree on sports-related

words: game, star, won, etc. (2) the model and the observations agree on the high

confidence of the visual concepts male-news-subject, which is reasonable given that

the cluster corresponds to the topic “1998 Winter Olympics”. In the two weather

clusters (Figure 5.5, row #9 and #29, and Figure 5.4, right) the model predicts

(1) yellow and blue in the color layout, which is also salient in Figure 5.4, (2) a set

of weather-related words such as rain, snow, coast, forecast. We can also interpret

from the common keywords that some clusters are a mixture of two or more general

categories, e.g., politics and weather in cluster #27. These observations explain

the composition of the meaningful top-level clusters by providing evidence from the

multi-modal feature streams.

5.3.3 News topics

Topics are the semantic threads in news, defined as “an event or activity, along

with all directly related events and activities” [121]. We compare the multi-modal

clusters with the 30 news topics seen in our corpus (labeled by TDT [121], covering

∼ 15% of all news stories in the TRECVID set). We use the TDT evaluation metric

detection cost, a weighted sum of the precision and recall for each topic s:

Cdet(s) = minz{PM(z, s) · P (s) + PFA(z, s)(1− P (s))} (5.6)

Here PM and PFA are the miss and false alarm probabilities of a cluster z with topic

s, i.e., PM = |s ∩ z̄|/|s| and PFA = |s̄ ∩ z|/|s̄|; and P (s) is the prior probability of

topic s. A “best” cluster is chosen as the one minimizing this weighted sum of PM

and PFA, and its detection cost is then assigned as the detection cost Cdet(s) for

topic s. This raw detection cost is then normalized by min{p(s), 1− p(s)} to avoid
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trivial decisions, i.e.,

C̄det(s) =
Cdet(s)

min{p(s), 1− p(s)} .

Note the smaller the value of C̄det(s), the better a topic can be represented by one

of the clusters.

We compare the layered fusion structure with a one-level clustering algorithm,

the latter is obtained by substituting the observations x into the places of y in the

multimodal inference (Equation 5.2-5.5), with other parameters fixed (Guassians for

the color and motion features, multinomials for the rest, 32 clusters). The average

detection cost for the former is lower than the latter by 0.240, i.e., multimodal clus-

ters achieved an average relative improvement of 24% scaled by the respective topic

priors. We also compare the multi-modal clusters with single modal audio-visual

clusters by taking the minimization in Equation 5.6 is across all single-modality

HHMMs (that are equivalent to those in chapter 3-4). The multimodal clusters

outperform the uni-modal ones by decreasing 0.227 in the average detection cost

(i.e., a relative improvement of 22.7%).

In seven out of the thirty topics, multi-modal clusters have lower detection costs

than using text alone (i.e., the PLSA clusters), these topics include 1998 Winter

Olympics, NBA finals and tornado in Florida among others. The topics of improved

performance tend to have rich non-textual cues, for instance the correspondence of

cluster #5 in Figure 5.5 to 1998 Winter Olympics can be explained by the prevalence

of music+speech in the audio and male-news-subject in the visual concepts, which

is reasonable since most of these sports stories begin with a lead-in anchor graphics

accompanied by music and the commentator.
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Figure 5.6: Two example stories from TDT-2 corpus [121] that exhibit intra-topic
diversity and inter-topic similarity.

5.3.4 Discussions

Note that the topics being evaluated are defined and labeled solely with the news

transcripts [121], and this may implicitly bias the evaluation towards the evaluations

with text-only. For example, cluster #28 in Figure 5.5 corresponds to the topic

Asian economy crisis, yet a better correspondence can be obtained with a PLSA

cluster with the most-frequent keywords dow, nasdaq, dollar, etc. Comparing the

topic correspondence and the cluster inspection in subsection 5.3.2 also suggest

that the multimodal clusters may be at a different level than the news topics. For

example, Figure 5.6 shows a few keyframes from two different topics: German train

derails, defined in the broader accident category, and earthquake in Afghanistan,

in the disaster category. It is obvious for human viewers, that the visual content

within each topic are quite diverse (maps, aerial shots, rescue scenes), yet the visual

appearance across these topics can be very similar. This suggest that a new set of

definitions for topic taking into account not only what is in the news story but also

how the story is covered may be more suitable for multimedia.
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5.4 Chapter summary

In this chapter we discussed the problem of finding multimedia patterns across multi-

modal streams. We presented layered dynamic mixture model for fusion asynchro-

nous information from the visual, audio, and text streams. On news video corpus,

compared to text topics in the news, layered multimodal patterns has shown better

correspondence than audio-visual patterns alone, or one-level clusters, it has also

improved upon text clustering on a subset of topics with salient audio-visual cues.
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Chapter 6

Conclusions and future work

In this chapter, we shall first summarize the work presented in this thesis, along the

lines of the three sub-problems that have been tackled – learning temporal video

patterns, associating patterns to meanings, and discovering patterns in multimodal-

ity. We shall then present a few potential areas of research for the application and

extension of this work.

6.1 Research summary

This thesis formulated and addressed the problem of unsupervised pattern discovery

in multimedia sequences. This problem is seen as finding recurrent and syntactically

consistent multimedia segments from a collection of sequences without knowing their

syntactic characteristics a priori. Unsupervised pattern discovery complements the

supervised pattern classification problem being solved for multimedia and many

other domains, since unsupervised discovery can help building an initial model and

providing the initial annotations, filtering the feature pool, assessing the space of

concepts and semantics that needs to be learned, or dynamically monitoring the

data statistics.
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There are two main ideas behind this work: (1) meaningful patterns can be dis-

covered by statistical temporal models from production syntax, via low-level and

mid-level features; (2) the mapping between syntactic patterns and semantic mean-

ings can be established via the joint statistical analysis of media and metadata. We

have worked on three specific aspects within.

6.1.1 Mining statistical temporal patterns

We have proposed novel models and algorithms for the discovery of multimedia

temporal patterns. We proposed hierarchical hidden Markov model for captur-

ing generic temporal patterns. This model generalizes upon the celebrated hidden

Markov model, from which it inherits the ability to model the temporal correlations

in streams and the flexibility to allow segments of arbitrary duration; furthermore

it extends the HMM in being able to model multi-level across-event temporal tran-

sitions. The entire HHMM model is learned efficiently using the EM algorithm

without the need for prior training of the individual components.

We have proposed strategies for automatically adapting the complexity of the un-

supervised pattern model to that of a new domain. This adaptation is achieved with

stochastic search strategies in the model space, where the search is conducted via

reverse-jump Markov chain Monte Carlo, and Bayesian information criterion is used

to evaluate the resulting model. This strategy finds a favorable trade-off between

the data likelihood and the model complexity, while being much more computation-

ally efficient than exhaustively searching the state-space, being quite stable to the

initialization of model size, and having probabilistic convergence guarantees thanks

to the nature of the Monte Carlo simulation.

We have also proposed strategies for selecting the optimal set of descriptors for

pattern discovery. We perform unsupervised feature selection on temporal streams
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by partitioning the original feature set into several consistent subsets, using mutual

information as the consistency criterion. We then eliminate redundant features from

each subset, using Markov blanket filtering.

Evaluations of this temporal pattern mining scheme have showed promising per-

formances in broadcast soccer and baseball programs. The unsupervised pattern

mining algorithms achieved 75% ∼ 83% accuracy in distinguishing plays and breaks

in the games, these performances are comparable to their supervised counterparts.

The automatically identified feature sets are intuitive and consistent with those man-

ually identified for this domain. We can see that the resulting models match our

intuitions in their feature distributions and temporal transitions via a visualization

system.

6.1.2 Assessing the meanings of audio-visual patterns

We presented novel approaches towards automatically explaining and evaluating the

patterns in multimedia streams. This approach links the computational representa-

tions of the recurrent patterns with tokens in the metadata stream. The metadata,

such as the words in the closed caption or the speech transcripts, are noisy yet in-

formative representations of the semantics in the multimedia stream. The linking

between the representation of audio-visual patterns, such as those acquired by a

HHMM and the metadata is achieved by statistical association.

Evaluations on large news video corpora reveals interesting patterns with con-

sistent word associations, representing prevalent news themes.

6.1.3 Discovering multi-modal patterns

We further developed the solutions to multimedia pattern discovery by explicitly

addressing patterns across multiple modalities. This problem is of interest because



94

neither the audio-video nor the text alone would be a complete representation of

the multimedia content, and the challenge lies in the natural asynchrony across

different modalities. We have proposed a layered dynamic mixture model, this

model separates the modeling of intra-modality temporal dependency and that of

inter-modality asynchrony.

On the TRECVID [122] broadcast news corpus the layered dynamic mixture

model identified a few syntactically salient and semantically meaningful patterns

corresponding to news topics and news program sections such as TV commercials.

On a few perceptually salient news topics the automatically discovered multimodal

topics showed superior detection performances than the text baseline.

6.2 Improvements and future directions

Multimedia pattern discovery is a challenging task. While this thesis began an

effort in presenting solutions to its important aspects, there are necessarily gaps to

be found in the framework that can be addressed in the future. While we have tested

mainly on sub-domains within produced content, there are many other domains that

these techniques are applicable to. In the few subsections that follow, we shall try

to spell out a few applications and extension that we are interested in pursuing in

the near future.

6.2.1 Applications of multimedia patterns

Multimedia patterns represent the meaningful syntax in the domain, they are thus

useful for content browsing and are potentially useful in several related applications.

These include:

• Multimodal event detection. While unsupervised discovery will most likely
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capture frequent events, the resulting model would help provide a “deviation”

measure to incoming new content (similar to [101]), and will therefore be useful

for novel event detection as well.

• Multimedia retrieval. On one hand the patterns can be learned offline on

the database to help re-rank the retrieved results similar to the re-ranking

in text retrieval [74]. The approaches can integrate plain retrieval score and

cluster-conditioned retrieval score, or help reduce the search space for each

query. On the other hand a learned pattern model can be used to help label

the incoming queries in a query–by-example scenario, thus invoking different

scoring strategies or multi-modal combination strategies. This can extend the

query-class dependent multimedia retrieval models via manual [25, 135] or

automatic [67] query-class determination.

• Multimodal summarization. If we view multimedia summarization as an

entity-utility optimization problem [116], a multimedia pattern model can be

incorporated into the utility function of a candidate summary. Scores from

the model (in the form of data likelihood or classification confidence) can then

influence the utility of a candidate set of entities (e.g., frames, shots, scenes,

stories, audio segments, text) in two ways: (1) They can preserve the continu-

ity and minimum length/duration of entities and maintain a pattern instance

being comprehensible. (2) They can improve the coverage among all multi-

media entities and to ensure that as many different pattern classes as possible

are represented.
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6.2.2 Working with unstructured data

This thesis has tested pattern discovery in produced video contents. The ideas of

capturing syntactic patterns and mapping them to semantics via metadata are also

applicable to other produced content collections, once a sufficient pool of content

descriptors is supplied.

What then, if we look outside of professionally produced videos? There is an

abundance of videos being captured and stored without professional editing (which

thereby imposes production syntax), they are found as meeting and seminar record-

ings, consumer home videos, surveillance feeds, as well as professional raw footage.

It is said that CNN gains 300 hours of such raw video everyday. Intuitively there

are indeed spatial-temporal relationships within a content domain, such as the topic

transitions common to many technical talks, the interaction patterns of attendees

due to a specific conference room setup, the people movement patterns in a spe-

cific surveillance location, or the people and activity distinctions in the raw footage

about parties or outdoor trips. It is noteworthy that a shot is typically longer in this

footage than in the produced content, if there is a shot break at all. As a result the

patterns therein more likely lie in answers to the questions “who, when and how”

than in the low-level features that often approximate the editing and production op-

erations. These features can be obtained from state-of-the-art detector and tracker

outputs [127, 93], or generic concept detectors [122]. Aside from including adequate

features, we also plan on incorporating context and partial knowledge in the forms

of model structure and learning constraints, as outlined in the next subsection.
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6.2.3 Incorporating context

In unsupervised pattern discovery we aim to learn recurrent patterns without the

often expensive labeled examples. Needless to say being supervision-free does not

exclude using partial domain knowledge to guide the discovery process. Building on

top of the unsupervised learning framework presented in this thesis, we plan to start

from a few simple contextual knowledge such as: (1) uniqueness – e.g., in a news

program, there is usually one and only one weather and one sports section per pro-

gram; (2) exclusion – e.g., two female primary anchors usually do not appear in the

same broadcast. These constraints can be incorporated by introducing additional

dependencies in the graphical model, the expected outcome would be patterns that

correspond better to meanings or topics in the domain.

While this is just a starting point towards incorporating knowledge and context

in multimedia, the computational formulation and instrumentation of rich knowl-

edge is certainly a long-term challenge.

6.2.4 Multi-modal, multi-source fusion

In this thesis we have focused on the integration of asynchronous sources without

requiring signal-level synchronization for the low-level data samples. It it worth

noting that both fusion strategies can nonetheless be integrated, and this strategy

shall be able to vary across different content or scene types (e.g., a talking head in

news or a voice-over in a film). This variation conform with the fact that the level

of perceptual fusion would differ depending on what are being perceived and fused

(e.g., texture, motion, pitch, versus object, phoneme or word) [68].

Multimedia streams do not come in isolation. News videos, for example, co-exist

in time with many other online or print news materials. Home videos, on the other
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hand, would bear multiple correlations with the calendar on the home PC, travel

logs as recorded by the GPS, and weather reports for the surrounding areas. Some

of these sources can be tightly integrated as another data modality, while others

may be better incorporated as contextual constraints.

Multimedia pattern mining faces grand challenges on two fronts: the data analy-

sis challenge of building powerful and versatile models, and the biological mystery

of perception and multi-sensory integration. While this effort is ambitious and far

from complete, I look forward to making multimedia data more useful with the

coming advances in both the computational versatility and perceptual insights.
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Appendix

A The inference and estimation for HHMM

This appendix provides details of the inference and estimation algorithm of a HHMM.

The rest of this section is arranged as follows: for convenience subsection A.1 re-

peats the representation of a HHMM from subsection 3.3.1, subsection A.2 outlines

the three questions in HHMM inference and estimation, subsection A.3 presents the

generalized forward-backward algorithm for estimating the posterior probability of

the multi-level hidden states, subsection A.4 outlines the Viterbi algorithm for de-

coding the maximum-likelihood multi-level hidden state sequence, subsection A.5

contains the parameter estimation steps, and subsection A.6 discusses the compu-

tational complexity of the inference with HHMM.

A.1 Representing an HHMM

For notation convenience we introduce a single index for all multi-level state con-

figurations in the HMM. Denote the maximum state-space size of any sub-HMM

as Q, we use the bar notation (Equation 3.1) to write the entire configuration of a

hierarchical state from the top (level 1) to the dth level with a Q-ary d-digit integer,
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with the lowest-level states at the least significant digit.

q(d) = (q1q2 . . . qd) =
d∑

i=1

qi ·Qd−i (6.1)

Here we use superscript without brackets qi to denote the ith digit in a d-digit

number q(d) (i is never the exponent), with 0 ≤ qi ≤ Q−1; i = 1, . . . , d. When there

is no confusion we drop the bracketed superscript for q(d) and use the short hand q to

represent the d-level configuration. The subscript of q are indexes of time, e.g. q1:t

would be the hidden state sequence up to time t. For example, a two-level HHMM

with two top-level states and three sub-states each, seeing the second children state

in the second top-level model for time t = 2 would be q2 = 4.

We represent the whole parameter set Θ of an HHMM as: (1) Emission parame-

ters B that specifies the distribution of observations given the state configuration.

i.e., the means µq and covariances σq when emission distributions are Gaussian. (2)

Markov chain parameters λd in level d indexed by their parent state configuration

q(d−1). λd in turn include: (2a) Within-level transition probability matrix Ad
q , where

Ad
q(i, j) is the probability of making a transition to sub-state j from sub-state i, and

i, j are dth-level state indexes having the same parent state q(d−1). Equivalently this

is also written as Ad(q′(d), q(d)) for two full configurations q′(d), q(d) that only differ

at their dth digit and lower. (2b) Prior probability vector πd
q , i.e., the probability of

starting in a children state upon “entering” q. (2c) Exiting probability vector ed
q ,

i.e., the probability “exiting” the parent state q from any of its children states. All

elements of the HHMM parameters are then written as in Equation 3.2, for notation

convenience and without loss of generality we assume that there is only one state

at the very top level and thus there is no need to define the transition probabilities
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there.

Θ = (
D⋃

d=2

{λd})
⋃
{B}

= (
D⋃

d=2

Qd−1−1⋃
i=0

{Ad
i , π

d
i , e

d
i })

⋃
(

QD−1⋃
i=0

{µi, σi}) (6.2)

A.2 Three question in HHMM inference and estimation

Having defined the representation of the HHMM, we now investigate its inference

and estimation algorithms. Analogous to HMM [99], we would like to use HHMM

for answering three questions:

1. Compute likelihood and posteriors. Given a model Θ and observation sequence

x1:T , how do we compute the probabilities of x1:T , or the probabilities of the

corresponding hidden states q1:T ?

2. Find the optimal multi-layer state sequence. Given a model Θ and observation

sequence x1:T , can we find a multi-layer hidden state sequence q̂1:T that best

“explains” the observations?

3. Parameter estimation. How do we adjust the parameters in Θ so that the

observations x1:T are better explained?

The first question is the estimation problem, here we would like to use the gen-

eralized chain structure to efficiently compute the data likelihood and the posterior

probability of the hidden states given the observations:

L
∧
= P (x1:T ; Θ), P (q1:T |x1:T ; Θ) = L−1P (x1:t, q1:T ; Θ) (6.3)



102

The solution uses a multi-layer forward-backward algorithm that iteratively mar-

ginalizes the hidden states over time.

The second question is the decoding problem, where we would find the sequence

that jointly maximizes the observation and state-transition likelihood using a multi-

layer Viterbi algorithm.

The last question concerns with maximizing the likelihood of seeing the data by

iteratively finding a new parameter set that “better” explains the observations.

A.2.1 The HHMM transition parameters

For the convenience in presenting the inference and estimation, we define hyper-

initial probabilities π̃(q) and hyper-transition probabilities ã(k′, k, d).

πq =
D∏

d=1

πd
qd , q = 0, . . . , QD − 1 (6.4)

ã(q′, q, d) =
D∏

i=d

ei
q′iπ

i
qi · Ad(q′d, qd), (6.5)

q′, q = 0, . . . , QD − 1; d = 1, . . . , D

Note that Equation 6.5 represents the probability of going from state q′ to state

q with a transition happening at level d, and no transition should happen in lev-

els above d, i.e., the highest d − 1 digits q1 through qd−1 in q and q′ should be

the same, while digits below and including level d could still be the same. The

hyper-transitions are parameterized as ã(q′, q, d) instead of ã(k′, k), in order for the

complete-data likelihood to be factorable (and hence has efficient EM) in subsec-

tion A.5.
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A.3 The forward-backward algorithm

In order to compute the observation sequence likelihood L
∧
= P (x1:T ; Θ), we need

to define auxiliary forward variables αt(q), i.e., the probability of the observation

sequence up to time t and the HHMM being in state q under the current model Θ:

αt(q)
∧
= P (x1:t, qt = q | Θ) (6.6)

We then use α to iteratively compute the data likelihood L, as shown in equations

(6.7)-(6.9). We use the short-hand notation of bq(x) as the emission probability of

seeing observation x conditioned on state q, where its specific form will depend on

the nature of the emission distribution, usually Gaussian or multinomial. Note that

each iteration step marginalizes the transitions into state qt, and thus making a

polynomial-time algorithm for marginalizing exponential number possibilities of all

hidden state sequence q1:T .

Initialization:

α1(q) = πqbq(x1); q = 0, . . . , QD − 1 (6.7)

Iteration:

αt+1(q) = bq(xt+1)
∑
qt

∑

d

αt(qt)ã(qt, q, d); (6.8)

t = 1, . . . , T − 1; q = 0, . . . , QD − 1

Termination:

L = P (x1:T ; Θ) =
∑

q

αT (q) (6.9)
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Similarly, we can define and compute the backward variable βt(q) representing

the probability of seeing observations after time t given the hidden state at t. They

will later become useful for parameter estimation in subsection A.5:

βt(q)
∧
= P (xt+1:T | qt = q; Θ) (6.10)

Similar to the forward iterations, βt(q) are computed as follows.

Initialization:

βT (q) = 1; q = 0, . . . , QD − 1 (6.11)

Iteration:

βt(q) =
∑

q′

∑

d

βt+1(q
′)bq′(xt+1)ã(q, q′, d); (6.12)

t = T − 1, . . . , 1; q = 0, . . . , QD − 1

A.4 The Viterbi algorithm

The Viterbi algorithm for decoding the optimum state sequence q̂1:T is very similar

to the forward algorithm except the following changes: (1) Replace the summation

with maximum in Equation 6.8. Thus we use the auxiliary variable δt(q) to represent

the likelihood of the “best” single path up leading to state q at time t, instead of

marginalizing over all paths in αt(q). (2) Keep backtrack pointers ψt(q) = (q̂′, ê′)

where q̂′ is the ”best-likelihood” states at t− 1 that leads to state q at time t, and

ê′ is the corresponding exit level taking values from D to 2; (3) Do back tracing

after the forward path, i.e., pick the ”best-likelihood” from time T , and trace back

to t = 1 according to ψ, recover the optimum path (q̂1:T , ê1:T ).
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The multi-level Viterbi iterations are as follows.

Initialization:

ψ1(q) = (0, 1); δ1(q) = πqbq(x1); (6.13)

q = 0, . . . , QD − 1

Iteration:

ψt+1(q) = arg max
q′, d

δt(q
′)ã(q′, q, d) (6.14)

δt+1(q) = bq(xt+1) ·max
q′, d

δt(q
′)ã(q′, q, d); (6.15)

t = 1, . . . , T − 1; q = 0, . . . , QD − 1

Back tracing:

q̂T = arg max
q

(δT (q)); êT = 1; (6.16)

(q̂t, êt) = ψt+1(q̂t+1); t = T − 1, . . . , 1; (6.17)

A.5 Parameter estimation

Denote Θ the old parameter set, Θ̂ the new (updated) parameter set, then maxi-

mizing the data likelihood L is equivalent to iteratively maximizing the expected

value of the complete-data log-likelihood Ω:

Ω(Θ̂, Θ) = E[ log( P (q1:T , x1:T |Θ̂) ) | x1:T , Θ ] (6.18)

=
∑
q1:T

P (q1:T |x1:T , Θ) log(P (q1:T , x1:T |Θ̂)) (6.19)

= L−1
∑
q1:T

P (q1:T , x1:T |Θ) log(P (x1:T , x1:T |Θ̂)) (6.20)
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Specifically, the ”E” step evaluates this expectations, and the ”M” step finds the

value of Θ̂ that maximizes this expectation. Hence if a hidden state space is properly

chosen, then Equation 6.20 will be delineated into a summation-of-unknowns form.

Then we can take the partial derivative of Equation 6.20, and solve each of the

unknowns in closed form.

We compute in the E-step the auxiliary state-occupancy variables γt(q) and the

transition variables ξt(q
′, q, d) using the forward-backward variables αt(q) and βt(q):

γt(q)
∧
= P (qt = q | x1:T ; Θ)

= L−1 · αt(k)βt(k) (6.21)

ξt(q
′, q, d)

∧
= P (qt = q′, qt+1 = q, et = d | x1:T ; Θ)

= L−1αt(q
′)ã(q′, q, d)bq(xt+1)βt+1(q) (6.22)

t = 1, . . . , T − 1

Obviously these auxiliary variables shall normalize as:

∑

k

γt(k) = 1,
∑

k

∑

k′

∑

d

ξt(k
′, k, d) = 1, γt(k

′) =
∑

k

∑

d

ξt(k
′, k, d).

We then obtain a new estimate for each of the parameters in Equation 6.2 by

marginalizing and normalizing the corresponding auxiliary variables, this will also

maximize the current expected complete-data likelihood (Equation 6.18). Here we

use q = (rir′) and q′ = (rir′′) to represent two state configurations that only differ at

the dth digit or lower, and share the highest (d− 1) digits r, i.e., q, q′, r must satisfy

the constraint r = q1: d−1 = q′1: d−1. Each estimation equations below estimates the

a transition parameter at level d, and r′ = qd+1:D
t , r′′ = qd+1:D

t+1 are used to represent

state configurations at levels lower than d.
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The prior probabilities:

π̂d
r (j) =

T−1∑
t=1

∑

r′

∑

r′′

∑
i

ξt((rir′), (rjr′′), d)

T−1∑
t=1

∑

r′

∑

r′′

∑
i

∑
j

ξt((rir′), (rjr′′), d)

(6.23)

Within-level transition probability:

Âd
r(i, j) =

T−1∑
t=1

∑

r′

∑

r′′
ξt((rir′), (rjr′′), d)

T−1∑
t=1

∑

r′

∑

r′′

∑
j

ξt((rir′), (rjr′′), d)

(6.24)

Level-exiting probability:

êd
r(i) =

T−1∑
t=1

∑
r

∑

r′

∑

q′

∑

d′≤d

ξt((rir′), q′, d′)

T−1∑
t=1

∑
r

∑

r′
γt((rir′))

(6.25)

Also note that for implementation purposes the temporal dimension of γ and ξ are

always marginalized out, in the implementation we compute γ̃(q) =
∑

t γt(q) and

ξ̃(q, q′, d) =
∑

t ξt(q, q
′, d) as the sufficient statistics.

Denote each observation xt as a n-dimensional row vector, the means and co-

variances of state q are easily obtained with the sufficient statistic γ̃(q);

µ̂q =

T∑
t=1

xt · γt(q)

T∑
t=1

γt(q)

, Σ̂q =

T∑
t=1

xT
t xt · γt(q)

T∑
t=1

γt(q)

(6.26)
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For the inference and estimation of a single HHMM model over U different

observations sequences, we first compute the sufficient statistics γu
t (q), ξu

t (q, q′, d)

for each sequence u using the recipes above, we then perform the E-step of the

algorithm (Equation 6.23-6.26) by summing over all sequences u = 1, . . . , U .

A.6 The complexity of learning and inference with HHMM

Denote T as the length of the observation sequence x1:T . The multi-level hidden state

inference of HHMM presented by Fine et. al. is O(T 3) by looping over all possible

lengths of subsequences generated by each Markov model at each level. Murphy and

Paskin [84] later showed an O(T ) algorithm with an equivalent DBN representation

by unrolling the multi-level states in time (Figure 3.2(b)). The inference scheme

used in [84] is the generic junction tree algorithm for DBNs, and the empirical

complexity is O(DT ·Q1.5D) (or more accurately, O(DT ·Qd1.5De2d0.5De)), where D

is the number of levels in the hierarchy, and Q is the maximum number of distinct

discrete values of any variable qd
t , d = 1, . . . , D.

In the algorithms presented above we use a generalized forward-backward al-

gorithm for hidden state inference, and a generalized EM algorithm for parameter

estimation based on the forward-backward iterations. This algorithm is chosen for

its simple structure that enables a specialized fast implementation on the forward-

backward iterations. The complexity of this algorithm is O(DT ·Q2D), superior to

the original O(T 3) algorithm [41], and similar to [84] for small D and modest Q.
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B Model adaptation for HHMM

This section presents the details for the stochastic search of the optimal model size

in section 3.4, these include computing the proposal probabilities, carrying out the

move in the state space, and computing the acceptance ratio.

B.1 Proposal probabilities for model adaptation

Let psp, pme, psw and pem denote the probability of splitting, merging, swapping

children states or staying put in the current state-space and perform EM update.

These quantities are then computed based on the current number of states κ, the

prior parameter ρ, and a simulation parameter c∗ controlling how likely the model

size would change:

psp(κ, d) = c∗ ·min{1, ρ/(κ + 1)}; (6.27)

pme(κ, d) = c∗ ·min{1, (κ− 1)/ρ}; (6.28)

psw(κ, d) = c∗; (6.29)

d = 1, . . . , D;

pem(κ) = 1− ΣD
d=1[psp(κ, d) + pme(κ, d) + psw(κ, d)]. (6.30)

Note ρ is the hyper-parameter for the truncated Poisson prior of the number of

states [7], i.e., the expected mean of the number of states if the maximum state size

is allowed to be +∞. ρ and κ modulate the proposal probability on the basis of c∗.

Intuitively, the probability of splitting a node decreases if the number of nodes κ is

already much larger than ρ.
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B.2 Computing different moves in RJ-MCMC

If EM is selected according to the probability profile computed in Equation 6.27-6.30,

we perform one regular hill-climbing iteration as described in section A. Otherwise

we select with uniform probability one (or two) states at any level for swap/split/merge,

and update the parameters accordingly:

• Swap the association of two states:

Choose two states from the same level, each of which belongs to a different

higher-level state; swap their higher-level association.

• Split a state:

Choose a state at random. The split strategy differs when this state is at

different position in the hierarchy:

– When this is a state at the lowest level (d = D), perturb the mean

of its associated observation sequence distribution as follows (assume

Gaussian)

µ1 = µ0 + usη

µ2 = µ0 − usη
(6.31)

where us ∼ U [0, 1], and η is a simulation parameter that ensures re-

versibility between split moves and merge moves.

– When this is a state at d = 1, . . . , D − 1 with more than one children

states, split its children into two disjoint sets at random, generate a new

sibling state at level d associated with the same parent as the selected

state. Update the corresponding multi-level Markov chain parameters

accordingly.

• Merge two states:
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Select two sibling states at level d, merge the observation probabilities or the

corresponding child-HHMM of these two states, depending on which level they

are located in the original HHMM:

– When d = D, merge the Gaussian observation probabilities by making

the new mean as the average of the two.

µ0 =
µ1 + µ2

2
, if |µ1 − µ2| ≤ 2η (6.32)

here η is the same simulation parameter as in .

– When d = 1, . . . , D − 1, merge the two states by making all the children

of these two states the children of the merged state, and modify the

multi-level transition probabilities accordingly.

B.3 The acceptance ratio for different moves in RJ-MCMC

When moves are proposed to a parameter space with different dimensions, such as

a split or a merge, we will need to take two additional terms into account when

evaluating the acceptance ratio [47]: (1) a proposal ratio term to ensure detailed

balance. Intuitively this is the ratio of the reverse move to the proposed move,

and it serves to balance the influence of the proposal probabilities and ensures that

every point in the state space would be visited in probability, i.e., “rewarding” not-

so-popular moves when they are proposed. Here p(us) is taken to be the uniform

distribution. (2) a Jacobian term to align the two spaces. As shown below:

rκ
∧
= (posterior ratio) · (proposal ratio) · (Jacobian) (6.33)

rsplit =
P (κ + 1, Θκ+1|x)

P (κ, Θκ|x)
· pme(κ + 1)/(κ + 1)

p(us)psp(κ)/κ
· J (6.34)
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rmerge =
P (κ, Θκ|x)

P (κ + 1, Θκ+1|x)
· p(us)psp(κ− 1)/(κ− 1)

pme(κ)/κ
· J−1 (6.35)

J =

∣∣∣∣
∂(µ1, µ2)

∂(µ0, us)

∣∣∣∣ =

∣∣∣∣∣∣∣
1 η

1 −η

∣∣∣∣∣∣∣
= 2η (6.36)

Here P (κ, Θκ|x) is empirically computed as the BIC posterior score of the model

Theta having κ nodes, psp(κ) and pms(κ) refer to the proposal probabilities as in

Equation 6.27 and Equation 6.28 at the same level d (omitted since split or merge

moves do not involve any change across levels).

The acceptance ratio for Swap can be simplified as the posterior ratio since κ

did not change during the move:

r
∧
= (posterior ratio) =

exp(B̂IC)

exp(BIC)
(6.37)
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C Low-level visual features for sports videos

This section provides details for extracting the features used in chapter 3. One

specially designed color feature, dominant color ratio is discussed in subsection C.1;

three generic motion features, motion intensity, horizontal and vertical translation

estimates are presented in subsection C.2.

C.1 Dominant color ratio

Dominant color ratio, as the name suggests, is designed to capture the percentage of

the dominant color in the frame. This simple feature is intuitively effective for videos

captured with several cameras in a constrained location, such as sports programs,

due to three reasons: (1) The dominant color exist across many types of sport.

Many sports games are carried out in a court/field of fixed dimensions, the location

of the players and the fields of view of the cameras are constrained. The court

or field would then be one of the most frequent object across the entire program.

Example sport include soccer, baseball, basketball, volleyball, tennis, badminton,

American football, etc. (2) The use of the dominant color introduces invariance

to lighting, location, and even the type of sport. For example, tennis courts can

be grass, clay, hard, or synthetic; soccer fields in different location are likely to

have different types of grass, or different types of lighting (day/night) during the

game; no to mention that soccer field and basketball court are of different colors.

Automatically learning the dominant color alleviates the burden of specifying the

range of the color manually for each clip. (3) The amount of dominant ratio reflects

the production style of sports videos and this in turn gives a useful clue for the

state of the game. The amount of dominant color is a telltale sign of whether or not

the camera’s attention is on the field, and this often indicates whether or not there



114

are interesting happenings in the game (see Figure 6.1). Computing dominant color

ratio involves two steps, i.e. learning the dominant color for each clip, and then use

the learned definition for each clip to find the percentage of pixels of this color.

Figure 6.1: Dominant color ratio as an effective feature in distinguishing three kinds
of views in soccer video. Left to right: global, zoom-in, close-up. Global view has
the largest grass area, zoom-in has less, and close-ups has hardly any (including
cutaways and other shots irrelevant to the game).

C.1.1 Adaptively learning the dominant color

Take soccer videos, for example, the grass color of the soccer field is the dominant

color. The appearance of the grass color, however, ranges from dark green to yellow-

ish green or olive, depending on the field condition and capturing device. Despite

these factors, we have observed that within one game, the hue value in the HSV

(Hue-Saturation-Value) color space is relatively stable despite lighting variations;

hence, learning the hue value would yield a good definition of dominant color.

The dominant color is adaptively learned for each video clip, using the follow-

ing cumulative color histogram statistic: 50 frames are drawn from the initial five

minutes (an I/P frame pool of 3000) of the video, the 128-bin hue histogram is

accumulated over all sample frames, and the peak of this cumulative hue histogram

correspond to the dominant color. This experiment is repeated eight times, each

with a different set of frame samples; two standard deviations below and above the

mean of the peak hue value over the eight trials is taken as the range for grass
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color in the current video clip; this definition will include 95.4% of the grass pixels,

assuming the distribution of peak hue value is Gaussian. This definition of dom-

inant color is specific enough to characterize variations across different games, yet

relatively consistent to account for the small variations within one game. We have

also performed this test for two soccer videos that comes from the same game, 30

minutes apart, and results indeed show that the difference of the mean hue values

over time is smaller than the standard deviation within one clip.

C.1.2 The dominant color ratio

Once we can distinguish grass pixels vs. non-grass pixels in each frame, the feature

dominant-color-ratio η is just computed as η = |Pg|/|P |, where |P | is the number

of all pixels, and |Pg| is the number of grass pixels.

C.1.3 The effectiveness of dominant color ratio

Observations showed intuitions that relates the dominant color ratio η to the scale of

view and in turn to the status of the game. Experiments in [134] showed accuracies

of 80% to 92% in labeling the three kinds of views using adaptive thresholds, and

accuracies 67.3% to 86.5% in segmenting play/breaks from the view labels using

heuristic rules. While the results are satisfactory, it is worth noticing that (1) the

scale of view is a semantic concept, and most of the errors in labeling views is due to

model breakdown; for example, zoom-in is sometimes shot with a grass background,

and the area of the grass is sometimes even larger than that of the global shots; (2) it

is not sufficient to model temporal relationships between views and game state with

heuristic rules, as most of the errors is caused by violation of the assumption that

a play-break transition only happens upon the transition of views. On the other

hand, shots and shot boundaries have similar drawbacks such as (1) shot boundaries
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are neither aligned with the transitions of play/break nor with switches in the scale

of view; (2) shot detectors tend to give lots of false alarms in this domain due to

unpredictable camera motion and intense object motion. Hence, in our learning

algorithms using HMM, each game state corresponds to a feature value distribution

of a mixture of Gaussians, while the temporal transitions are modeled as a Markov

chain.

Note the dominant color feature can be generalized to many other types of sports

as a good indicator of game status such as baseball, American football, tennis,

basketball, etc.

C.2 Motion features

In this section we present the estimation of three generic motion features from the

MPEG-compressed domain. These features are fast to compute and often gives an

informative estimate on constrained domains such as sports [60].

C.2.1 Motion intensity

Motion intensity m is computed as the average magnitude of the effective motion

vectors in a frame.

m =
1

|Φ| ·
∑
Φ

√
v2

x + v2
y , (6.38)

Φ = {inter-coded macro-blocks } (6.39)

and v = (vx, vy) is the motion vector for each macro-block.

This measure of motion intensity gives an estimate of the gross motion in the

whole frame, including object and camera motion. Moreover, motion intensity car-

ries complementary information to the color feature, and it often indicates the se-
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mantics within a particular shot. For instance, a wide shot with high motion inten-

sity often results from player motion and camera pan during a play; while a static

wide shot usually occurs when the game has come to a pause. Here we directly

estimate motion intensity from the compressed bitstream instead of the pixel do-

main, since MPEG motion vectors can approximate sparse motion field quite well,

and accurate motion estimation in the pixel domain is more expensive yet hard to

obtain good results.

C.2.2 Camera motion estimates

In addition to the overall motion intensity, we also compute a quick estimate of

the camera translation (mx,my). This estimate is obtained from the compressed-

domain motion vector field {v(i) = (vx(i), vy(i)), i ∈ Φ} (see Equation 6.38-6.39)

based on the work of Tan et. al. [119]. This estimate assumes (1) The camera

motion only contain zoom (with factor a s) and translation u = (ux, uy), (2) Object

motion is negligible compared to background motion, (3) The camera is far from

the scene and the differences in depth are negligible.

Since the camera zoom and translation estimates tries to characterize the global

change of motion field, it will inevitably use two motion fields adjacent in time to

obtain this estimate. Denote with v and v′ the compressed-domain motion field for

two inter-coded frames (P-frame) at time t and t + 1, the estimate seeks values for

(s, u) that minimized the translation objective function:

min J(s, u) =
∑
i∈Φ

‖v′(i)− s(v(i) + u)‖ 2 (6.40)

If the assumptions (1)-(3) were perfect than the minimum of J would be zero, i.e.,

the two motion fields would match after compensated with the zoom and translation
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factors. In reality, the minimum is attained at the following values of s and u:

s∗ =

∑
i(v

′(i)− v̄′)T (v(i)− v̄)∑
i ‖v(i)− v̄‖2

(6.41)

u∗ =
v̄′

s∗
− v̄ (6.42)

Here v̄ and v̄′ are the mean of the motion vectors in the current frame and the

previous frame, respectively. In our implementation we also eliminate outlier motion

vectors that are more than three standard deviations from v̄, since the block-based

motion compensation tend to incur noisy large vectors in areas with almost no

texture and very little motion.

Equation 6.41 and 6.42 gives closed-form estimates for the camera parameters.

They can be quickly computed from the motion field of the video stream in much

shorter than real-time, and in constrained domains such as sports, the estimates are

fairly accurate.
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