
29

SCENT: Scalable Compressed Monitoring of Evolving
Multirelational Social Networks
YU-RU LIN, K. SELÇUK CANDAN, and HARI SUNDARAM, Arizona State University
LEXING XIE, IBM T. J. Watson Research Center

We propose SCENT, an innovative, scalable spectral analysis framework for internet scale monitoring of multirelational social
media data, encoded in the form of tensor streams. In particular, a significant challenge is to detect key changes in the social
media data, which could reflect important events in the real world, sufficiently quickly. Social media data have three challenging
characteristics. First, data sizes are enormous; recent technological advances allow hundreds of millions of users to create and
share content within online social networks. Second, social data are often multifaceted (i.e., have many dimensions of potential
interest, from the textual content to user metadata). Finally, the data is dynamic; structural changes can occur at multiple time
scales and be localized to a subset of users. Consequently, a framework for extracting useful information from social media data
needs to scale with data volume, and also with the number and diversity of the facets of the data. In SCENT, we focus on the
computational cost of structural change detection in tensor streams. We extend compressed sensing (CS) to tensor data. We
show that, through the use of randomized tensor ensembles, SCENT is able to encode the observed tensor streams in the form of
compact descriptors. We show that the descriptors allow very fast detection of significant spectral changes in the tensor stream,
which also reduce data collection, storage, and processing costs. Experiments over synthetic and real data show that SCENT is
faster (17.7x–159x for change detection) and more accurate (above 0.9 F-score) than baseline methods.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—
Information filtering; H.5.1 [Information Interfaces and Representation]: Multimedia Information Systems—Evaluation/
methodology

General Terms: Experimentation, Measurement, Algorithms, Human Factors
Additional Key Words and Phrases: Social media, social network analysis, stream mining, multirelational learning, tensor
analysis

ACM Reference Format:
Lin, Y.-R., Candan, K. S., Sundaram, H., and Xie, L. 2011. SCENT: Scalable compressed monitoring of evolving multirelational
social networks. ACM Trans. Multimedia Comput. Commun. Appl. 7S, 1, Article 29 (October 2011), 22 pages.
DOI = 10.1145/2037676.2037686 http://doi.acm.org/10.1145/2037676.2037686

1. INTRODUCTION

Large volumes of social media data are being generated through highly popular social media plat-
forms, such as Facebook, Twitter, Digg, and Flickr. For example, as of 2010, Facebook has 500 million

Authors’ addresses: Y.-R. Lin, K. S. Candan, and H. Sundaram, Arizona State University, Tempe, AZ 85281; email: yu-
ru.lin@asu.edu; L. Xie, T. J. Watson Research Center, Hawthorne, NY 10532.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2011 ACM 1551-6857/2011/10-ART29 $10.00

DOI 10.1145/2037676.2037686 http://doi.acm.org/10.1145/2037676.2037686

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:2 • Y.-R. Lin et al.

users,1 and Twitter currently has a rate of 36,000 tweets per minute.2 The nature of the data available
in these platforms present many opportunities: data about individuals and the social structures to
which they belong, are invaluable resources for understanding many multifaceted and complex social
phenomena, from entertainment to politics to religion, that permeate every aspect of our daily lives.
As many commercial/social/political institutions and movements rush to leverage the Web to improve
their reach, online communication takes an increasingly significant role alongside (and in some cases
surpassing) more traditional venues. In fact, today social media provide a key context for the rapid
emergence and dissemination of cultural memes. Therefore, a critical understanding of the develop-
ment and evolution of online social structures is increasingly important for educators, policy makers,
as well as advertisement agencies and, thus, there is an increasing demand for analysis frameworks
that can support applications, such as community discovery, that depend on information latent in the
social data [Chi et al. 2006; Kolda and Sun 2008; Lin et al. 2008; Lin et al. 2009; Sun et al. 2006].

We note essential computational elements in recognizing nuanced patterns of bridging and linking
among individuals and communities that occur through social media at different structural levels of
interaction.

—In social networks, user interactions and community interests are constantly evolving, often tracking
real-world events. Social media data is also multifaceted: typically involving multiple types of rela-
tionships (e.g., friendship, cocommenting on a news story). Entities in social networks may also have
different attributes, e.g., location, age, profession. The multidimensional and multirelational nature
of these interactions increases the complexity that the computational algorithms need to handle.

—The datasets relevant to the analysis are enormous in size and diverse in form and content, and are
growing and evolving rapidly. The volume of the data and the speed with which the data changes
pose significant challenges. Furthermore, a framework for extracting useful information from social
media data needs to scale also against the number and diversity of the facets of the data.

Consequently, scalable frameworks, which are able to analyze voluminous social media data, are im-
portant to any significant technical advances in social media understanding. In this article, we propose
SCENT, an innovative, spectral analysis framework for Internet scale monitoring of multi-relational
social media data, encoded in the form of tensor streams.

1.1 SCENT: Scalable Compressed Domain Analysis of EvolviNg Tensors

A scalable framework for managing voluminous user data in a form amenable for large scale data
analysis is a key step to any significant technical advances in social media understanding. The com-
putational ceiling arising due to finite resources requires us to pursue innovative strategies to address
the data scalability challenges. To facilitate very large scale data management and analysis, in this
paper, we propose SCENT, Scalable Compressed Domain Analysis of EvolviNg Tensors framework
for monitoring the evolution of multifaceted (also called multirelational) social network data resulting
from users’ continuous online interactions.

The key characteristics of social media data sets of urgent interest include the following: (a) volumi-
nous, (b) multirelational, (c) evolving, and (d) spectrally regular. As it is common in social media anal-
ysis, in SCENT, we model the social data in the form of tensor (multidimensional array) streams [Chi
et al. 2006; Sun et al. 2006] and consider the problem of tracking the changes in the spectral prop-
erties of the tensor over time. Prior work, including Sun et al. [2006], also considered this problem

1http://www.facebook.com/press/info.php?statistics.
2http://blog.twitter.com/2010/02/measuring-tweets.html.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:3

formulation and attempted to tackle the underlying computational complexity issues through incre-
mental tensor decomposition techniques.

The problem with these existing approaches, however, is that (while being faster than regular tensor
decomposition) even incremental tensor decomposition has exponential complexity [Sun et al. 2006].
To reduce the computational cost of detecting significant changes in the tensor streams, SCENT in-
troduces an innovative compressed sensing mechanism that is able to encode the social data tensor
streams in the form of compact descriptors. Compressive sensing (CS) is an emerging area of research
in information theory [Candès and Romberg 2007; Candès and Tao 2006; Candès and Wakin 2008],
which shows that under certain conditions a signal can be faithfully reconstructed using fewer number
of samples than predicted by the well-known Nyquist sampling theorem. We show that the descriptors
allow very fast detection of significant spectral changes in the tensor stream, which also reduce data
collection, storage, and processing costs.

While there has been work in other domains, such as audio, on change analysis and onset detection,
there are key domain-specific differences between the techniques applicable in different domains. The
major differences between traditional multimedia and social media data, especially within the context
of change detection, include: (a) at each time instance, the relevant data forms a (multirelational)
graph, as opposed to a vector or matrix of intensity values; (b) the graph is very large. Therefore,
change detection in social media data requires techniques that can efficiently detect structural changes
in very large graphs.

In this paper, we focus on the problem of change detection, a key step in understanding the devel-
opment and evolution patterns in multirelational social media data. Our contributions include the
following.

(1) Compressive sensing for tensors. The first contribution of this paper is to extend the recently devel-
oped CS theory to tensor stream analysis. CS theory has been primarily used in the analysis of 1D
and 2D continuous time signals. Furthermore, we note that (as we discuss in Section 3) the basic
compressed sensing theory assumes the availabilities of (a) a sparse data basis and (b) a constant
time random sensing mechanism, neither of which generally holds in social media tensors.

(2) Compressed tensor encoding. We show how to create and use random sensing ensembles to trans-
form a given tensor into a compressed representation that implicitly captures the spectral charac-
teristics of the tensor (i.e., the so called core tensor coefficients [Tucker 1966]). The length of this
compressed representation is only O(S · logN/S), where N is the size of data tensor and S is a
small approximation rank.

(3) Efficient change detection. We also show that if the goal is to only identify the points of significant
change (as opposed to discovering the values of the spectral coefficients at each time instance),
the random sensing ensembles can be created more cheaply. Moreover, changes can be detected by
comparing tensors in their compressed representations with logarithmic space cost.

(4) Tensor coefficient recovery. We propose three recovery strategies to incrementally obtain core ten-
sor coefficients either from the input data tensor or from the compressed representation. These
strategies can be used in different situations based on the availability of data and resources.

(5) Systematic evaluation. We systematically study the efficiency and effectiveness of our proposed
framework on both synthetic and real data sets. On synthetic datasets, we study the SCENT per-
formance over different data sizes, dimensionalities, and evolution scenarios. This provides a gen-
eral recommendation for applications with different computational resources available. On real
data sets, we demonstrate the efficiency of SCENT on monitoring time-varying multirelational
social networks. The experimental results show that our SCENT monitoring procedure is able to
maintain an approximated tensor stream with high accuracy (above 0.9 in terms of F1-score), low
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:4 • Y.-R. Lin et al.

to
pic

us
er

keyword

χ
t

keyword
factor user

factor

core
tensor topic

factor

Fig. 1. Social network representation via a 3-mode data tensor Xt at time t, which can be summarized by a core tensor and
factors for each mode (Tucker decomposition).

Table I. Description of Notations
Symbol Description
x a vector (boldface lower-case letter)
X a matrix (boldface capital letter)
X a tensor (boldface script letter)
I1, . . . , IM the dimensionality of mode 1, . . ., M
Ui |Ni=1,Xi |Ni=1 a sequence of N matrices or tensors
‖X‖ the norm of a tensor X
‖x‖1, ‖x‖2 the l1-norm or l2-norm of a vector x
�, � basis matrices

errors (under 1.1 relative to baseline tensor decomposition in real-world datasets) and low time
cost (17X–159X faster for change detection).

1.2 Organization

The rest of this article is organized as follows. Section 2 introduces tensor analysis and the problem of
spectral tracking. Section 3 presents the proposed framework, compressed sensing of tensors. Section 4
reports experiments. Section 5 reviews the related work, and Section 6 presents our conclusion and
future work.

2. SPECTRAL TRACKING FOR THE EVOLUTION OF SOCIAL NETWORKS

We model the social data in the form of tensor (multidimensional array) streams. This section provides
key notations and minimal background on tensor representation (Section 2.1) and anlysis (Section 2.2).
These will allow us to formally state the problem of tracking significant changes occurring in the
social media data stream (Section 2.3). For a more comprehensive review on tensors, we refer readers
to Kolda and Bader [2009].

2.1 Tensor Representation of Social Data

A tensor is a mathematical representation of a multiway array. The order of a tensor is the number
of modes (or ways). A first-order tensor is a vector, a second-order tensor is a matrix, and a higher-
order tensor has three or more modes. We use x to denote a vector, X denote a matrix, and X a tensor.
Figure 1 provides an example order-3 tensor representing the three-way relations of users, topics, and
keywords. Each entry (i, j, k), for example, could represent the number of times the user i submitted
an entry on topic j with keyword k. Table I presents the key notations used in this work. Please see
Appendix A for more details on tensors.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:5

...

time
data tensor stream

spectral tracking

.. …..

access cost

process cost

Fig. 2. Problem overview: Our goal is to develop a fast spectral tracking mechanism that reduces the processing cost.

2.2 Tensor Analysis

Matrix data is often analyzed for its latent semantics using a matrix decomposition operation known
as the singular value decomposition (SVD). The analogous analysis operation on a tensor is known
as tensor decomposition [Kolda and Bader 2009]. CP/PARAFAC [Carroll and Chang 1970; Harshman
1970] and Tucker decomposition [Tucker 1966] are the two most popular tensor decomposition variants
(see Kolda and Bader [2009] for a detailed review). In this paper, we use the Tucker decomposition to
obtain the spectral coefficients (and the basis matrices) of a given tensor.

Definition 2.1 (Tucker decomposition). A Tucker decomposition of X ∈ R
I1×···×IM yields a core tensor

Z of specified size R1 × · · · × RM and factor matrices Um|M
m=1 ∈ R

Im×Rm such that

X ≈ Z
M∏

m=1

×mUT
m, (1)

that is, the reconstruction error e = ‖X − Z
∏M

m=1 ×mUT
m‖ is minimized. The right-hand side denotes a

tensor multiplies a sequence of matrices: Z ×1 U1 · · · ×M UM where the symbol ×d denotes the mode-d
product (see Definition A.3). The Tucker decomposition approximates a tensor as a smaller core tensor
times the product of matrices spanned by the first few left singular vectors in each mode. Typically, the
factor matrices Um|M

m=1 in Tucker decomposition are assumed to be orthogonal (the assumption does
not hold for CP decomposition).

Figure 1 also depicts the Tucker decomposition of the order-3 tensor representing the three-way
relations of users, topics, and keywords. In this case, each factor matrix describes one distinct facet of
the data: that is, users, topics, and keywords clusters; the core tensor on the other hand indicates the
strength (e.g., amount of correlation) of the relationships among the three facets.

2.3 Spectral Tracking

Figure 2 illustrates a social data stream in tensor form. In this example, the data stream is represented
as a sequence of tensors, each representing a snapshot of the social network. Spectral tracking of
this stream involves identifying when significant changes occur in the data stream and updating the
analysis appropriately. Therefore, the problem of spectral tracking can be formalized as follows.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:6 • Y.-R. Lin et al.

“Given a sequence of tensors Xt|Tt=1 ∈ R
I1×...×IM , compute the core tensor and factor matrices, Zt and

Um;t|M
m=1 such that the mean reconstruction error

eT = 1
T

T∑
t=1

‖Xt − X̃t‖, (2)

where X̃t ≈ Zt
∏M

m=1 ×mUT
m;t, is minimized.”

The tracking process involves (1) fetching the data tensors for each time (access cost) and (2) deter-
mining whether there is a significant structural change at the time (process cost). Given the recon-
structed tensor stream X̃t|Tt=1, significant changes in the core tensor are often seen as indicators of the
structural (i.e., correlational) changes in the data [Kolda and Sun 2008; Sun et al. 2006]. However,
obtaining the core tensor through the decomposition process is expensive. While it is possible to in-
crementally maintain the decomposition, the time complexity of the incremental maintenance itself is
O(

∑M
i=1 Ri I2

i) + O(
∑M

i=1 Ii
∏M

j=1 Ij), that is, exponential in the number of modes, or data facets, M. Here
Ri denotes the specified rank of the i-th factor matrix, whereas Ii denotes the dimensionality of the
data tensor along the i-th mode.

Therefore, a key step in efficient spectral tracking is to minimize the computational cost required in
this process.

3. COMPRESSIVE SENSING OF TENSORS

In this article, we argue that

significant spectral changes can be detected and structural properties can be tracked with-
out having to rely on incremental decomposition maintenance.

We present an efficient spectral tracking framework in this section. After introducing the basic com-
pressed sensing theory (Section 3.1), we present how to extend the theory to tensor analysis (Section 3.2),
to develop algorithms for change detection and tensor recovery (Section 3.3 and 3.4).

3.1 Compressive Sensing

Recent developments in information theory have shown that under certain conditions, sparse signals
(i.e., signals with few spectral coefficients) can be recovered from a very small number of samples
or measurements [Candès and Wakin 2008]. Let v ∈ R

n be an n-dimensional vector (i.e., a signal).
Mathematically, sampling (or sensing) of this vector can be described in the form of a matrix product,
y = �v, with a k × n sensing matrix �. The k-dimensional vector y denotes the k samples one obtains
from the data vector v; v is called s-sparse if it has s nonzero entries. CS asserts that an s-sparse signal
v can be recovered from y if the sensing matrix, �, satisfies the restricted isometry property (RIP); that
is, � should be such that

(1 − δs)‖u‖2
2 ≤ ‖�u‖2

2 ≤ (1 + δs)‖u‖2
2 (3)

holds simultaneously for all s-sparse vectors u and a sufficiently small value δs (here ‖u‖2 =
√∑

i u2
i

is the l2-norm of vector u). Intuitively, RIP means that all subsets of s columns from � are nearly
orthogonal (but the columns of � cannot be exactly orthogonal since there are more columns than
rows). This result is especially useful because of the following two observations.

—Existence of a convenient sensing matrix. It has been shown that k × n random matrices whose rows
are chosen randomly from a suitable distribution satisfying RIP with overwhelming probability,
provided that k ≥ C · s · log(n/s), where C is some small positive constant[Candès and Tao 2006;
Candès and Wakin 2008]. This implies that it is easy to construct a sensing matrix with small
number of samples.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:7

—Sufficiency of sparsity in an alternative transform space. The result also holds for a suitably trans-
formed version of v that is s-sparse. Let � be a transformation matrix such that the coefficient vector
w = �−1v is s-sparse; then, the sampling process can be formulated as y = �v = ��w. The CS
theory states that, if � is a random matrix satisfying RIP, then in most cases the product A = ��

will also satisfy RIP [Baraniuk et al. 2008]. This implies that most real-world signals (whose coef-
ficients tend to be sparse in some spectral domain) can be efficiently sampled using CS. Note that
in CS literature, � often refers to an orthornormal basis (such as a wavelet basis); however, other
proper bases can be chosen as long RIP is satisfied, as we shall discuss later.

Furthermore, it has been shown that if we are given a k-dimensional sampling vector y = �v (or
equivalently y = ��w = Aw), the coefficient vector w can be recovered exactly, with high probability,
by solving the minimization problem:

minx‖w̃‖1 subject to y = Aw̃,

where ‖v‖1 = ∑
i |vi| is the l1-norm of v. Here the role of l1 minimization is to search the sparsest w̃

that satisfies the constraint y = Aw̃, and w = w̃ with high probability.

3.2 Sparse Random Sensing Tensors

Suppose � is a random sensing matrix satisfying RIP (Equation (3)); standard CS involves computing
the inner product of data vector with rows of �. We extend this to tensors as follows: Given a tensor
X ∈ R

I1×...×IM , we

(1) construct K random tensors Rk|K
k=1 of the same size as X , and

(2) obtain a sensing vector y with each element yk = 〈X ,Rk〉.
As discussed in Section 3.2, to efficiently encode data X into a compressed representation y, we need

to establish (a) a sparse data basis for X and (b) a constant time random sensing mechanism.
The described procedure has an equivalent counterpart in matrix form; we construct a K×N random

sensing matrix �, where N = ∏M
m=1 Im. � comprises vec(Rk) in each row, and then obtain y = �x, where

x = vec(X). Here, “vec(·)” is the vectorization operation which unfolds the tensor into a vector.
In practice, sensing matrices that satisfy the RIP property are quite easy to generate [Candès and

Tao 2006]. In our work, we consider a sparse ensemble suggested by Baraniuk et al. [2008], which
established that RIP holds with high probability when the K × N matrix � is drawn according to (as
long as K ≥ C · s · log(N/s) for all s-sparse vectors, where C is some positive constant):

�kj =
√

3
n

⎧⎨
⎩

+1 with probability 1/6
0 . . . 2/3.

−1 . . . 1/6
(4)

The advantage of such ensemble is that the sensing matrix � (i.e. the set of random tensors Rk’s) will
only have about 1/3 nonzero entries.

To construct sparse transformation of data, let us consider a tensor decomposition of tensor X ; that
is, X ≈ Z

∏M
m=1 ×mUT

m for Z ∈ R
R1×...×RM and Um|M

m=1 ∈ R
Im×Rm. While Z itself will be dense, the number

of coefficient in Z is much smaller than the size of X ; that is, Z can be seen as the set of sparse
coefficients of X . Note that, the vector y can be written as

y = ��z, (5)

where z = vec(Z) and � is a matrix representation of
∏M

m=1 ×mUm. Thus, we can see y as a sensing
vector (measurements) for not only the data tensor X , but also for the core tensor Z with respect to

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:8 • Y.-R. Lin et al.

Table II. SCENT CS-Based Change Detection
Input:

New data tensor Xt
Past sensing vector yt−i

The set of random tensors Rk|Kk=1
Output:

Spectral change at time t relative to time t − i
Change-Detection:
1. Sense yt from yk;t = 〈Xt,Rk〉
2. Compute δ = ‖yt − yt−i‖/‖yt−i‖. If δ > τy, output change

the transformed matrix (basis) � comprising of a particular set of factor matrices Um|M
m=1. With the

following lemma, it is easy to show that RIP (Equation (3)) holds for �� and the core tensor Z can be
recovered through compressive sensing.

LEMMA 3.1. If the factor matrices Um|M
m=1 are orthogonal, the matrix � constructed based on Equa-

tion (5) is also orthogonal.

See Appendix B for the proof of Lemma 3.1.

Accordingly, with the sparse transformed representation Z of data X , the length of the compressed
sensing vector y is only O(S · logN/S), where N is the size of data tensor and S is a small approxima-
tion rank (the size of core tensor). Also see Appendix B for more detailed discussion.

3.3 CS-Based Change Detection

Significant changes in the data are reflected in significant changes in the core tensor coefficients [Kolda
and Sun 2008; Sun et al. 2006]; thus significant changes in the tensor stream can be said to occur
between time instances t and t − i (for some i ≥ 1) if ‖�Z‖ = ‖Zt − Zt−i‖ = ‖zt − zt−i‖ > τz, for
some positive value τz. Because z = (��)−1y, we can write �z = (��)−1�y = (��)−1(yt − yt−i). This
means that, assuming that P−1 = (��)−1 exists, we can detect changes in the core tensor simply
by using the sensing vectors yt and yt−i. While, in general, P−1 may not exist, the Moore-Penrose
pseudo-inverse P+ = (PT P)−1PT is guaranteed to exist3 and is unique.4 Thus, we approximate �z
as �z∗ = P+(yt − yt−i). The transformed matrix � can be chosen from the tensor decomposition of
an arbitrary data tensor Xt′ so that for any zt and zt−i, � does not change and hence P remains
constant. Consequently, we have ‖�z∗‖ ∝ ‖�y‖ and the relative change in y can be computed by
δ = ‖yt−yt−i‖/‖yt−i‖. This enables us to develop a compressive sensing based spectral change detection
algorithm, as listed in Table II.

Cost. Let L be the number of nonzero entries in data tensors5 Xt and Xt−i. The computational cost
for detecting a spectral change in a given time instance only involves the random sensing process; that
is, K inner products on the nonzero entries in both data and random tensors, which is only O(KL).
Note that the set of random tensors used for sensing only need to be constructed once; the same set of
sensing tensors can be reused for each time instance.

3For arbitrary matrices, the existence of the Moore-Penrose pseudo-inverse may be established from the singular value decom-
position (SVD) [Golub and Van Loan 1996].
4If a matrix A is invertible, its inverse and pseudoinverse are the same; moreover the pseudoinverse of a pseudoinverse is the
original matrix.
5Tensors that encode social media are known to be relatively sparse [Kolda and Sun 2008].

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:9

3.4 Core Tensor Recovery

In this section, we present three complementary core tensor recovery strategies. We focus on the core
tensor coefficients as the factor matrices can be obtained from the latest performed tensor decomposi-
tion and can be folded together with a core tensor to approximate the original data. For the sampling
vector y = ��z, where � is the sensing matrix and � is a matrix representation of the factor matrixes
of the data tensor, the core tensor Z (or z) can be recovered by: (a) tensor decomposition based recovery,
(b) factor-driven recovery , and (c) CS-recovery. By leveraging with change detection procedure, these
strategies can be used in different situations based on the availability of data and resources.

Tensor decomposition based recovery. As we mentioned earlier, the conventional mechanism to re-
cover the core tensor is to either carry out full tensor decomposition or maintain the decomposition
incrementally. SCENT can reduce the cost by relying to them only when significant changes are de-
tected in the tensor stream as described in Section 3.3.

Factor-driven recovery. In factor matrix driven recovery, the core tensor is recovered using the data
tensor and the factor matrices. The transformation z = �T x which would give the core tensor coeffi-
cients from the data values and the matrix representation � of

∏M
m=1 ×mUm is equivalent to the tensor

operation Z = X
∏M

m=1 ×mUm. The computational cost of this process is O(N) where N = ∏M
m=1 Im, but

it relies on the availability of the full data tensor as well as the factor matrices. Note that unless a
significant change has been detected (in which case tensor will be decomposed), the set of factor ma-
trices can be picked from the most recent decomposition of an earlier data tensor; that is, � remains
unchanged, and tensor decomposition is needed only when significant spectral changes are detected
through compressive sensing.

CS-recovery. Let P = �� be a K × S matrix6. It has been shown that the core tensor coefficient z can
be recovered from constrained l1-minimization [Candès and Romberg 2007]:

minz‖z̃‖1 subject to y = Pz̃. (6)

When the data tensor is large, we have K ≥ S and this means that we no longer have an undersampled
situation given a fixed basis �; thus, z can be recovered unambiguously by l2-minimization:

min‖y − Pz̃‖2 (7)

and the solution z∗ is obtained from z∗ = P+y, where as mentioned earlier, P+ = (PT P)−1PT is the
Moore-Penrose pseudo-inverse. Note that, the computational cost of CS-recovery is dominated by com-
puting P which is O(KSN) where K × S is the size of P, N is the data size defined above. While
computing P is relatively expensive, this can be done offline (i.e., when a significant change is detected
and the factor matrices are being updated), and the online phase involves computing core tensor coef-
ficient given P.

We summarize these strategies in Table III (also see Appendix C for more details about the three
strategies). The overall encoding (sensing) and decoding (recovery) process is illustrated in Figure 3.

4. EXPERIMENTS

We evaluated SCENT on both synthetic data and real-world data sets with the goal of studying the
performance in terms of (a) change detection accuracy, (b) recovery error, and (c) cost running time.
We consider these under different (synthetic and real) data sets and parameter settings. In the fol-
lowing we first describe the datasets, the baseline methods and the performance metrics used in the
evaluations. We then report and discuss the results.

6Here we use a different variable P and z instead of A and w due to the special construction of P based on tensor decomposition.
See Appendix B for more detailed explanation.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:10 • Y.-R. Lin et al.

Table III. Core Tensor Recovery
Encoding: Given data tensor X ∈ R

I1×...×IM

1. Construct the random tensors Rk|Kk=1 of the same size as X
2. Sense y from yk = 〈X ,Rk〉
Decoding: Given sensing vector y, random tensors Rk|Kk=1, factor matrices Um|Mm=1
(a) Tensor decomposition (given the data tensor X)

Construct the core tensor by decomposing X
(b) Factor-driven recovery (given the data tensor X)

Construct the core tensor from Z = X
∏M

m=1 ×mUm
(c) CS-recovery (given the sensing vector y)

1. Construct the matrix P = ��

2. Compute core tensor coefficient z = vec(Z) from z = P+y

...
time

data tensor stream

.. …..

…
..

1RR

2R

KRR
…..

χ
1

χ
2

y1 y2

χ
t

yt

Encoding
(random sensing)

change detection
tensor
decompositon

...∼χ
1

∼χ
2

∼χ
t

Decoding
(tensor recovery)

Fig. 3. Our SCENT framework reduces the process cost by triggering tensor decomposition based on change detection.

4.1 Datasets

Digg dataset. From the Digg dataset described in Lin et al. [2009], we extracted a sequence of third
order tensors to represent the user-topic-keyword relation. Each tensor represents the data of one day
(from August 1 to August 27, 2008). Each (i, j, k)-entry in the tensor represents that a user i submits
a story of topic j with a keyword k. In this dataset, the average number of stories submitted per day
is 4076. Consequently, the data density per tensor, i.e. fraction of non-zero entries of a tensor, is about
3 × 10−6.

DBLP dataset. From the DBLP data, we generate a sequence of conference-author-keyword tensors.
Each (i, j, k)-entry in a tensor represents that an author j published a paper with keyword k in con-
ference i. Each tensor represents papers published in a year (from 1995 to 2008). In this dataset, the
average number of papers per year is 3180, corresponding to the mean number of nonzero entries of a
tensor. The data density per tensor is about 10−6.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:11

Table IV. Real-World Datasets
Dataset Digg DBLP

dimensions
2575 users × 51 topics 78 conferences × 6226 authors

× 8596 keywords × 6251 keywords
density 3 × 10−6 1 × 10−6

timestamps 27 (days) 14 (years)

The properties of tensors in both real datasets are listed in Table IV. As can be seen, the data tensors
in both datasets are relatively sparse.

Synthetic datasets. We design a simulation to generate synthetic tensor streams as input data. The
simulation, with ground truth available, helps get a more comprehensive picture about the perfor-
mance of SCENT in handling diverse structure change scenarios. We generated a set of tensor streams
(i.e., sequences of tensors) with characteristics that have been observed in prior research, such as
power-low distribution [Barabási et al. 2002] and densification over time [Leskovec et al. 2005]. The
simulation is controlled by a set of parameters (see Table VII in Appendix D for the list of parameters).
Specifically, we created tensors of different sizes (from 103 to 106), data densities (from 10−4 to 10−1),
and number of modes (from 3 to 6), with fixed Poisson parameter λ = 10 (average timesteps between
two changes) and tensor stream length T = 200. We used a relatively large drift rate (∼5%; data
deviation between two change events) and a high change frequency (λ = 10) to test SCENT in stress
conditions. The details of the synthetic data generation are provided in Appendix D.

4.2 Change Detection Methods

We compare the following monitoring procedures, each of which estimates change, �, and reports if �

exceeds a threshold τ .

(1) Naı̈ve-monitor – detects the change based on the difference in consecutive data tensors, that is,
� = ‖Xt − Xt−1‖/‖Xt−1‖.

(2) Basic-monitor – detects change based on the difference in reconstructed data tensors across time,
that is, � = ‖X̃t − X̃t−1‖/‖X̃t−1‖ where is the approximated tensor of X obtained from standard
Tucker tensor decomposition.

(3) DTA-monitor – Similar to the basic-monitor except the approximated tensors are obtained by an
incremental tensor analysis called DTA [Sun et al. 2006]. At each time t, DTA utilizes the de-
composition results of Xt−1 to compute X̃t. The forgetting factor in DTA is set to be 0.1 for all the
experiments as suggested by the authors7.

(4) SCENT-monitor – as described in Section 3.3, SCENT detects change based on the difference in
the random sensing of data tensors, that is, � = ‖yt − yt−1‖/‖yt−1‖, where y is the random sensing
of tensor X . The length of sensing measurements K is controlled by the sampling constant C and
core tensor size. We fixed the approximation rank to be 5 in each mode, for all methods described
below.

4.3 Recovery Methods

While DTA-monitor relies on conventional tensor decomposition, the SCENT-monitor uses the follow-
ing CS-based recovery strategies to maintain the approximated tensor streams:

—SCENT-c (piecewise-constant recovery) performs full tensor decomposition whenever a change is
detected using CS-based approach and holds the decomposition results until the next change point.

7When the forgetting factor is set to be 0, DTA outputs results as from standard Tucker tensor decomposition. We have used
DTA with forgetting factor 0 to implement Basic-monitor.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:12 • Y.-R. Lin et al.

—SCENT-f (factor-driven recovery) performs full tensor decomposition whenever a change is detected,
and uses the decomposition factor matrices to perform factor-driven recovery until next change point.

—SCENT-p (CS-recovery through P matrix) performs full tensor decomposition whenever a change
is detected, and uses the decomposition factor matrices to update the P matrix and to perform the
CS-recovery.8

4.4 Performance Metrics

We use three metrics to evaluate the efficiency of SCENT:

—Detection accuracy (F1): We evaluate change detection accuracy using the F1-score based on preci-

sion and recall: F1 = 2 · precision·recall
precition+recall .

—Error ratio: We assess the coefficient recovery performance by comparing the mean reconstruction
error (Equation (2)) against the mean reconstruction error of the Basic-monitor scheme.

—Running time (CPU time in seconds).

The experiments are repeated 10 times under each of the different settings and the average perfor-
mance results are reported.

4.5 Experiments with Digg and DBLP Data

Figure 4 shows the efficiency of SCENT-monitors on Digg and DBLP datasets, compared with baseline
methods Basic- and DTA- monitor. We use C = 1/4 for SCENT-monitors. Since in these datasets,
the ground truth about the abrupt changes is not available, for this experiment we only report the
recovery error ratio and the running times. Figure 4(a) shows the running time for the Digg dataset –
the recovery step for SCENT-monitor is required only when changes are detected, i.e. only in 5 of
the 27 days: day 3, 11, 16, 17, and 25. Figure 4(b) shows the error ratio in Digg dataset; the error
ratios appear to slightly increase right before change detection; the error ratio of SCENT-f remains low
throughout the experiment. Figure 4(c) shows the running time for the DBLP dataset; the recovery step
of SCENT-c is required only when significant changes are detected in ’98, ’02, ’03 and ’07. Figure 4(d)
shows the corresponding error ratio; once again error ratios of SCENT schemes remain low (<1.1).

Table V shows the average running times and error ratios. A summarization of performance gain
versus loss is given in Table VI. In addition to having low average error ratios in both datasets, the time
costs of SCENT-monitors (SCENT-c and SCENT-f) are relatively low. The SCENT-monitors perform
40 ∼ 159X faster in change detection and up to 3X faster in recovery, with an error penalty of 1 ∼ 4%
on average (ref. Table VI). Due to factor-driven recovery between two detected changes, SCENT-f has
a lower error ratio than SCENT-c, but a higher running time.

The experiments show that, since tensor decomposition takes significantly more time, a fast change
detection mechanism is critical in reducing the overall execution costs.

4.6 Synthetic Data Experiments

The goal of the experiments with synthetic data is to observe the detection accuracy based on the
ground truth and to observe the performance as a function of key parameters.

As can be seen in Figure 5(a), in terms of change detection accuracy, despite relying on the whole
dataset, the Naı̈ve-monitor performs the worse: that is, structural changes in the social media cannot
be estimated directly from the data. The other three methods show comparable performance. Note also

8Because the offline computation of P is relatively expensive, in this paper we focus on the online phase of CS-recovery and
report its performance on the synthetic datasets.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:13

(a) Digg

(b) Digg

(c) DBLP

(d) DBLP

Fig. 4. Efficiency comparison based on Digg and DBLP datasets. (a,c) Running time in Digg and DBLP datasets: The Basic-
and DTA- monitor perform full or incremental tensor decomposition at each time frame. For SCENT-c and SCENT-f, full tensor
decomposition is required only when changes are detected: see the peaks in the running time curves. For SCENT-c, since there
is no maintenance, the time costs between two change points include only the detection costs; for SCENT-f, however, the time
includes detection time plus factor-driven recovery time at each instance. Note that there is a significant difference in SCENT-f
costs between Digg and DBLP data sets. (b,d) The error ratios of SCENT-monitors remain low for most of the tensors; the errors
appear to slightly increase right before change detection. Note: we use a sampling constant C = 1/4 for SCENT-monitors. The
average performances are reported in Table V and Table VI.

Table V.
Average running time (in seconds) and error ratio. In both

datasets, all methods have similar recovery error ratios. However,
the time costs (both detection and recovery) of SCENT-monitor are

relative low.
Detection Digg DBLP Recovery Digg DBLP

time time time error time error
Basic 0.810 1.700 Basic 0.810 1 1.700 1
DTA 0.875 1.688 DTA 0.875 1.003 1.688 1.001
SCENT 0.020 0.011 SCENT-c 0.202 1.040 1.040 1.020

SCENT-f 0.338 1.011 1.011 1.010

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:14 • Y.-R. Lin et al.

Table VI.
Summary of performance improvement of SCENT-monitors

with respect to the Basic-monitor.
Recovery

Detection SCENT-c SCENT-f
Gain (speed-up) in Digg 40.4X 299% 144%
Loss (error increase) in Digg N/A 3.95% 1.97%
Gain (speed-up) in DBLP 159.3X 139% 11.51%
Loss (error increase) in DBLP N/A 1.09% 0.94%

(a) (b) (c)

Fig. 5. Efficiency comparisons with baseline methods. (a) detection accuracy (F1-score; higher is better), (b) recovery error ratio
(lower is better), and (c) run time (in seconds; lower is better). Note that for baseline methods (Basic- and DTA-monitor), the
detection time and recovery time are the same (for Naı́ve-monitor, the error ratio and running time do not have meaning; hence
it does not appear in (b) and (c)); C = 1/4 for the SCENT-monitors.

that the detection accuracy drops slightly in the case of large densification rates; again, the largest
drop is for the Naı̈ve-monitor.

As mentioned earlier, in these experiments we used a relatively large ∼5% drift rate and a high
frequency λ = 10 of abrupt changes to observe the recovery error in stress conditions. Figure 5(b)
shows that, the DTA-monitor is the best in terms of the recovery error relative to the Basic monitor.
This is expected as both perform similar tensor decompositions. The SCENT alternatives perform well
despite the significant drift rate (the error ratio is between 1.2 and 1.5 relative to the Basic-monitor).
Figure 5(c) shows that SCENT-monitor has much lower running time relative to alternatives. For
change detection, SCENT is about 17.7X faster than the baseline methods. CS-based processing also
helps reduce the recovery time for SCENT-c and SCENT-f by up to ∼25% despite the high frequency of
abrupt changes: the fact that SCENT-c recovery is much higher than the detection cost indicates that
most of the cost comes from the decomposition cost when changes are detected; the fact that SCENT-c
and SCENT-f are close to each other indicates that the factor-driven recovery adds only a minimal
overhead. Also note that the online phase of the SCENT-p recovery (with P matrix computed offline)
is 68%∼76% faster than the baseline methods.

Scalability. In Figure 6, we study how the computational time of SCENT varies with changes in (a)
tensor size (total number of entries of a tensor), (b) tensor density (ratio of nonzero elements in a data
tensor), and (c) tensor order (number of tensor modes. The running time increases sub-linearly with the
increase of tensor size (ref. Figure 6(a)). Figure 6(b) shows that running time increases roughly linearly
with tensor density. Note that in both Figure 6(a) and (b), the x-axes are in log-scale. Figure 6(c) shows
the detection running time remains constant and the recovery running time increases almost linearly
with the number of tensor modes. This is important in that the core tensor size, and hence the cost
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:15

(a) (b) (c)

Fig. 6. Scalability evaluation. We evaluate scalability with respect to: (a) tensor size (total number of entries of a tensor),
(b) tensor density (ratio of non-zero elements in a data tensor), and (c) tensor order (number of tensor modes. For both detection
and recovery, the running time increases sub-linearly with tensor size and roughly linearly with tensor density and order. Note
that the x-axes in (a) and (b) are in log-scale.

of decomposition, increases exponentially with the number of modes. Our SCENT method reduces
the overall process cost tremendously by taking advantage of a fast change detection algorithm. The
results are in agreement with Section 3.3.

5. RELATED WORK

Stream mining and time-series analysis. There is abundant literature on stream mining and time-
series analysis, such as efficient frequent-item mining based on statistical synopses and other approx-
imation techniques [Cormode and Hadjieleftheriou 2009], anomaly or novelty detection [Yang et al.
1998; Dasgupta and Forrest 1996], and clustering different types of data streams [Aggarwal and Yu
2005; Aggarwal 2003; Chen and Liu 2009; Aggarwal and Yu 2010]. There has also been work us-
ing online or incremental supervised learning on data streams to address the “concept drift” problem
[Domingos and Hulten 2000; Wang et al. 2003]. Most of these proposed methods focus on time-series
of scalar values, categorical or homogeneous network data as opposed to our multi-relational network
data.

Online news and event tracking. The problem of tracking online news or events has been studied
as part of the Topic Detection and Tracking (TDT) task [Allan et al. 1998; Kumaran and Allan 2004]
which seeks to identify and organize news events in a continuous stream (e.g. a stream of broadcast
news stories). With the abundance of text corpora, many of these approaches rely on natural language
processing techniques [Brants et al. 2003; Kumaran and Allan 2004], document clustering [Allan et al.
1998], or LDA-based models [Blei et al. 2003; Blei and Lafferty 2006; Wang and McCallum 2006].
The problem has recently attracted considerable research interests due to the extraordinary popu-
larity, growth, and influence of online social media. There has been work on tracking events in blogs
[Balasubramanyan et al. 2009; Leskovec et al. 2009]. Besides textual features, there has been work
utilizing a variety of context features in social media, such as authors, tags, hyperlinks, times, and
locations, to improve event mining from social media sources. For example, Becker et al. [2009] iden-
tified events (e.g., President Obama’s inauguration) by combining the variety of social media features
based on a few domain-specific similarity metrics and a weighted ensemble clustering. Many of these
approaches concern offline process of data and disregard the online scalability issues. In complemen-
tary, our scalable online framework can be applied to this line of work in that we consider a more
general rich setting where keywords are on one of multiple facets and an event is manifested as long
as a significant change occurs in the correlations of multiple facets.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:16 • Y.-R. Lin et al.

Tensor analysis. Tensor decompositions have been used in a variety of applications in data mining.
Chi et al. [2006] applied the high-order singular value decomposition (HOSVD, a version of the Tucker
decomposition) to extract dynamic structural changes as trends of the blogosphere. Sun et al. [2006]
proposed methods for dynamically updating a Tucker approximation, with applications ranging from
text analysis to network modeling. Although tensors are power tools for representing and mining
higher order data, the analysis based on tensor decomposition are usually expensive. To tackle large-
size tensor decomposition, Kolda and Sun [2008] have proposed a scalable Tucker decomposition for
sparse tensors. A biased sampling method has been proposed in CUR tensor decomposition [Drineas
and Mahoney 2007], which reduce tensor dimensions based on the marginal norm distribution along
each mode.

Applications of compressed sensing. The desirable features of CS has drawn significant research
interests in signal processing, and has been recently extended to many applications, ranged from com-
puter vision to networked data analysis [Haupt et al. 2008]. For example, Bajwa et al. [2006] applies
CS to identify sparse channels in order to optimize the wireless communication systems.

Graph mining, compression and sampling. Latent Semantic Indexing (LSI) [Deerwester et al. 1990]
employs SVD to discover the latent topics or factors in the document-term matrix. On the Web, meth-
ods based on ranking algorithms [Brin and Page 1998; Kleinberg 1999], spectral clustering or graph
partitioning [Shi and Malik 2000] and probability mixture model (such as PLSI [Hofmann 1999]) have
been proposed for web data reduction. In addition, time-varying graphs have been analyzed through,
for example, evolutionary clustering [Lin et al. 2008]. Also, existing works in lossless social graph com-
pression [Chierichetti et al. 2009] are able to reduce the storage complexity to 3–4 bits per edge. The
graph sampling work has a different goal in that it seek to reduce the data in a way that preserves sta-
tistical and topological properties of the overall network [Leskovec and Faloutsos 2006; Rusmevichien-
tong et al. 2001]. Most algorithms leverage connectivity and the degree of activity as indicators of
importance and filter the graphs in a way that maintains only important nodes and edges [Leskovec
and Faloutsos 2006].

Many existing social network analysis and mining approaches do not consider the impact of temporal
dynamics on the analysis quality and computational cost. In this paper, we focus on identifying the
significant change points when a costly tensor computation would be necessary. Through compressive
sensing, our SCENT framework provides a strong indication of the change to the core tensor. Between
significant changes, the spectral properties are tracked using relatively cheaper alternatives with good
recovery properties.

6. CONCLUSION AND FUTURE WORK

We proposed the SCENT framework for monitoring the evolution of multirelational social network
data from users’ continuous online interactions. To track spectral characteristics in multirelational
data, prior work relies on tensor decomposition, which is computationally expensive for Internet-scale
data management and analysis. The key idea in this article was that significant spectral changes in
multi-relational networks can be quickly detected before tensor decomposition, and the fast change
detection can further speed up the tensor stream approximation. We leveraged tensor-based analysis
with the recent established CS theory to develop the SCENT framework, which involved: (a) encoding
the observed tensor streams in the form of compact descriptors through sparse random sensing, and
(b) incrementally obtaining core tensor coefficients either from the input data tensor or from the com-
pact descriptors. The experimental results showed that our SCENT monitoring procedure was able
to maintain an approximated tensor stream with high accuracy (above 0.9 in terms of F1-score), low
errors (under 1.5 relative to baseline tensor decomposition) and low time cost (17X–159X faster for
change detection).
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:17

APPENDIX

A. TENSORS

This sections provide the key notations and main concepts used in this article. For a more comprehen-
sive discussions on tensors, we refer readers to Kolda and Bader’s review [Kolda and Bader 2009].

A tensor is a mathematical representation of a multiway array. The order of a tensor is the number of
modes (or ways). We use x to denote a vector, X denote a matrix, and X a tensor. A sequence of tensors
X1 . . .Xn is called a tensor stream, if n is a positive integer that increases with time. The dimensionality
of a mode is the number of elements (entities) in that mode. We use Id to denote the dimensionality
of mode d. For instance, the tensor X ∈ R

I1×I2×I3 has 3 modes with dimensionalities of I1, I2 and I3,
respectively. The (i1,i2,i3)-element of a third-order tensor is denoted by X123. Indices typically range
from 1 to their capital version, for instance, i1 = 1,. . . ,I1. Specifically for a matrix X, we use X(i, :)
and X(:, j) to extract the i-th row and the j-th column of X. We provide the definitions of tensor norm,
matricization or unfolding, and tensor product in Appendix A.

Definition A.1 (Tensor norm). The norm of an M-order tensor X ∈ R
I1×...×IM is ‖X‖ =√∑I1

i1=1
∑I2

i2=1 . . .
∑IM

iM=1 x2
i1i2...iM

.

Definition A.2 (Mode-d matricization or unfolding). Matricization is the process of reordering the
elements of an M-way array into a matrix. The mode-d matricization of a tensor X ∈ R

I1×...×IM is
denoted by X(d), i.e. unfold(X , d) = X(d) ∈ R

Id×∏
q∈{1,...,M},q
=d Iq . Unfolding a tensor on mode d results in a

matrix with height Id and its width is the product of dimensionalities of all other modes. The inverse
operation is denoted as X = fold(X(d)) ∈ R

I1×...×IM . Similarly, we can define a vectorization operation
x = vec(X), which linearizes (unfolds) the tensor into a vector.

Definition A.3 (Mode-d product). The mode-d matrix product of a tensor X with a matrix U ∈ R
J×Id

is denoted by X ×d U and results in a tensor of size I1 × . . . × Id−1 × J × Id+1 × . . . × IM. Elementwise,
we have (X ×d U)i1i2...id−1 jid+1...iM = ∑Id

id=1 xi1i2...iM ujid. In general, a tensor X ∈ R
I1×...×IM can multiply a

sequence of matrices Ui|M
i=1 ∈ R

Ii×Ri as: X ×1 U1 . . . ×M UM, which can be written as X
∏M

i=1 ×iUi for
clarity.

B. PROOF AND DISCUSSION

PROOF OF LEMMA 3.1. In Equation (5), � is a matrix representation of
∏M

m=1 ×mUm. Specifically, let j
be the linear index corresponding to a set of subscript values (j1, . . . , jM), and define a tensor B j such
that

B j = B j1... jM =
M∏

m=1

×mUm(:, jm), 1 ≤ jm ≤ Rm,

where Um(:, jm) is the jm-th column of Um. � is constructed such that �(:, j) = vec(B j) ∀1 ≤ j ≤ S,
where S = ∏M

m=1 ×mRm. Let um
im = Um(:, im), um

jm = Um(:, jm), ∀m ∈ [1, M], be two set of vectors. We have
Bi = Bi1...iM = u1

i1 ⊗ u2
i2 ⊗ . . . ⊗ uM

iM
and B j = B j1... jM = u1

j1 ⊗ u2
j2 ⊗ . . . ⊗ uM

jM , where ⊗ denotes the tensor
product operation (or outer product).

The inner product 〈Bi,B j〉 = 〈u1
i1 ⊗u2

i2 ⊗. . .⊗uM
iM

, u1
j1 ⊗u2

j2 ⊗. . .⊗uM
jM〉 = 〈u1

i1 , u1
j1〉〈u2

i2 , u2
j2〉 . . . 〈uM

iM
, uM

jM〉.
Hence, 〈Bi,B j〉 = 1 when i = j and 0 if i
= j. Since �(:, j) = vec(B j) ∀1 ≤ j ≤ S, the columns of � are
mutually orthogonal.

With Lemma 3.1, we can establish that RIP (Equation (3)) holds for the pair �� due to the in-
coherence [Candès and Romberg 2007] between � and �, where � here is constructed by the sparse

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:18 • Y.-R. Lin et al.

…
..

X
1RR

2R

Krandom tensors

KRR

.

y
Encoding

factor matrices

P

Decoding

core tensor

data tensor

(c) CS−recovery

(a) tensor decomposi�on

(b) factor-driven

inner product

Fig. 7. Recovery strategies: (a) tensor decomposition based, (b) factor-driven, and (c) CS-recovery.

ensemble method and satisfies RIP [Baraniuk et al. 2008]. The verification of RIP in Equation (5) plays
a crucial role in our method. In CS literature, the formulation of sampling process y = �v = ��x usu-
ally considers the transformation matrix � as an n × n orthonormal basis, where n is the length of
signal. Consequently, the transformed vector x ∈ R

n is required to be s-sparse (where s < n). In such
case, the at most s nonzero entries in x can be effectively recovered by l1-minimization [Candès and
Romberg 2007] (as described in Equation (6)). In our method, the transformation matrix � ∈ R

N×S

(i.e. the matrix representation of
∏M

m=1 ×mUm) is not an orthonormal basis and it directly transforms
the data into a relatively small vector z ∈ R

S (the vector representation of the core tensor Z). Hence
we need to verify that RIP holds for �� in Equation (5) in particular to assure that

∏M
m=1 ×mUm is a

proper basis and z is a concise representation in this basis (z is not necessarily sparse).
The proper transformation leads to two main advantages in our method. First, in the sensing step

(Section 3.2 and 3.3), the length of the sensing vector y ∈ R
K, is determined by the choice of the K × N

sensing matrix � (i.e., the set of random tensors Rk’s). When � is constructed by the sparse ensemble
method [Baraniuk et al. 2008], RIP holds for the random sensing matrix � as long as K ≥ C ·s ·log(N/s)
for all s-sparse vectors, where C is some positive constant. Based on Lemma 3.1, we can verify that
RIP holds for the S-length vector z as long as K ≥ C · S · log(N/S) random tensors are used. Hence,
the length of the compressed sensing vector y is only O(S · logN/S). Second, in the recovering process
(Section 3.4), we show that when K is chosen to be larger than S in the sensing step, z can be recovered
unambiguously by l2-minimization (Equation (7)), which is a more effective recovering process than l1-
minimization.

C. RECOVERY STRATEGIES

The core tensor recovery strategies described in Section 3.4 can be illustrated by Figure 7. By lever-
aging with change detection procedure, these strategies, corresponding to different ways the random
sensing ensembles have been constructed, can be used in different situations based on the availability
of data and resources.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:19

10% 30% 50% 70% 90%
0

1

2

3

4

5

preserving density

ru
nn

in
g

tim
e

(s
ec

.)

SCAN (detection)
SCAN−c (reocvery)
SCAN−f (recovery)

(a) Digg

10% 30% 50% 70% 90%
0

5

10

15

20

25

preserving density

ru
nn

in
g

tim
e

(s
ec

.)

SCAN (detection)

SCAN−c (reocvery)

SCAN−f (recovery)

(b) DBLP

Fig. 8. Running time against data density. The running time remains roughly constant when randomly removing 10% ∼ 90%
elements from the original data tensors in both real-world datasets.

(a) (b) (c)

Fig. 9. (a) Detection accuracy (F1-score), (b) error ratio, and (c) detection running time (sec.) over different values of sampling
constant C. The performance of SCENT increases with larger value of C (higher accuracy and lower error ratio), with slightly
increase in running time.

D. EXPERIMENT DETAILS

Running time in Digg and DBLP data. In Figure 8, we study how the computational time of the
three variants of our SCENT method vary with changes in data density. The original data density
(number of nonzero elements in data tensors) in both real-world datasets can be found in Table IV.
In these experiments, we randomly remove 10% ∼ 90% elements from the original data tensors and
report the running time of SCENT. As can be seen, the running time remains almost constant on both
datasets. This observation is also consistent with the scalability test in the synthetic data experiments
(see Figure 6(b)) which shows that when the data density increases exponentially, the running time
increases roughly linearly.

Length of sensing vector. Figure 9 shows the impact of the parameter, C, on SCENT in the synthetic
data experiments: a larger value of C leads to higher accuracy in detection and lower error ratio, with
only slightly increase in the detection time. The empirical results suggest that both the detection and
recovery quality are reasonably well as long as C ≥ 1/4.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:20 • Y.-R. Lin et al.

Table VII. Synthetic Data Settings
Fixed settings:
� tensor stream length (T): 200
� drift rate: ∼ 5% (data deviation between two change events)
� change frequency (λ): 10 (average timesteps between two changes)
Varying settings:
� tensor size, density, and number of modes
� densification rate (κ): with probability κ, a non-zero entries is relocated

through preferential attachment

Table VIII. Data Drift Model
Given: data tensor X ∈ R

I1×...×IM , densification probability κ, drift rate δ,
generate data drift H by the following process:

H := X
Repeat while ‖H − X‖/‖X‖ < δ

Randomly pick a non-zero entry x from H
Randomly pick a mode m ∈ [1, M]
With probability κ, pick a zero entry x′ from H along mode-m with

probability proportional to∑
i1 ...im−1im+1 ...iM

hi1 ...im−1imim+1 ...iM∑
i1 ...iM

hi1 ...iM

and then swap the value of x and x′
With probability 1 − κ, randomly pick a zero entry x′ from H along mode-m,

and then swap the value of x and x′

Synthetic data settings. In the synthetic data experiments (ref. Section 4.1), we generated a set
of tensor streams (i.e., sequences of tensors) with characteristics that have been observed in prior
research. The simulation is controlled by a set of parameters listed in Table VII.

Data drift in Synthetic datasets. The synthetic data are generated as follows: each tensor stream
Xt|Tt=1 is generated to simulate (a) abrupt changes and (b) drifts. Abrupt change events are gener-
ated based on Poisson distribution with parameter λ, the expected length of interval between changes.
We model an abrupt change at t by generating a random tensor Xt, where the nonzero entries are
distributed at random according to a specified data density (i.e., the ratio of the number of nonzero en-
tries to the total number of entries in a tensor). Drifts are small changes between consecutive tensors.
Since it has been observed that social network evolution exhibits preferential attachment phenomena
[Barabási et al. 2002] and the network tends to densify over time [Leskovec et al. 2005], we model
drifts through a densification parameter, κ; with probability κ, a nonzero entry is relocated through
preferential attachment and with probability 1 − κ, it is moved to a random location. The relocation
process proceeds until the tensor norm deviates from the original at a specified rate.

We model data drift to simulate the preferential attachment phenomenon. Prior work on preferential
attachment considers a unipartite or bipartite network. To implement the idea on multirelational
networks, we relocate a nonzero entry in a tensor based on the degree distribution along each mode of
the tensor. The parameter, densification probability κ, controls to what extent the data drift is driven
by preferential attachment. Another parameter, drift rate δ, controls how much the new data tensor
deviates from the old one. The data drift model is given in Table VIII.

ACKNOWLEDGMENTS

We thank Jimeng Sun for providing us with the DTA source code, Nan Cao for helping prepare the
DBLP dataset, and Mahsa Mojtahedi for the help with the experiment resources.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

SCENT: Scalable Compressed Monitoring of Evolving Multirelational Social Networks • 29:21

REFERENCES

AGGARWAL, C. 2003. A framework for diagnosing changes in evolving data streams. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data. ACM, 586.

AGGARWAL, C. AND YU, P. 2005. Online analysis of community evolution in data streams. In Proceedings of the SIAM International
Conference on Data Mining. SIAM, 56.

AGGARWAL,C., ZIE, Y., AND YU, P. 2010. On clustering graph streams. In Proceedings of the SIAM International Conference on
Data Mining.

ALLAN, J., PAPKA, R., AND LAVRENKO, V. 1998. On-line new event detection and tracking. In Proceedings of the Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 37–45.

BAJWA, W., HAUPT, J., SAYEED, A., AND NOWAK, R. 2006. Compressive wireless sensing. In Proceedings of the 5th International
Conference on Information Processing in Sensor Networks. ACM, 142.

BALASUBRAMANYAN, R., LIN, F., COHEN, W., HURST, M., AND SMITH, N. 2009. From episodes to sagas: Understanding the news
by identifying temporally related story sequences. In Proceeedings of the 3rd International AAAI Conference on Weblogs and
Social Media (Poster).

BARABÁSI, A., JEONG, H., NEDA, Z., RAVASZ, E., SCHUBERT, A., AND VICSEK, T. 2002. Evolution of the social network of scientific
collaborations. Physica A: Stat Mechan Appl. 311, 3–4, 590–614.

BARANIUK, R., DAVENPORT, M., DEVORE, R., AND WAKIN, M. 2008. A simple proof of the restricted isometry property for random
matrices. Construct. Approxim. 28, 3, 253–263.

BECKER, H., NAAMAN, M., AND GRAVANO, L. 2009. Event identification in social media. In Proceedings of the ACM SIGMOD
International Conference on Management of Data Workshop on the Web and Databases (WebDB’09).

BLEI, D. AND LAFFERTY, J. 2006. Dynamic topic models. In Proceedings of the International Conference on Machine Learning.
ACM, 120.

BLEI, D., NG, A., AND JORDAN, M. 2003. Latent dirichlet allocation. J. Mach. Learn. Resear. 3, 993–1022.
BRANTS, T., CHEN, F., AND FARAHAT, A. 2003. A system for new event detection. In Proceedings of the Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval. ACM, 330–337.
BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 1–7,

107–117.
CANDES, E. AND ROMBERG, J. 2007. Sparsity and incoherence in compressive sampling. Inv. Probl. 23, 969–985.
CANDES, E. AND TAO, T. 2006. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans.

Inform. Theory 52, 12, 5406–5425.
CANDES, E. AND WAKIN, M. 2008. People hearing without listening: An introduction to compressive sampling. IEEE Signal

Process. Mag. 25, 2, 21–30.
CARROLL, J. AND CHANG, J. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of

Eckart-Young decomposition. Psychometrika 35, 3, 283–319.
CHEN, K. AND LIU, L. 2009. He-tree: a framework for detecting changes in clustering structure for categorical data streams.

VLDB J. 18, 6, 1241–1260.
CHI, Y., TSENG, B., AND TATEMURA, J. 2006. Eigen-trend: Trend analysis in the blogosphere based on singular value decomposi-

tions. In Proceedings of the ACM International Conference on Information and Knowledge Management. ACM, 68–77.
CHIERICHETTI, F., KUMAR, R., LATTANZI, S., MITZENMACHER, M., PANCONESI, A., AND RAGHAVAN, P. 2009. On compressing social

networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
219–228.

CORMODE, G. AND HADJIELEFTHERIOU, M. 2009. Finding the frequent items in streams of data. Comm. ACM 52, 10, 97–105.
DASGUPTA, D. AND FORREST, S. 1996. Novelty detection in time series data using ideas from immunology. In Proceedings of the

International Conference. on Intelligent Systems.
DEERWESTER, S., DUMAIS, S., FURNAS, G., LANDAUER, T., AND HARSHMAN, R. 1990. Indexing by latent semantic analysis. J. Am. Soc.

Inform. Sci. 41, 6, 391–407.
DOMINGOS, P. AND HULTEN, G. 2000. Mining high-speed data streams. In Proceedings of the 6th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 80.
DRINEAS, P. AND MAHONEY, M. 2007. A randomized algorithm for a tensor-based generalization of the singular value decomposi-

tion. Linear Alg. Appl. 420, 2–3, 553–571.
GOLUB, G. AND VAN LOAN, C. 1996. Matrix Computation. Johns Hopkins University Press.
HARSHMAN, R. 1970. Foundations of the parafac procedure: Models and conditions for an “explanatory” multi-modal factor anal-

ysis. UCLA Working Papers in Phonetics 16, 1, 84.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

29:22 • Y.-R. Lin et al.

HAUPT, J., BAJWA, W., RABBAT, M., AND NOWAK, R. 2008. Compressed sensing for networked data. IEEE Signal Process. Mag. 25,
2, 92–101.

HOFMANN, T. 1999. Probabilistic latent semantic indexing. In Proceedings of the Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM Press, New York, NY, 50–57.

KLEINBERG, J. M. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5, 604–632.
KOLDA, T. AND BADEr, B. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3, 455–500.
KOLDA, T. G. AND SUN, J. 2008. Scalable tensor decompositions for multi-aspect data mining. In Proceedings of the IEEE Interna-

tional Conference on Data Mining. 363–372.
KUMARAN, G. AND ALLAN, J. 2004. Text classification and named entities for new event detection.In Proceedings of the Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 304.
LESKOVEC, J., BACKSTROM, L., AND KLEINBERG, J. 2009. Meme-tracking and the dynamics of the news cycle. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 497–506.
LESKOVEC, J. AND FALOUTSOS, C. 2006. Sampling from large graphs. In Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. ACM, New York, NY, 631–636.
LESKOVEC, J., KLEINBERG, J., AND FALOUTSOS, C. 2005. Graphs over time: Densification laws, shrinking diameters and possible

explanations. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
LIN, Y.-R., CHI, Y., ZHU, S., SUNDARAM, H., AND TSENG, B. L. 2008. Facenet: A framework for analyzing communities and their

evolutions in dynamics networks. In Proceedings of the International World Wide Web Conference. ACM Press.
LIN, Y.-R., SUN, J., CASTRO, P., KONURU, R., SUNDARAM, H., AND KELLIHER, A. 2009. Metafac: Community discovery via relational

hypergraph factorization. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

RUSMEVICHIENTONG, P., PENNOCK, D., LAWRENCE, S., AND GILES, C. 2001. Methods for sampling pages uniformly from the world
wide web. In Proceedings of the AAAI Fall Symposium on Using Uncertainty within Computation. 121–128.

SHI, J. AND MALIK, J. 2000. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 22, 8, 888–905.
SUN, J., TAO, D., AND FALOUTSOS, C. 2006. Beyond streams and graphs: Dynamic tensor analysis. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 374–383.
TUCKER, L. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 3, 279–311.
WANG, H., FAN, W., YU, P., AND HAN, J. 2003. Mining concept-drifting data streams using ensemble classifiers. In Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 226–235.
WANG, X. AND MCCALLUM, A. 2006. Topics over time: a non-Markov continuous-time model of topical trends. In Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 433.
YANG, Y., PIERCE, T., AND CARBONELL, J. 1998. A study of retrospective and on-line event detection. In Proceedings of the Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 28–36.

Received September 2010; revised March 2011; accepted July 2011

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 29, Publication date: October 2011.

