
Content is Dead . . . Long Live
Content: The New Age of
Multimedia-Hard Problems

I n multimedia research, content analysis has

always held a major role—burgeoned on a

foundation of machine learning and data-

intensive algorithms. Yet the past decade has

given rise to rich user annotations and massive

multimedia sharing. Social multimedia com-

puting quickly moved beyond computing fea-

tures to ultimately change how we understand

media semantics by adding into the equation

user-generated tags as well as social networking,

location-based services, and mobility (or

SoLoMo, as it is often abbreviated). Classic mul-

timedia problems seem to be simplified because

it is so much easier to automatically identify,

for example, a picture of the Golden Gate

Bridge if you have a mostly accurate location

information in the metadata.

So is there any role for the still iterating suc-

cess of visual analysis in finding that bridge

photo? What is the future of content analysis in

the world of annotation, tags, and crowd wis-

dom? We hosted a panel at ACM Multimedia

2012 in Nara, Japan (see Figure 1). Four panel-

ists (Susanne Boll from the University of Olden-

burg, Tat-Seng Chua from National University

of Singapore, Minoru Etoh from NTT DoCoMo,

and Malcom Slaney from Microsoft Research)

and an audience from academia and industry

debated whether content can continue to play

a dominant role in multimedia research, if it

has become secondary, or if it is dead in the age

of social, local, and mobile media.

“Multimedia-Hard” Problems
Over the course of the ACM Multimedia ses-

sion, the panelists kept revisiting what they

referred to as hard and easy multimedia prob-

lems, which are referred to as two distinct prob-

lem classes.

The panel remarked on several well-known

successes of artificial intelligence algorithms

such as face detection, optical character recog-

nition, music fingerprinting, and speech recog-

nition. Each of these widely used algorithms

now enable a range of applications that uses

them as components. In other words, multime-

dia applications using these components can

now be seen as easy problems, such as voice-

driven Web search.

The panel then discussed a perspective on

the scope of multimedia problems and

remarked that multimedia isn’t necessarily

about media, but about problems that can be

solved with input from multiple sources. Lever-

aging context to answer questions about media

content was given as one concrete example.

With media content available in social net-

works, location-based services, and mobile

devices (SoLoMo), the problem of content

understanding transforms into the joint under-

standing of the location or personal context

and content. For example, although general

recognition of an urban scene is a difficult prob-

lem, recognizing buildings and landmarks

given a GPS location becomes solvable because

it drastically narrows the search space. Another

example is to let human computations solve

the problem. For instance, Duolingo uses

the output from online language-learning
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Editor’s Note

Following the discussion of the ACM Multimedia 2012 panel on con-

tent analysis, the authors further investigate whether content can con-

tinue to play a dominant role in multimedia research in the age of

social, local, and mobile media. In this article, they propose that the

community now must face the challenge of characterizing the level of

difficulty of multimedia problems to establish a better understanding

of where content analysis needs further improvement. They also sug-

gest a classification method for multimedia problems.
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activitiesto translate Wikipedia and other docu-

ments to many languages (see http://en.wikipe-

dia.org/wiki/Duolingo). The infusion of human

intelligence into the content analysis process is

achieved by either a community of people or a

group of crowdsourcing workers. Such human-

in-the-loop processes will help in both under-

standing content and disambiguating context.

These two examples speak to the roles peo-

ple play in multimedia in today’s world. More

formally, it introduces people into the compu-

tational flow. To date, we have not attempted to

characterize the difficulty of multimedia

problems. The goal of this article is to go

beyond the debate that occurred at ACM Multi-

media 2012 and to propose such a classifica-

tion. (See the “Classifications of Computational

Problems” sidebar for related classification

research.)

Defining MM-Hard Problems
We attempt to describe multimedia problem dif-

ficulty in a way that resembles problem classifi-

cation in AI and is inspired by human-assisted

computation themes. Similar to AI, we use the

term multimedia-hard (MM-hard) to describe
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Classifications of Computational Problems

Our notion of multimedia-hard (MM-hard) builds off of key

terminologies from problem classification in computational

complexity1 and AI. NP (nondeterministic polynomial time)

is the set of decision problems where the “yes” instances

can be accepted in polynomial time by a nondeterministic

Turing machine. Informally, a problem is NP-complete if it

is NP and as “hard” as any problem in NP. One common

practice of showing a problem is NP-complete is first to

show that it is NP and then to reduce some known NP-com-

plete problem to it. NP-hard problems are, informally, at

least as hard as the hardest NP problems. A problem L is

NP-hard if it is at least as hard as an NP-complete problem,

but L does not have to be in NP.

This problem classification terminology found its way

into artificial intelligence in the early 1990s. The terms AI-

hard or AI-complete2 are used to describe the difficult prob-

lems in AI. The term “complete” here is used to describe a

nontrivial replication of human intelligence, aligned with

the strong AI paradigm.3
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Figure 1. Panelists and audience during the panel debate at ACM Multimedia 2012.
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difficult problems in multimedia. More formally,

MM-hard refers to problems in multimedia that

require human-level insights and perception

that are yet incapable of being realized through a

single algorithmic approach. Thus, it may

require a humans-in-the-loop aproach, where

the system makes use of crowdsourcing workers

or uses user-generated production, annotation,

or dissemination of media. With obvious term

similarities to the strong AI hypothesis,1 we

assert that the distinction in multimedia

research lies within clear semantic representa-

tions that consider the implications of percep-

tion and exhibit multimodal reasoning.

This notion of “strong” is attractive because

it appeals to the primary goal of machine intel-

ligence research. A more recent formalization

of AI problems is the notion of human-assisted

Turing machines (HTM).2 An HTM is a Turing

machine with access to an oracle, or human H.

Here a tuple <UH Mð Þ, UM Mð Þ> is used to

denote the complexity of HTM M, where

UH Mð Þ is the time complexity required from

the human oracle and UM Mð Þ is the time com-

plexity of the conventional Turing machine.

The HTM is a promising formalism for multi-

media problem classification for three reasons:

� There is an AI component in many multi-

media problems, such as image/video/

audio recognition, tagging, and search.

� The HTM framework can account for uncer-

tainty in the human oracle or can be extended

to account for multiple human oracles.

� Having complexity classes for multimedia

problems will enable problem reduction—

that is, more easily transfer solutions from

one problem to another—or define new

problem classes.

In essence, solutions to MM-hard problems

require such an oracle, be it an individual, com-

munity, or crowd, for computation. Beyond the

limitations of time and space, the problems

multimedia faces moving forward are not a

function of pixels or audio samples; they require

insight into how media is captured, shared, and

manipulated. This begins with expanding our

existing frameworks and formalisms.

Problem Difficulty and Reduction
The notion of MM-hard has the potential

to benefit multimedia research in two funda-

mental ways. The first is to describe problems in

terms of their (machine and human) difficulty;

the second is to be able to do problem reduc-

tion—that is, convert one problem to another

and compare problems.

One of the building blocks to achieving this

is a partial ordering for the difficulty of prob-

lems. For example, text to speech is considered

a solved problem with efficient and high-

quality polynomial-time algorithms,3 optical

character recognition can be considered an

HTM <O(1), polyonmial(n)> for recognizing n

symbols from a fixed-size vocabulary,2 and clas-

sification of n samples is <O(n), O(n)> if the

human oracle sees all input and classifies it or

<O(log n), O(n log n)> if the machine sorts the

samples and queries the human oracle for a

suitable threshold.2

The other building block consists of reduc-

tion methods to convert one problem to

another. For instance, speech understanding

can be reduced to a question-answering prob-

lem using text to speech as one of the conver-

sion components.4 For the multimedia domain,

a visual matching problem with a fixed (but

large) vocabulary, such as trademark recogni-

tion, can be reduced to an optical character rec-

ognition problem that requires O(1) human

time.

The HTM construct naturally permits

extensions for the complexity classes to

account for a diverse set of problems that arise

in real-world scenarios. Examples can include

nondeterministic HTMs (for example, analo-

gous to nondeterministic TMs) that consist of

decision problems that can be verified by a

deterministic HTM in poly-time, such as com-

mon-sense planning tasks.2 An HTM can also

permit probabilistic output from the human

oracle or parallel and distributed computation

in both machines and humans. Such parallel

and distributed variants have had importantIE
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applications and significant impact in recent

years, such as distributed content creation

(including the online encyclopedia Wikipedia

and question-answering sites Stackoverflow

and Quora) and crowd-sourced energy mini-

mization problems in biochemistry such as

FoldIt5 (see Figure 2).

An Outlook for MM-Hard and
Human-Assisted Computation
One may ask, what does MM-hard mean? Does

MM-hard change the “semantic gap”?6 The

answer to this important question is twofold.

First, MM-hard allows us to quantify the seman-

tic gap. Explicitly knowing that some problems

are harder than others can help direct problem-

solving efforts. Second, an MM-hard approach

lets us transfer and extend known solutions.

Being able to say, for example, that video copy

detection, music identification (such as the

Shazam Music Identification Service), and opti-

cal character recognition are problems of

roughly the same difficulty (subject to compu-

tational resources) can be a first step toward

adapting the solution from one problem to

another. Although MM-hard problem classes

do not close the “semantic gap” themselves, it

is useful to know which problem are facing a

bigger semantic gap, when applicable.

It is also worth noting that the landscape of

known problems are evolving and shifting,

thus changing the meaning of a “semantic

gap.” Speech recognition, for example, has

been a long-standing research challenge for sev-

eral decades, and the term “ASR complete” was

coined to describe its variants.7 It was only

recently that various systems has achieved high

enough recognition accuracy to allow real-time

human-computer interaction for conversa-

tional speech in natural environments (such as

Apple’s Siri).8 Another such example is a subset

of question-answering problems that is free of

memory and context; this too is becoming one

of the solved problems with the success of

IBM’s Watson.9

Finally, there are new problems and applica-

tions emerging in the spaces between problems

of known complexity classes, especially consid-

ering the different behaviors of the many

human oracles acting in a distributed and

probabilistic fashion. One such example can

be a “greedy” human oracle in interactive
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Figure 2. An overview of three problem classification schemes and their example problems. (a) P versus

NP and example NP-hard problems. (b) Example AI-hard problems. (AI Photo by Don Solo, CC BY-NC-SA

2.0, http://www.flickr.com/photos/donsolo/3302526343.) (c) Human-assisted computation examples

include the Duolingo online language learning and crowd-sourced translation application;

the FoldIt crowd-sourced protein folding game;5 and the 2011 DARPA Shredder Challenge (http://en.

wikipedia.org/wiki/DARPA_Shredder_Challenge_2011), with the winning entry employing a human-

in-the-loop approach with computers suggesting likely solutions.
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applications. Take photo album organization,

for instance; a user knows whether or not one

layout is better than the other but does not

know the governing criteria that will generate a

global optimal. Another example of a challeng-

ing problem can be information routing on

real-time social networks, for example, to relay

a message via Twitter for a small-world experi-

ment.10 This amounts to a networked, online,

streaming version of a decision problem—every

person on the route will need to decide who to

route the message to, yet the message will also

compete with other messages from the network

neighborhood.

There are a number of open challenges

before MM-hard can be claimed as the frame-

work for generic problem description and

reduction. Just as there is no known catalog of

all AI problems in terms of their complexity,

building such a MM-hard catalog may require

many limiting assumptions. It will still be val-

uable, however, to catalog as many challenges

as the problem nature allows, because doing so

will have immediate benefits for complexity

comparison and reduction.

Concluding Thoughts
Content understanding problems have been

and will continue to be a major part of multi-

media research. Content, context, and human-

powered computation have emerged as

research themes in multimedia analysis, as

reflected in the panel discussions at ACM Multi-

media 2012. We have used this article to relate

media analysis problems to known complexity

classes of computation, AI, and human-assisted

computation. We believe that such a problem

structure will benefit algorithm research and

help researchers develop novel applications

that can be reduced to subsets of known

problems. MM
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