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Finding interesting content in a large image 
collection can be difficult, whether it’s pho-
tos of a friend’s international trip or a presi-

dential archive. One typical solution is to select a 
smaller set of representative images and compile 

them into a compact image sum-
mary for subsequent exploration, 
understanding, communication, 
and storytelling. Organizing im-
ages by content similarity can 
help users quickly locate infor-
mation of interest.1 However, 
users are distracted when the in-
formative regions of images over-
lap, so summaries should avoid 
this. Furthermore, to deeply ex-
plore an image collection and ex-
change ideas, users must be able 
to interact with the summary in 
real time.

Existing image summarization 
algorithms take one of two gen-
eral approaches (see the sidebar):

■■ Building exploratory image browsers that use 
layout to reflect the images’ relationships, while 
allowing them to overlap arbitrarily.

■■ Building a compact, space-tiling image layout—a 
picture collage—while ensuring that the regions 
of interest in images don’t overlap.

Little work has focused on combining these ap-
proaches to both maintain image relationships and 
avoid occlusion, let alone offering real-time user in-
teraction to explore and understand the collection.

To address these problems, we developed Image-
Hive, a content-aware image summarization tool. 
ImageHive generates a compact Voronoi-like im-
age layout that both preserves image relationships 
and avoids occluding salient image parts. In ad-
dition, it lets users interact with the image sum-
mary in real time to explore the collection and 
modify the summary to better communicate their 
ideas and stories. (An audiovisual presentation 
that augments this article’s description of Image-
Hive is available at http://doi.ieeecomputersociety.
org/10.1109/MCG.2011.89.)

ImageHive Design and Implementation
“Overview first, zoom and filter, then details on 
demand” is the mantra for seeking visual infor-
mation. We followed this mantra, along with the 
observations reported by Kerry Rodden and her 
colleagues,1 to establish three governing principles 
in the ImageHive design:

1.	 The image summary should be compact and make 
the most salient regions in the collection visible. 
Different parts of an image can invoke varying 
levels of visual attention, which can be encoded 
in image saliency maps and used to avoid oc-
cluding the most salient image regions and to 
preserve the maximum amount of information.

2.	 The image layout should reflect pairwise content 
relationships. A good summary communicates 
the correlations existing in the whole collec-
tion. Placing similar images adjacent to each 
other effectively minimizes the collective per-
ceptual overhead.1 It also facilitates further fil-
tering and interaction with the collection.

ImageHive communicates 
information about an image 
collection by generating a 
summary image that preserves 
the relationships between 
images and avoids occluding 
their salient parts. It uses a 
constrained graph-layout 
algorithm first, to preserve 
image similarities and keep 
important parts visible, and 
then a constrained Voronoi 
tessellation algorithm to 
locally refine the layout and 
tile the image plane.
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3.	 The summarization tool should let users examine 
the image collection from multiple perspectives. 
Users might have a specific goal or information 
need in mind that’s not easily factored into a 
computation-similarity metric for principle 
2. Interactive editing features help fulfill this 
need. Interactive exploration features such as 
zooming and filtering help users seeking fur-
ther information.

Following these design principles, our image sum-
marization pipeline first automatically clusters 
images and selects representative images for each 
cluster. Then we lay out the selected images in two 
interrelated steps, shown in Figure 1:

■■ Graph based layout. A similarity-preserving 
global-placement algorithm correlates the mu-
tual distances between images and avoids occlu-
sion between salient image regions. The choice 
of correlation metrics varies among collections 

and usages, ranging from the WordNet distance 
of image tags and descriptions to the vector dis-
tance between image features.

■■ Online Voronoi tessellation. A local adjustment 
to refine the layout uses a constrained Voronoi 
tessellation that minimizes image overlaps and 
maximizes the 2D layout area’s coverage.

Finally, we provide real-time interaction to support 
editing and exploration.

In the whole process, we assume the images’ 
aspect ratios and relative sizes are fixed, although 
users can resize the images in a preprocessing step 
that applies different scale factors. ImageHive’s 
pipeline is flexible enough to support this extension.

Image Clustering and Representative Selection
A meaningful summary for a large image collection 
requires data transformation techniques to reduce 
the number of visualized images. In ImageHive, we 
first cluster images according to their correlation. 

Researchers have proposed two distinct objectives for 
summarizing image collections.
Similarity-based summarization renders visualizations 

based on pairwise image content similarities. Its implemen-
tation has many variations, such as principal component 
analysis,1 multidimensional scaling,2 and manifold-based 
methods such as Isomap.3 These approaches focus on the 
global image distribution and are optimized for placing the 
image centers without explicitly considering how to avoid 
overlapping and content occlusion.

Compactness-based summarization constructs a collage 
to avoid occluding salient image regions. AutoCollage uses 
constraint packing for image layout and graph cuts and 
Poisson blending for boundary matting.4 Picture collage 
optimizes a Markov random field for salient-region place-
ment,5 and dynamic collage uses loopy belief propagation 
to update an image layout upon an incremental addition.6

In comparison, our approach relies on graph layout 
algorithms for global placement and Voronoi tessellation 
for local adjustment, both of which are very efficient. We 
ensure salient regions’ visibility by incorporating them as 
constraints on both the global and local layouts, formulated 
with stress majorization and constrained Voronoi tessella-
tion. Furthermore, our method can take into account any 
perceptual or semantic image similarity measure, such as 
object class, metadata, or content feature distances.

Some recent research addresses visual representation us-
ing Voronoi metaphor. Voronoi treemaps focus on two prob-
lems: the aspect ratio of rectangles and easily recognizing a 
graph’s hierarchical structure.7 The Voronoi-diagram-buster 
algorithm leverages the Voronoi diagram to evenly distrib-

ute a graph’s nodes while maintaining the user’s mental 
picture of the original graph drawing.8

Compared with these two methods, our method incor-
porates constraints into a Voronoi tessellation to avoid the 
occlusion of the salient image parts.
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Taking the content-similarity relationship as an ex-
ample, we obtain image correlations by calculating 
the similarity between various features, such as the 
scale-invariant feature transform, color histogram, 
and edge histogram. We leverage image category 
information or general clustering methods (such 
as k-means) to generate clusters.

We perform a Voronoi tessellation on these clus-
ters, then correlate the images to build an image 
graph of each cluster. For example, an edge would 
connect two images with a similarity relationship, 
such as a shared tag. In each cluster, ImageHive 
selects several representative images—for example, 
the images nearest the calculated cluster center 
that also show some diversity. This lets users re-
cursively navigate a large image collection.

Graph-Based Layout
To generate a global placement of images, we apply 
a constrained graph layout algorithm on the image 
graphs, which embeds them into a 2D plane (see 
Figure 1a), where the selected images’ salient 
regions are visible.

The graph layout model. Consider a set of N images 
Ii i

N{ } =1
. To represent the relationships between 

images, we construct a graph G(V, E), in which 
each node corresponds to an image and the edge 
represents the similarity correlation between the 
images. Our method augments traditional graph 
layout methods by placing the image collection on 
a plane according to this representation.

Among various graph layout methods developed 
to transform a graph into a visual representation, 
one of the most popular is the one that Tomihisa 
Kamada and Satoru Kawai devised.2 It aims to 
minimize the difference between the geometric 
distance in the layout and the ideal graph-theoretic 
distance. Users can also incorporate constraints 

into the original energy function for different 
visualization purposes.3

We can formulate the general constrained graph 
layout problem mathematically as

min

subject to certain co

x
x x

i j

ij i j L ijw d
<

2

2∑ − −( ) ,

nnstraints being satisfied. �

(1)

In Equation 1, dij is the graph-theoretic dis-
tance—the shortest path—between nodes vi and 
vj, x x xi i i

T
= ,(1) (2)( )  is the vector denoting the 2D 

coordinates of vi, X = (x1, x2, …, xN) is an N × 2  
dimensional matrix composed of coordinates of 
all nodes, ⋅ L2  is an L2 norm of a vector, and 
wij is a normalization constant typically equal 
to dij

−2.

Constraint definition. We constrain the layout to sat-
isfy the three design principles we described earlier. 
We encode principle 2 in the objective function of 
the graph layout model (Equation 1) and support 
principle 3 by user interactions, which we describe 
later. Here we mainly discuss the implementation 
of principle 1.

A natural way to model image saliency is to en-
sure that salient regions in adjacent images don’t 
occlude each other. This presents two challenges in 
practice. First, preserving saliency while guarantee-
ing a compact layout is difficult. Second, constrain-
ing only the detected regions might not fully use 
the given 2D plane region.

So, to satisfy principle 1’s two requirements, we 
derive two constraint types:

■■ Hard constraints guarantee that the given re-
gions in adjacent images don’t overlap and that 
salient regions display legibly.

■■ Soft constraints let regions have some overlap 

(a) (b) (c)

Figure 1. ImageHive’s two-step layout. (a) Step 1 establishes a global placement. (b) Step 2 applies a local adjustment. (c) The 
resulting layout evenly distributes the images and maintains their relationships.
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and guarantee that marginally informative re-
gions maximally use the unoccupied space.

Our system uses Laurent Itti and his colleagues’ 
saliency-detection algorithm,4 which usually pro-
duces satisfactory results. We also provide for user 
interaction to refine the results.

We then define two types of salient regions in 
each image, corresponding to the modeling of the 
two constraint types:

■■ Inner salient regions contain the most salient 
part, such as a scene’s central object.

■■ Outer salient regions bound the marginally infor-
mative region around the central region.

Various methods exist for defining these two types 
of regions—for example, automatic saliency esti-
mation, object detection, and user input. Typically, 
we define them as two concentric regions and in-
corporate them into the constrained layout model. 
The semantics of salient regions can address an 
entire object, a crop of an object, or different re-
gions of the same image to reflect alternative pho-
tographic and perceptual interpretations.

Circles and rectangles are the two most com-
mon shapes to mark an image’s salient regions 
(see Figure 2). We now illustrate how to formulate 
these two types of bounding regions for both hard 
and soft constraints.

For circular inner regions, we formulate the hard 

constraints as

x x x xi j i j i
I

j
Ir r1 1 2 2 2 2 2( ) ( ) ( ) ( )−( ) + −( ) ≥ +( ) ,

where xi and xj are the centers of two regions in 
two images, and ri

I  and rj
I  are the corresponding 

radii (see Figure 2a). This inequality indicates 
that for inner regions, the distance between two 
centers should be larger than the sum of two radii.

For circular outer regions, the soft constraints are

x x x xi j i j ij i
O

j
Or r1 1 2 2 2 2 2( ) ( ) ( ) ( )−( ) + −( ) + ≥ +( )ξ ,

where ξij ≥ 0 is a relaxation parameter. This in-
equality indicates that for outer regions, by add-
ing a small positive real value ξij, the distance be-
tween two centers should be larger than the sum 
of two radii. We therefore expect ξij to be as small 
as possible.

Because all the constraints are quadratic, we 
can easily formulate the optimization problem 
(Equation 1) as

	�  (2)
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(a) (b)

Figure 2. The two most common shapes to mark an image’s salient regions: (a) circles and (b) rectangles. 
ImageHive formulates inner and outer bounding regions for each type.
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where C is a trade-off parameter that controls 
the penalization of ξij. A sequence of quadratic-
programming procedures can solve this objective 
function.

For constraints based on rectangular regions, 
we further extend the regions to cases of different 
heights and widths. For example, Figure 2b 
represents the inner rectangle by its width and 
height w hi

I
i
I,( )  and denotes the outer rectangle as 

w hi
O

i
O,( ).

To ensure that rectangular inner regions don’t 
overlap, we formulate the hard constraints as

x xi j
i
I

j
Iw w1 1

2
( ) ( )− ≥

+

or

x xi j
i
I

j
Ih h2 2

2
( ) ( )− ≥

+
.

Unlike the circular regions, the rectangular regions 
won’t overlap if and only if one dimension satisfies 
the constraint.

For the rectangular outer regions, we formulate 
the soft constraints as an optimization problem:
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where ξij
1( )  and ξij

2( )  are the relaxation parameters 
for different dimensions.

In this case, we expect the relaxation parameters 
for both dimensions to be minimized, so we can 
minimize the outer rectangles’ overlap:
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We could solve this problem by converting it 
to a sequential quadratic-programming problem 

with some relaxations, which could then be eas-
ily solved by standard quadratic-programming 
tools such as Mosek (www.mosek.com) and Cplex 
(http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer). However, to handle 
the constraints more efficiently, we solve the opti-
mization problem through a heuristic gradient-pro-
jection method,3 which has proven faster in practice.

Online Voronoi Tessellation
The global placement preserves the image similar-
ity and the salient image regions’ visibility, but it 
doesn’t tessellate the layout area to maximize its 
usage. So, we refine this layout by introducing a 
constrained local adjustment algorithm that ap-
plies the online Voronoi tessellation (see Figure 
1b). This generates a summary that maximizes the 
coverage of the 2D layout area, distributing the 
images evenly while preserving their relationships 
(see Figure 1c).

This fast tessellation method enables real-time 
user interaction with the summary image to reflect 
individual information needs.

Central-region-constrained Voronoi diagram. A Vor-
onoi diagram is a decomposition of a metric space 
determined by the distances to a specified discrete 
set of objects in the space.5 Typically, a Voronoi 
diagram’s objects are a set of points. In our case, 
to make the salient regions visible, the objects can 
be a circle or a rectangle.

Two preliminary definitions are useful for the 
discussions here.

Definition 1. Central-region-constrained Voronoi cell. 
Given a set of separate central regions S, which are 
called Voronoi sites, the Voronoi cell associated to 
each region S ∈ S  is an area V S( )⊆R2  such that 
each point x ∈ ( )V S  is closer to shape S than to 
any other one in S ∈ S :

V S d S d S S S( ) = | , , ,2x x x∈ ( )≤ ′( ) ∀ ′ ∈ { }{ }R S \ ,

where d(x, ·) denotes the distance from x to the 
central region’s boundary. The line segments 
forming the Voronoi cells’ boundaries are called 
Voronoi edges.

Definition 2. Central-region-constrained Voronoi dia-
gram. A Voronoi diagram is the union of Voronoi 
cells in an area on a 2D plane, and a regional 
constrained Voronoi diagram (RCVD) meets the 
additional objective

RCVD V S Si iS S( ) ( ) ∈{ }= .
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Because we typically represent salient regions of 
images in circles or rectangles, we make the Voronoi 
cell’s boundary piecewise linear by using a weighted 
Voronoi diagram (power diagram) for circles and a 
supremum metric (L∞ norm) for rectangles.

Specifically, for circles (S is a circle C), we adopt 
the power metric

d C r
L

x x c, =
2

2 2( ) − − ,

where r is the radius and c is the center of C. For 
rectangles (S is a rectangle R), we introduce the 
supremum metric

d R
R L

x x r
r

, =( ) −
⊂ ∞

min ,

where r is an arbitrary point belonging to R.
Figure 3 shows examples of circular and rectan-

gular cases.

Central-region-constrained centroidal Voronoi tessel-
lation. An intuitive way to generate a compact im-
age summary that fully utilizes the layout space is 
to generate an evenly distributed image layout, in 
which the Voronoi cells’ sizes are linearly propor-
tional to the images’ salient-region sizes. The ideal 
situation locates every Voronoi site in the Voronoi 
cell’s centroid and is called a centroidal Voronoi 
tessellation (CVT).

One popular method for constructing a CVT is 
Lloyd’s iteration procedure,5 which performs two 
steps in each iteration:

1.	 Generate the Voronoi diagram on the basis of 
the Voronoi sites.

2.	 Recalculate the Voronoi cells’ centroids, and 
move the Voronoi sites to the new centers.

Figure 4 shows an example of the iteration in the 
rectangle case. The circular case is similar.

For the first step, we can construct the central-
region-constrained Voronoi diagram by extending 
existing construction algorithms, such as the 
incremental-construction, divide-and-conquer, and 
sweeping-line algorithms. We use the incremental-
construction algorithm for constrained Voronoi 
diagrams with circular sites and the sweeping-line 
algorithm for Voronoi diagrams with rectangular 
sites. For rectangular sites, prior sweeping-line 
algorithms deal only with point sites, weighted-
point sites, and line sites. To overcome this limita-
tion, we extended the sweeping-line algorithm for 
rectangular sites under the supremum metric.

In the second step, we develop a constrained 
optimization problem to move the sites to the new 
centers, under both the hard and soft constraints. 
Denoting the centroids by 2D vectors C = {ci|1 ≤ 
i ≤ N, where N is the number of sites in S, we 
formulate the problem as

	 ,
X

x c x cmin
i

i i
T

i i

i j
ij ijC∑ ∑−( ) −( )+ ⋅( )( ) ( )

<

1 2ξ ξ

subjecct to the hard and soft constraints.

The method to reformulate the constraints is 
equivalent to Equation 2 or Equation 3. So, we 
solve the problem by converting the equation to a 
sequential quadratic-programming problem such as 

(b)(a)

Voronoi edge
Voronoi site
Voronoi cell

Voronoi edge
Voronoi site
Voronoi cell

Figure 3. Central-region-constrained Voronoi diagrams: (a) a circular 
diagram constrained by a power metric and (b) a rectangular diagram 
constrained by a supremum metric. The constraints generate piecewise 
linear Voronoi cell boundaries.
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Figure 4. Lloyd’s iteration procedure. (a) Arrows indicate the direction for the Voronoi diagram’s recalculated 
centroids. (b) The layout reflects the resulting centroidal Voronoi tessellation after the movement.
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Equation 2 and 3, which we solve using a heuristic 
gradient-projection method.3

User Interaction
So that users can efficiently examine large-scale 
image collections, we implemented interactions for 
exploration at different levels of detail. The imple-
mentation rests on the image clusters’ hierarchi-
cal structure. We gradually display the hierarchical 
structure between the adjacent levels by recursively 
partitioning the visual space as a treemap.6 Because 
drilling down to see details is central to visual ex-
ploration, the constrained graph model incorpo-
rates layout techniques that keep the existing im-
ages stable during the exploration.

The editing function lets users further polish 
the generated image summary. Users can manu-
ally adjust the summary layout and add or delete 
images or clusters. Figure 5 shows the result of a 
user’s interactive adjustment to focus on particular 
pictures. ImageHive updates the layout during these 
interactions by iteratively and incrementally recal-
culating the Voronoi cells and selectively moving 
the Voronoi sites to new centers. This gives the sys-
tem a responsive feel (see the audiovisual Web Ex-
tra at http://doi.ieeecomputersociety.org/10.1109/
MCG.2011.89).

Color blending is useful for eliminating joints 
between images and producing more appealing 
results, so we provide it as an additional postpro-
cessing function.

Experimental Results
We quantitatively and qualitatively compared Image-
Hive with other semantic image summarization 
methods based on principal component analysis 
(PCA),7 Isomap,8 and picture collage.9

We measured the time the layout algorithms 

consumed, varying the image collection’s size. All 
experiments executed on a PC with a 2.4-GHz In-
tel Pentium 4 processor. As Figure 6 shows, our 
method is slightly slower than the unconstrained 
methods, PCA and Isomap, because of the addi-
tional computations in our constraint optimiza-
tion. For more than 400 images, ImageHive’s speed 
is comparable to that of the Isomap-based method 
but is still slower than that of the PCA-based 
method. Our algorithm’s complexity is O(N3) for 
the shortest-path computation. The quadratic pro-
gramming’s cost is comparable to Isomap’s cost of 
computing geodesic distances and the cost of ei-
genvalue decomposition in both Isomap and PCA.

Nevertheless, our method is significantly faster 
than picture collage.9 For a collection of 60 images, 
ImageHive took 0.14 sec., whereas picture collage 
took 140.82 sec. For a collection of 100 images, Im-
ageHive took 0.39 sec., whereas picture collage took 
715.44 sec. The estimation procedure for picture 
collage is the Metropolis-Hastings algorithm. De-
ciding on a good stopping criterion or diagnosing 
when the sampling has converged is difficult. The 
sampling used in Markov random-field inference, 
as in the case of picture collage, is empirically much 
slower than deterministic optimization methods 
such as the constrained graph layout.

To compare the visual summary results, we chose 
50 images from the IAPR TC-12 image dataset 
(www.imageclef.org/photodata) with the labels 
including “sky” (blue and sunset), “cloud,” “bi-
cycle and highway,” and “floor tennis court.” We 
constructed the image graph from a similarity 
matrix computed over the concatenated color cor-
relogram and color histogram features extracted 
by Imars (IBM Multimedia Analysis and Retrieval 
System; https://researcher.ibm.com/researcher/
view_project.php?id=877).

(a) (b)

Figure 5. 
Interactive 
editing with 
ImageHive: 
(a) before 
and (b) after 
adjustment. 
Users can refine 
the image 
summary 
results to 
highlight the 
healthcare 
reforms of 
Obama’s 
presidency.
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Figure 7 shows the results. For the PCA and 
Isomap layouts (see Figures 7a and 7b), approxi-
mately one-half of the images are occluded, and 
much space is left unused. The collection’s over-
all information is difficult to see and comprehend 
from the overviews. Picture collage (see Figure 7c), 
on the other hand, utilizes space efficiently but 
doesn’t preserve the relationships, which makes 
gathering a collection-level summary difficult. Im-
ageHive (see Figure 7d) laid out the similar images 
together without overlapping, making it easy to 
locate and compare similar images and different 
content clusters.

ImageHive Applications
From both our observations and informal user 
surveys, we found that ImageHive has many uses 
for communication and recollection. For example, 
a typical use is to share photos of scenes or events 
with others. This application is comparable to story-
boarding, which shows plot scenarios.

Figure 8 shows the application of ImageHive to 
summarize views of some Chinese cities through 
famous landmark buildings and views that sym-
bolize the location. The left cluster depicts famous 
structures in Beijing: Tiananmen Square, the Sum-
mer Palace, the Temple of Heaven, and the Great 
Wall. The top-right cluster shows Shanghai land-
scapes, and the bottom-right cluster represents the 
vibrancy of Hong Kong.

In this summary, we adopted rectangular con-
straints for their flexibility in shaping the salient 
regions of representative structures. We generated 
the correlations between images in each cluster by 
the similarity of color features to minimize color 
variation between adjacent images. To support dif-
ferent salient regions, we applied different weights 
to different pictures so that the most significant 
pictures are highlighted in larger Voronoi cells.

Another important use of images is to summarize 
photographed events. For example, Figure 9 shows 
events related to Barack Obama’s US presidency. In 
this example, we used circle constraints to capture 
salient regions and the photo tag hierarchy to map 
the cluster structure. We generated the correlation 
between images by the cosine distance of histogram 
features. The results offer an anecdotal summary 
of Obama’s early tenure.

Because ImageHive produces fast, compact lay-
outs, it’s suitable for deployment on small devices, 
including mobile phones and tablets. Figure 10 
displays a single-cluster summary of animals 
photographed on a trip to Kenya and displayed on 
a mobile phone. We calculated the image correla-
tions from their color histograms.

ImageHive creates an immediate impression of 
image collections that preserves facts, tags, and 

events embedded in metadata. At the same time, 
it’s efficient enough to facilitate real-time user in-
teractions and to be suitable for editing, filtering, 
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Figure 6. The running time of four image layout algorithms. In practice, 
our method is comparable to principal component analysis (PCA) and 
Isomap and outperforms picture collage.
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Figure 7. Visual summarization results for (a) PCA, (b) Isomap, (c) picture 
collage, and (d) ImageHive. Our method both preserves the relationship 
(compared to PCA and Isomap and utilizes space efficiently (compared 
to picture collage).



54	 January/February 2012

Visualization Applications and Design Studies

or interaction on mobile devices. Our future re-
search includes tightly integrating image analysis 
and interactive visualization to support progres-
sive analytic processes. We plan to implement this 
functionality as an underlying similarity metric or 
salient-region detection rule, on the basis of user 
feedback.�
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Figure 10. A summary of animals photographed on a Kenya trip. (a) The 
single cluster correlated images on the basis of their color histograms.
(b) The image display on a smartphone. ImageHive generates compact 
layouts fast enough for handheld devices.
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