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Abstract – Inspired by the behavior of social insects,
we tackle the problem of sorting objects with a group of
robots under the control of reactive behaviors. Our control
algorithm is based on earlier studies of this problem, but
depends on more sensing than the minimalist solution.
With the additional information and our simple behavioral
rules, we demonstrate through simulation studies that our
control algorithm is able to create a complete separation
of objects of two different classes, and that it guarantees
convergence of the sorting process, which previous algo-
rithms could not achieve. This result is independent of
the number of robots participating in the task, the initial
configuration of the world, and the number of objects to be
sorted. We also show indirectly that sorting is not a strictly
cooperative task in the sense that even a single robot is
capable of performing the task, though at a reduced pace.
Finally, we present a model that characterizes the growth
of object clusters, which can be used to understand the
dynamics of the sorting process.
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I. INTRODUCTION

Collective behaviors of social insects offer inspirations on
designing artificial swarm systems that are distributed, self-
organized, and scalable. Inspired by the sorting behavior of
ants, we investigate the problem of sorting objects of two
classes by a team of robots. The robots employ only local
perception of the environment and have no a priori information
about the distribution or number of the objects to be sorted
in the environment. Such a system can be useful when robots
are built at the micro or nano-scale to perform such tasks as
cleaning, recycling, and construction.

In the nest of an ant colony, larvae, cocoons, and eggs
are arranged in distinct patterns such as separate piles [5]
or concentric rings [7]. Biologists speculated that these pat-
terns might be created by ants moving items probabilistically
without central administration [5], and the mechanisms of
self-organization, stigmergy [8], and self-sieving might be
involved. In robotics research, Deneubourg’s simple behavioral
algorithm captures many features of the ant sorting behav-
ior [6], [7]. Deneubourg has theorized that ants pick up and
put down objects in a random manner. The probabilities of
moving items are given by a short-term memory of an ant’s
recent observations, and the sorting behavior can be viewed as

a pattern generation process through self-organization [3], [4].
In addition, stigmergy has been considered as a mechanism
for behavior coordination in which modification of a shared
environment serves as a cue to direct the future activities of
the ants. Furthermore, the self-sieving mechanism (also called
self-sorting by size, that is, small particles are able to lie
between the larger particles under the influence of shaking and
gravity) complements the probabilistic model of ant behavior
in explaining the formation of the ring-shaped brood pattern in
Leptothorax ant colonies [1]. Although biologists have closely
observed - and postulated explanations of – the ant sorting
behavior, how an ant colony sorts collectively is still not fully
known.

Distributed clustering or, more recently, sorting is consid-
ered as a benchmark task for collective robotics [3]. As a
follow-up to [5] which relies on short-term memory to record
what has been perceived in the recent past, Beckers et al.
presented experiments of robots clustering pucks into one
pile [2], by picking up objects randomly and dropping them
after encountering other objects. Melhuish et al. further studied
the collective sorting problem from a minimalist perspective,
and their system produced annular sorting results [8], as well
as sorting of multiple classes of objects [12], with control
algorithms that succeed often but fail sometimes.

In our collective sorting project, we are interested in the
design of a behaviour-based multi-robot system for collective
sorting. Our work is similar in philosophy to the threshold
mechanism used by Beckers et al. [2] and its extension by
Melhuish et al. [9]. However, we concentrate on seeking a
reliable approach to the sorting problem and systematically
studying the sorting process. We conjecture that the degree
of convergence of the sorting task can be assured by the
an increase in the sensing capability of the robots, and that
increasing the number of robots in a sorting task can only
speed up the process at its early stage.

The rest of the paper will be organized as follows. Section
2 describes the sorting problem in detail and the design of
our robot system. In Section 3, we present simulation results
to demonstrate the convergence of the our sorting algorithm
and the independence of the result from the robot population
size, the number of objects, and initial configuration. We
also provide a model that characterizes the growth of the
object clusters. Finally, conclusions are made and future work



outlined in Section 4.

II. ROBOT COLLECTIVE SORTING

We consider sorting of objects in the context of a multi-
robot system, in which a number of robots rearrange scattered
objects of different classes into clusters in a working arena
(see Figure 1). If the robots knew the positions of all the
objects and those of the final clusters of the sorted objects,
then it would be trivial to arrive at a solution to the collective
sorting problem. Instead, we assume robots do not have global
information such as the position of the objects/clusters and
the number of the objects to be sorted. To arrive at a scalable
solution to the problem, we further impose the constraint of
no explicit communication between robots. Instead, our robots
rely on local sensing to acquire information about the state of
the world, and behave independently in a distributed fashion.
How could a group of robots collectively sort the scattered
objects with the above constraints?

Fig. 1. The simulation model of the environment in which robots (stars) are
to rearrange two types of objects (dark and grey squares) so that objects of
the same type will form exactly one cluster.

A. Performance Metric

In order to measure performance, it is important to define
an intuitive metric for the convergence of the sorting process.
Let M be the number of types of initially randomly scattered
objects, which are to be organized into clusters, with one type
of objects in each cluster. The total number of objects of type
i is denoted by Ni. Each robot has only local perception
and affects the environment by relocating objects. At any
given time, there are Ki number of clusters of object type
i in the arena, each of the size nij(t), where j indexes the
clusters. We use the following formula to measure the degree
of convergence of the sorting process:

Tsuccess(t) =
1
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where M = 2 in our study. Note that Tsuccess equals one
when the robots sort the objects into two completely separate
clusters, one for objects of type 1 and the other for objects of
type 2.

B. Control Design

Recall that we restrict our solutions to those that require
only local sensing, with no communication and memory. The
basic idea is that the isolated objects are likely to be picked up
and deposited at locations where more items of the same type
are present [5]. This will lead to a congregation of objects
of the same type. If small clusters attract passing robots to
deposit their objects of the same type, then clusters will grow
incrementally till the robots are terminated or the system
reaches its stable state. To give chances for several clusters to
merge into a bigger cluster, the robots can employ probabilistic
rules regarding the deposit or removal of objects, and this is
achieved indirectly by restricting a robot’s field of perception.

The robots are assumed to be able to random-walk in the
grid world (Figure 1), moving one step at a time, in one
of eight possible discrete directions, spaced 45◦ apart. In
addition, a robot is able to sense only three squares or cells
directly in front of its heading. Since a cell is either empty or
occupied by an object, the input state space to the robot control
algorithm is of size 33. Robots can move on an empty cell and
deposit the object it is holding at that cell; alternatively, a robot
without any object can approach an occupied cell and pick up
the object. For collision avoidance, we make sure that two
robots do not occupy the same cell. Based on local sensing,
robots are assumed to be able to recognize whether two objects
are the same or different types.

All robots run an identical algorithm and are unaware of the
presence of other robots. The control algorithm is based on a
set of three simple rules, which map easily to a behavior-based
controller.

Rule1: With or without an object, randomly choose a direc-
tion and move in that direction one step, subject to
collision constraint.

Rule2: For a robot that does not hold an object, if it
encounters an object in front, pick up the object if
the object is different from at least one of the two
on either side.

Rule3: For a robot that holds an object, if it encounters an
empty cell in front, put down the object if its type
matches one of two objects on either side.

The first rule is a wandering behavior and moves a robot
around in the environment. The second rule dictates when a
robot picks up an object based on locally sensed information.
The third rule defines when for the robot to lay down an
object that it is carrying. In the wandering state, a robot avoids
collision with obstacles (i.e., other robots in our simulated
environment or a boundary of the world) by turning a random
heading angle at 45◦ increments. Our system design is flexible
enough to allow us to conduct experiments with different
simulation parameters, such as the number of robots, the size



of the environment, the number of objects, and the initial
configuration.

Comparing the rules in our control algorithm with those
in previous studies of the collective sorting problem, we note
that our algorithm depends on local sensing, rather than short-
term memory, as in the case of [5], although its idea of using a
measure of the local object-type distribution to determine the
robot’s action is still used. In addition, our algorithm employs
more local sensing than the studies by Beckers et al. [2] and
Melhuish et al. [9], and this perhaps explains why we are
able to achieve a significant improvement in performance with
respect to the convergence behavior of the sorting algorithm,
as will be shown in the next section.

III. EXPERIMENTAL RESULTS

The purpose of the experimental studies is to investigate
the convergence properties of the collective sorting process,
governed by the behavior rules defined in the previous section.
We are also interested in the sensitivity of the convergence
result with respect to the simulation parameters (e.g., the
number of robots).

Fig. 2. Snapshots of collective sorting process by 8 robots sorting 40 objects
of each type in a 30 by 30 grid world, at simulation step (from left to right,
top to bottom) 0, 2048, 4096, 27,648, 37,888, and 58,8831, respectively.

Figure 2 shows some snapshots of a typical collective sort-
ing process in an experiment with eight robots (the star) sorting

80 objects (40 black and 40 grey) in a 30×30 grid world. The
execution of this experiment takes 58,831 simulation steps.

A. Performance vs. Swarm Size

To investigate the relationship between the swarm size and
the convergence of the sorting task toward completion, we
conduct a total of 400 experiments of sorting 18 objects, nine
black and nine grey, in a 10×10 grid world. The experiments
are divided into four subgroups, according to the number of the
robots involved, which employ one, two, four, and six robots,
respectively. For each simulation, we record the time history
of the convergence measure (Equation (1)), and this measure
is averaged over the 100 experiments for each subgroup.
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Fig. 3. Performance of our sorting algorithm - with uniform initial
distribution of objects - in terms of the averaged completion metric defined
by Equation (1), one curve for each subgroup of our study

Figure 3 shows the performance of the sorting algorithm
of the four subgroups. At the beginning of the experiments,
robots are placed at the centre of the arena and objects are
uniformly distributed in the arena. The degree of completion
for this initial configuration is 0.11 according to the metric
of Equation (1). An experiment is terminated when robots
complete the task, that is, when exactly one cluster is created
for each type of objects. The most important conclusion that
can be drawn from Figure 3 is that our sorting algorithm
always converges, for all the simulation experiments we have
conducted, although they take varying numbers of steps.
Figure 3 also shows that by increasing the number of robots
in the task, the sorting process can be sped up, but only at the
early stage of the process; however, it is clear that how well
the sorting task is completed is independent of the number of
the robots in the swarm system. The sorting task is therefore
not a strictly cooperative task in that it can be completed by
a single robot.

To test whether the initial configuration of a simulation
has an impact on the convergence of the sorting process,
we conduct experiments identical to the above except with a



TABLE I
MAXIMUM, MINIMUM, AND AVERAGE EXECUTION TIMES IN SIMULATION

STEPS OF THE FOUR SUBGROUPS OF CASES IN OUR STUDY

# of Robots 1 2 4 6
Minimum 1,334 688 345 187
Average 9,294 4,558 1569 969
Maximum 30,550 17,034 6,630 3,623

random initial distribution of the objects and robots. Figure 4
shows the results of these experiments. It can be seen that
that these results are nearly identical to those in Figure 3,
indicating the independence of the algorithm’s convergence
from the initial configuration.
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Fig. 4. Performance of our sorting algorithm - with random initial distribution
of objects - in terms of the averaged completion metric defined by Equation
(1), one curve for each subgroup of our study.

Table I compares the best, worst, and average cases of
the four robot populations in our simulation study, where the
numbers are in simulation steps. As one can see, there is a
large range of execution times for the same robot collective
size, and the execution time can be reduced in general with
an increase in the number of robots performing the task.

B. Critical and Peak Cluster Size

We have also studied the sorting algorithm in a series of
experiments with different simulation parameters from those
in the previous section. These experiments include 150 trials
for four robots sorting 20 objects of each type in a 10x10 grid
world, 100 trials for eight robots sorting 20 objects of each
type in a 20x20 grid world, 20 trials for eight robots sorting
40 objects of each type in a 30x30 grid world. Objects and
robots are initially randomly distributed in these experiments
because the experimental studies in Section 3.1 show that
the convergence of the algorithm is not initial distribution
sensitive. We observe that scattered objects of the same type

are grouped into small clusters very quickly at the beginning of
the experiments. Then small clusters are more likely to grow
in size than isolated objects. After the cluster size reaches a
certain threshold, some of the the clusters are occasionally
split, and this is more likely to happen to small clusters than
to large ones. However, one cluster per object type eventually
emerges, running a sufficiently long period of time.

In the sorting process, objects are deposited and removed
from the clusters stochastically. Whether a cluster grows is
affected by the behavior rules implemented in the robots.
We can measure the net change of a cluster by the growth
of a cluster, which is the fraction of objects deposited to a
cluster over the cluster size at that moment. Figure 5 depicts
the history of the growth of a cluster based on observations
made on the data collected from experiments. There are two
important parameters that define how the cluster size changes.
We name them the critical size and the peak size.
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Fig. 5. Cluster size is determined by the grow ratio of a cluster.

We can categorize the behaviours of clusters during the
sorting process into three classes, determined by a cluster’s
size relative to the critical size and peak size. If the size of
a cluster is less than the critical size, the growth of a cluster
is likely to be negative. That is, more objects are removed
from the cluster than deposited. Therefore, the cluster becomes
smaller and smaller. When the cluster size is equal to the
critical size, the cluster is almost unchanged as its net change
approaches zero. As the sorting is carried out by random-
walking robots, the cluster may become bigger even when
it is the same as the critical size. The temporary stability in
the cluster size is changed probabilistically. Finally, if the size
of the cluster is greater than the critical size but less than the
peak size, the cluster grows very quickly until the size of the
cluster reaches the peak size. When its size is greater than
the peak size, it still grows but at a much slower speed. This
explains why exactly one cluster will form, provided that an
experiment is given a long enough time.



IV. CONCLUSIONS

In this paper we have presented our simulation study of
robot collective sorting. We have identified a set of simple
rules which mimic decentralized, reactive behaviors in social
insects, and lead to the perfect sorting of two classes of objects,
when the rule set is implemented on a group of robots. This
represents a significant improvement over the previous studies
where no local-based control rules have been able to produce
the same kind of result. We attribute this success to the slight
increase in the sensory information made available to the
robot and to the proper design of the control algorithm, which
performs the best among many that we have examined. More
than 1000 experiments with different parameters have been
run, and results suggest that the convergence of the sorting
process is independent of initial system distribution, robot
population size, as well as the number of objects, although
an increased number of robots can reduce the amount of time
for the system to converge. One interesting observation we
have made regarding the dynamics of a typical cluster size is
that two sizes determine whether the cluster will grow and the
rate at which it will grow.

Our future work will look at how to quantitatively measure
the capabilities of the robots, and derive the critical/peak size
in the model of Figure 5 theoretically from the behavioral
rules of the robots. This theoretical model will shed light
on how to prove the convergence property we have observed
experimentally, in a way similar to [10]. This will allow us to
better explain the behavior of the robot collective as a whole.
Finally, we will compare our simulation results with those in
the experiments involving physical robots [11].
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