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ABSTRACT

Multi-concept learning is an important problem in multimedia con-
tent analysis and retrieval. It connects two key components in the
multimedia semantic ecosystem: multimedia lexicon and semantic
concept detection. This paper aims to answer two questions related
to multi-concept learning: does a large-scale lexicon help concept
detection? how many concepts are enough? Our study on a large-
scale lexicon shows that more concepts indeed help improve detec-
tion performance. The gain is statistically significant with more
than 40 concepts and saturates at over 200. We also compared a
few different modeling choices for multi-concept detection: gener-
ative models such as Naive Bayes performs robustly across lexicon
choices and sizes, discriminative models such as logistic regression
and SVM performs comparably on specially selected concept sets,
yet tend to over-fit on large lexicons.

Index Terms— Multimedia computing, Pattern recognition,
Multimedia databases

1. INTRODUCTION

Multimedia lexicon, semantic concept detection, and multimodal
search are three key components in the multimedia retrieval ecosys-
tem. Detecting objects and scenes from visual input has long been
one of the central problems in computer vision. Knowing what
should be detected leads to the problem of designing and using a
multimedia lexicon. All these components help build better search
engines that has become thede factouser access model for large on-
line repositories. The afore-mentioned multimedia retrieval ecosys-
tem is visualized in Fig. 1. Many prior work has focused on the
links that connect these three components. It has been shown that
using concept detectors can significantly improve search results [7],
and vice versa [6]. Studies [5, 9] have shown that lexicons of dif-
ferent sizes bring about different levels of improvement in retrieval
performance.

In this paper, we investigate multi-concept learning, i.e., how to
leverage large-scale multimedia lexicons for semantic concept detec-
tion. This problem is of much practical and theoretical interest, on
which there has been a number of recent studies. The basic structure
of such learning algorithms is to use baseline classifiers such as Sup-
port Vector Machine (SVM) to model the non-linearity in the fea-
tures, and then train another layer of meta-classifier to model the re-
lationships among concepts. Such relationships can be learned with
a discriminative classifier such as SVM [1] or logistic regression [4],
probabilistic graphical models [12], or discriminative models regu-
larized with concept dependency information [8].

Three questions remain in order to adequately establish the link
from multimedia lexicon to concept detectors: Does large-scale
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Fig. 1. The multimedia semantic ecosystem.

lexicons benefit multi-concept learning? How many concepts are
enough? What computational models can learn multi-concept de-
tectors robustly and consistently with a large lexicon? Most prior
work studied no more than 40 concepts, and did not explore the
potentials when the number of concepts grow to a much larger scale.
But as a larger number of publicly annotated data become avail-
able, e.g., LSCOM [13], it is now possible to further explore these
questions. In this paper, we investigate multi-concept learning with
the largest multimedia lexicon to-date using both generative and
discriminative models. We found that more concepts indeed help
improve concept detection performance. The performance gain is
statistically significant with more than 40 concepts, and it saturates
at around 240. When measuring performance among a collection of
concepts, it was somewhat surprising that generative models such
as Naive Bayes perform robustly with consistent performance gain
across lexicon choices and sizes, while discriminative models such
as logistic regression and SVM perform comparably on specially
selected concept sets, yet tend to over-fit on a large number of de-
pendent dimensions. Performance gain varies for different target
concepts and the nature of baseline input detectors, and these two
areas warrant further investigation.

In the rest of this paper, Section 2 discusses different multi-
concept models being used, Section 3 gives the background for ob-
taining baseline detectors, Section 4 presents our experiments and
results, Section 5 concludes the paper.

2. MODELS FOR MULTI-CONCEPT LEARNING

Multi-concept learning is to estimate the labelyc ∈ {1, 0} for con-
ceptc from a collection of relevance scores for concepts that are re-
lated to the conceptc, denoted asx = [x1, . . . , xM ]. Multi-concept
models need to account for two factors of correlations and uncer-
tainty. The first factor is ontological relationship, e.g., abusis likely
to be outdoorsand unlikely to be in anoffice. The second factor
is detector performance, e.g., knowing both the presence/absence of
peopleanddesertmay help us decide if it ismilitary setup, butpeo-
ple detectors are generally more reliable and hence shall be given
more weight. Generative and discriminative models are two general
classes of models commonly used to account for such uncertainties,



on which we shall experiment and compare.

2.1. Generative Models: Naive Bayes

Generative models estimate the class-conditional probability in order
to find the most likely class based on Bayesian rules. They have
efficient learning algorithms and can handle new classes or missing
data fairly effectively. Naive Bayes is the simplest in this family,
which models the pair-wise correlations between the target concept
c and each input concepti, i = 1, . . . , M . The maximum-likelihood
estimate of the class-conditional probabilityP (xi|yc) is obtained
by averaging the confidence over all the training data on a given
target conceptyc. Because naive Bayes models assume that input
xi are conditionally independent given labelyc, we can factorize the
joint class-probabilities and use these estimates to obtain the log-
likelihood ratioLc as shown in Equation (2).

P (yc|x1:M ) ∝ P (yc)
Y
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In our implementation, each input observationxi is sigmoid-
normalized and uniformly quantized into 15 bins, and the maximum
likelihood estimates ofP (xi|yc) is smoothed by the prior ofxi as
P̂ (xi|yc) = (1 − α)P (xi|yc) + αP (xi), with α = 0.06. The
resulting likelihood scoresLc are then used to re-rank the original
prediction score with simple averaging.

2.2. Discriminative Models: Logistic Regression and SVM

In contrast to generative models, discriminative models attempt to
directly model the probability of a class given the data. Among var-
ious discriminative models, logistic regression is one of the most
popular choices, which directly models the log-odd function as a
linear function of the input observations [3]. If logistic regression is
used to model concept relationship, the posterior probability of the
target conceptyc can be written as,
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wicxi)yc

#
, (3)

whereZ is a normalization factor for the conditional probability.
The parameterswic can be estimated by using any gradient descent
methods such as iterative reweighted least squares(IRLS) algorithm.
To avoid optimization singularity, a small regularization factor is
added to the log-likelihood function. Note that, ifP (xi|yc) in Naive
Bayes chosen to be in exponential family, then it has been shown
that logistic regression and Naive Bayes are representing the same
family of conditional probability functions.

Support vector machines (SVM) are another type of discrimi-
native models. Built on the structural risk minimization principle,
SVMs seek a decision surface that can separate the training data into
two classes with the maximal margin between them. In the case of
multi-concept learning, the decision function of SVMs is as follows,

yc = sign
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!
, (4)

whered is the index of training data,K(·) is the kernel function, the
weightsα = {α1, ..., αM} and offsetb are the model parameters.
Linear and RBF kernels are popular choices for modeling.

3. LEARNING INDIVIDUAL CONCEPT DETECTORS

The input to multi-concept learning is related concept scores pro-
vided by individual concept detectors. Each concept detector is
learned from low-level visual features using SVMs with radial-basis
(RBF) kernels. These features include a set of visual descriptors at
various granularities for each representative keyframe of the video
shots, such as color histogram, color correlogram, color moments,
co-occurrence texture, wavelet texture, and edge histogram (see de-
tails in [2]). The performance of RBF-SVMs can vary significantly
with respect to model parameters, hence the choice of parameters is
crucial. To optimize the performance, we choose model parameters
using a grid-search strategy. In our experiments, we build models
for different values of the RBF kernel parameters, the relative cost
factors of positive vs. negative examples, feature normalization
schemes, and the weights between training error and margin. The
optimal parameters are selected based on average precision using
2-fold cross validation.

Before the learning process, the distribution between positive
and negative data are re-balanced by randomly down-sampling the
negative data to a smaller amount. For each low-level feature, we
select one optimal configuration to generate the concept model. Fi-
nally, four best-performed models are combined to be a compos-
ite classifier by averaging their results. In the detection stage, we
apply the optimal model to evaluate the target images for the pres-
ence/absence of the concepts, and generate a confidence measure
that can be used to rank the testing images.

4. EXPERIMENTS

We evaluate the multi-concept learning algorithms on a large broad-
cast video collection from the TRECVID 2007 video retrieval
benchmark [10]. This collection contains news magazine, science
news, news reports, documentaries, educational programming, and
archival videos in MPEG-1 format from the Netherlands Institute
for Sound and Vision. There are 209 programs in total with over 120
hours of content, in which 110 were designated as the development
set for training and tuning the algorithms, and the rest 109 as the test
set for evaluating learning performance. In addition, about 80 hours
of annotated multi-lingual news videos from TRECVID-2005 were
also used in training concept detectors from extended lexicons.

The TRECVID-2007 development set is partitioned into two
halves, with the first to learn the SVM-fusion detectors for individ-
ual concepts and the second half to learn the multi-concept detectors
with naive Bayes and logistic regression, as described in Sec. 2. Ro-
tating the two halves gives us two multi-concept models per target
concept. These models are also fused with the baseline detection
score, by normalizing with the logistic function and then averaging.

The performance metric is inferred average precision (in-
fAP) [11]. As an approximation of average precision (AP) which
characterizes the area under the precision-recall curve of a binary
detector, inferred average precision allows reliable assessments to
be made given a smaller set of available ground-truth. Studies have
shown that while the absolute performance number may change,
infAP especially preserves the relative performance across different
systems, and is hence a good metric for benchmark comparison.

4.1. Visual lexicons
Our experiments use a few different versions of visual concept lex-
icon for training and evaluating the multi-concept detectors, as enu-



merated below,

• LSlite36 [10]. This lexicon consists of 36 visual concepts
covering seven essential semantic categories of broadcast
content, which includepeople, activities, scene, objects
and etc. A handful of representative concepts are selected
in each category, such ascrowd, people-marching, court,
car. A collaborative annotation effort was completed by the
TRECVID-2007 participants to annotate each of the 21,532
shots in the development set with this lexicon.

• LS364. 364 visual concepts selected from the LSCOM (Large
Scale Concept Ontology for Multimedia) ontology. This on-
tology was designed to broadly cover visual semantics in
broadcast news, and meet additional criteria relating to utility
(usefulness), observability (by humans), and feasibility (by
automatic detection). The detectors are built by averaging
three SVMs learned on different visual descriptors. Their
training data are from TRECVID-2005. Detection scores on
the TRECVID-2007 collection were donated as a shared re-
source for TRECVID-2007 [13], and 10 concepts that either
overlap with LSlite36 or has missing detection results are
excluded from the original 374-concept set.

• LS157. A subset of 157 LSCOM concepts from LS364. It
is selected based on relevance to the sound-and-vision data,
presence in the collection and possibility for building reason-
able detectors. The detectors were built with a process de-
scribed in Sec. 3 and an earlier report [2].

• LS157b. This is the same set of concepts as in LS157, with
detectors from LS364. The purpose of this subset is to val-
idate the effect of different training setup on multi-concept
detection performance.

• LSlite10. This is a subset of the LSlite36 lexicon. Par-
tial ground truth were available for 20 out of the original
36 concepts in the benchmark. Then we selected 10 most-
frequent ones since they have more reliable detection outputs
to compare different experiments – few of the other ten con-
cepts yielded statistically significant results in comparisons
described in the rest of this section. These concepts are:
waterscape-waterfront, car, computer/TV screen, boat-ship,
animal, office, meeting, truck, airplane, sports.

4.2. Performance versus lexicon size
We first conduct an experiment to see whether or not multi-concept
learning can improve detection performance, and see what new ob-
servations and conclusions can be made with a large-scale lexicon.

This experiment uses the union of LSlite36 and LS364 as in-
put. Thebaselineperformance is measured on the TRECVID-2007
test set from the concept detectors in LSlite36. We randomly sam-
ple K concepts from a total of 400 concepts (LSlite36+LS364),K =
4, 8, . . . , 380, 400. We repeat the random sampling 5 times, and plot
the mean-infAP over LSlite10 concepts in Fig. 2. Two sets oft-tests
are conducted for naive Bayes, results are shown below the x-axis in
Fig. 2. The top row tests if the mean-infAP is greater than the base-
line, and the bottom row tests if the mean-infAP is less than the best
mean-infAP with all 400 input concepts. The detector performance
vs. lexicon size, along with their statistical properties, can help us
answer the following two key questions.

Does multi-concept models help?Yes. As can be seen from
Fig. 2, mean-infAP is improved from 0.103 to 0.110 with a statisti-
cally significant margin. Moreover, the naive Bayes model exhibits
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Fig. 2. Mean infAP vs lexicon size. The error bars center at the mean
and stretch twice the standard deviation.t-tests with a confidence
level more than 0.05 is marked with an asterisk (* ). See Sec. 4.2 for
detailed discussions.

robust performance gain and consistent improvement with the in-
crease of the lexicon size, while the performance of logistic regres-
sion drops and significantly fluctuates as the lexicon becomes larger.
This performance contrast lend itself to two reasons: 1) the concept
dimensions are highly dependent on any large corpus; 2) naive Bayes
estimates the conditional probability given each input dimension in-
dependently, while logistic regression optimizes training error by si-
multaneously adjusting weights on all dimensions, thus it is prone to
be over-fitting on a lot of dependent inputs. We also observed that
SVMs suffer from similar degradations as logistic regression. Their
results are not included because the model training did not terminate
in time. SVM-based models takes several hours with cross-validated
hyper-parameter selection, while naive Bayes and logistic regression
finish within minutes for all target concepts, taking only a fraction
of learning time as SVM.

How many concepts do we need?40 or 240, depending on re-
quired performance. Looking at the performance vs. lexicon size by
naive Bayes models in Fig. 2, we can see that the mean-infAP in-
creases as the lexicon size increase, and the benefits seems to dimin-
ish beyond 200 concepts. The statistical test results (shown below
the x-axis) tell us that concept detection performance is significantly
better than baseline for lexicon size greater than 40, and the perfor-
mance difference larger than 240 is statistically insignificant.

4.3. Per-concept performance with different lexicon
We now discuss another experiment that examines the effects of us-
ing different learning models, or different choices of lexicons and
input detectors.

This experiment involves a few different lexicon and their cor-
responding baseline detectors. LSlite36 is a manually selected set
of only a few dozens of concepts, on which most prior studies were
based [12, 8]. LS193 is a combination of LSlite36 and LS157, ex-
panding the former to a much richer selection of concepts, trained us-
ing one version of SVM-fusion model. CU193 contains the same set
of concepts as LS193, except with detectors trained with the LS374
set. CU400 is the same as the one used in Sec. 4.2, which is the
largest lexicon available. We evaluate naive Bayes, logistic regres-
sion and SVM with two different kernels on this data. The results
are visualized in Fig. 3.

From the performance of naive Bayes (gray bars) in Fig. 3
we can probe into the following two questions:Is a hand-selected
lexicon better? No, both logistic regression and naive Bayes on
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the LS193/CU193 are comparable to their randomly-selected coun-
terparts with respect to mean-infAP. On selected concepts such as
office, both LS193 and CU193 models outperformed the full CU400
set, indicating that more concepts than necessary can hurt perfor-
mance. An extreme case wastruck, where none of the additional
input concepts seemed to help.Does different features/detectors
make a difference?Again the answer is concept-dependent –sports,
for example, clearly benefited from the sharing of LSlite36 and
LS157, and hurt by the system choices in LS374. On the contrary,
waterfront-waterscape, meetingand animal performed better with
the LS374 detectors.

From the color markers in Fig. 3, we can observe the behaviors
of different modeling algorithms. On average (in terms of mean-
infAP) the models perform similarly. Naive Bayes is the most stable
across all lexicon choices and sizes. Logistic regression does a bit
better on the manually-pruned lexicons, but over-fits in high dimen-
sions. It is worth noting that each concept has significant improve-
ment over its baseline for a few best-performing models, although
relative performance on each concept tend to vary. This thus calling
for concept-specific modeling that takes into account higher-order
concept dependency and possibly a blend of models and visual lexi-
con.

5. CONCLUSION

This paper investigates multi-concept learning, i.e. leveraging large-
scale multimedia lexicons for visual concept detection. This is an
important problem for linking multimedia lexicon and semantic
concept detection, two key components in the multimedia semantic
ecosystem. We confirmed that a large-scale lexicon indeed help im-
prove detection performance with statistical significance, and about
two hundred concepts can generate maximum benefit. Areas of fu-
ture interest include: concept-specific modeling, automatic selection
of lexicon and combination strategies of different models.
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