
iCHAT: Inter-Cache Hardware-Assistant Data
Transfer for Heterogeneous Chip Multiprocessors

Ting Cao† ∗ Junli Gu Brad Beckmann
†Australian National University AMD Research

ting.cao@anu.edu.au {junli.gu, brad.beckmann}@amd.com

Abstract
Modern heterogeneous multiprocessors integrate CPU and
GPU together to provide a boost to computational perfor-
mance. With tighter integration of CPU and GPU, it is criti-
cal to share and move data more efficiently in order to lever-
age the computational power that a GPU can provide. Ini-
tially, DMA or PCIe devices were used to transfer data be-
tween CPU and GPU with low efficiency and little flexibil-
ity. Recently single address space and coherent cache hier-
archies are being adopted in heterogeneous architectures to
share data more efficiently. Thus it is becoming critical to
understand the communications overheads in this new con-
text and to improve communication efficiencies for these ar-
chitectures.

This paper proposes a novel approach called iCHAT
(inter-Cache Hardware-Assistant data Transfer) to manage
data transfer between the CPU cache and the GPU cache effi-
ciently. The iCHAT technique proposed in this paper detects
the communication patterns and eagerly evicts data from
the owner’s caches and injects that data into the requestor’s
caches. We implement the eager eviction technique of the
iCHAT in a simulator based on gem5 and an AMD in-house
GPU simulator. Experimental results show that the commu-
nication related eviction traffic is reduced by an average of
40% and the total directory traffic is reduced by 8% on aver-
age.

1. Introduction
The trend in hardware is for the incorporation of domain spe-
cific accelerators in chip multiprocessors to improve perfor-
mance and power efficiency. One such heterogeneous archi-
tecture integrates CPU and GPU into a single chip, exam-
ples of which are AMD’s Fusion architecture (which is now
named as Heterogeneous System Architecture or HSA), in-
cluding APU series such as LIano and Trinity. Even though a
GPU can provide an enormous speedup for data parallel ap-
plications, the communication cost between CPU and GPU
can result in significant performance degradation. To effec-
tively leverage the performance of a tightly integrated CPU
and GPU, it is critically important that data is shared and
moved efficiently to achieve good performance and minimal
power.

∗ This paper was done while Ting Cao was doing an internship in AMD
Research.

The process of communication involves two major steps
on hardware: firstly, data is evicted from the owner’s private
caches, written back to the upper level memory (extra mem-
ory copies may exist here by copying from owner’s memory
space to requestor’s memory space); and secondly, the re-
quester fetches the data from the upper level memory into its
own cache. An example is the transfer of data from CPU to
GPU where the GPU has to wait until data is transferred all
the way from the CPU’s cache to memory, then from mem-
ory to the GPU’s cache. The communication latency is part
of the execution critical path and can significantly degrade
performance, especially when communication happens fre-
quently during execution. In the past few years, communica-
tion involved latency and memory traffic have proven to be
important factors affecting performance [4].

In earlier architectures DMA was used to copy data from
one address space to another, this mechanism usually in-
volved interrupting the CPU to complete the task. PCIe TPH
(TLP Processing Hints) allows PCIe devices to communi-
cate cache injection hints to the host CPU. They are specific
to PCIe communication and don’t necessarily generalize to
shared memory based heterogeneous architectures. Some
heterogeneous designs are adopting a single address space
enabling the GPU to access the same virtual address space as
the CPU (such as AMD Trinity) thus avoiding copying data
during communication. Further heterogeneous cache coher-
ence protocols are designed for CPU and GPU to share data
through a shared last level cache, such as Intel Ivy Bridge.
However, coherence latency and traffic can still degrade per-
formance due to the complexity of coherence itself.

This paper proposes iCHAT technique, which stands for
inter-Cache Hardware-Assistant data Transfer, to reduce the
communication latency and related cache traffic. iCHAT can
detect and learn when communication happens and store the
information about which data blocks have been transferred.
Based on the knowledge learnt, the hardware can predict
when the communication will happen again and inject the
most frequently transferred blocks (hot blocks) to the re-
questor’s cache ahead of time. We implement the eager evic-
tion technique of the iCHAT in a simulator based on AMD’s
APU architecture. Experimental results show that the com-
munication related eviction traffic is reduced by an average
of 40% and the total directory traffic is reduced by 8% on
average.

1

The main contributions of this paper are: (1) This pa-
per characterizes inter CPU-GPU communciation patterns
of GPGPU application and categorizes communication data
into two classes. (2) Based on the characteristics, this paper
proposes iCHAT technique in the context of APU, to reduce
the data transfer latency and total traffic for heterogeneous
chip multiprocessors. In the following sections, we will first
introduce the GPGPU data transfer characteristics. In Sec-
tion 3, we will describe the proposed technique and also dis-
cuss some design alternatives and future improvements. At
last, selected preliminary results and related work will be
showed.

2. Background and Motivation
GPGPU Data Transfer Pattern We target GPGPU appli-
cations in this paper and choose Rodinia benchmark suite [3]
as workloads in the evaluation. A typical GPGPU comput-
ing pattern is showed in Figure 1, which usually includes the
following three phases.

• Phase 1: CPU prepares/initializes the data for GPU.
• Phase 2: GPU performs a set of computations within a

loop with the CPU checking the results at the end of each
iteration.

• Phase 3: CPU reads and post-processes the data gener-
ated by the GPU.

Data transfer occurs when switching between CPU and
GPU computations. In Phase 1, CPU usually prepares the
data for GPU. When switching to Phase 2, this data will
be transferred from CPU to GPU to be used, which can be
hundreds or even thousands of pages. We call those large
amount of data as initialization data. Using streamcluster
from Rodinia as an example, about 270 pages of initializa-
tion data are transferred to GPU after Phase 1. Within Phase
2, some particular data blocks are frequently transferred be-
tween CPU and GPU so that CPU can check the computing
progress. The number of transfers usually depends on the
number of iterations, which can vary from a few times to
hundreds of times. For streamcluster, during Phase 2, Page
ID 328 to 336 are transferred 1379 times between CPU and
GPU. We call those frequently transferred pages in Phase 2
as hot data. When switching from Phase 2 to Phase 3, some-
time a small amount of data may be transferred back to CPU
again. The initialization and hot data usually take up the ma-
jority of communication data and thus are the focus of this
paper.

The total amount of transferred data between CPU and
GPU can be very large. Table 1 shows the amount of trans-
ferred data in number of pages between CPU and GPU for
each benchmark. The same hot page transferred n times are
counted as n transferred pages in the table. The amount of
initialization data and hot data vary for different applica-
tions. For example, dynproc, cell, hotpspot and nw have
more initialization data while streamcluster, kmeans and

1 CPU initializes the data
2 do {
3 GPU kernel executes and computes the data
4 CPU re-processes data
5 } while (condition)
6 CPU post-processes data

Figure 1. An example code of GPGPU computing pattern.

Benchmark No. of pages Benchmark No. of pages
cell 513 lud 130

backprop 982 kmeans 37
hotspot 772 dynproc 515

bfs 61 mummer 2624
lava 244 nw 2021
nn 3415 streamcluster 5776

Table 1. Total data transferred between CPU and GPU in
number of pages for Rodinia benchmarks medium size.

particle have more hot data. We can see even for Rodinia
benchmarks with medium problem size, the total transferred
data can be up to thousands of pages. Then for large problem
size GPGPU applications or normal graphics applications,
the data transfer will cause much more burden on cache con-
trollers, directory and memory system. Even though GPU
can achieve significant speedups for the kernel computing
itself, with the communication overheads the final perfor-
mance will be withheld from the promised potential.

Baseline System Figure 2 shows a high level picture of
the baseline heterogeneous system. CPU and GPU are inte-
grated on the same chip. Both CPU and GPU have a private
L2 cache while L3 cache is shared. L3 cache is like a on
chip memory side write buffer which only holds the write
back data from L2 caches. A directory based coarse grain
coherence protocol similar to [10] [1] is implemented. The
grain size used in this paper is page size.

Data transfers between CPU and GPU normally happen
in a passive way, which means the data is only transferred
on the requestor’s demand. In our baseline system, when the
requestor (either CPU or GPU) needs some data from the
owner (GPU or CPU), it has to go through a four-hop pro-
cess: first, the requestor sends a data request to the direc-
tory; second, the directory sends an invalidation request to
the owner; third, the owner’s cache evicts the data and writes
it back to the L3 cache; and fourth, the requestor fetches the
data from L3 cache into its own cache. The four-hop data
transfer results in high latency and significant cache and di-
rectory traffic. When the transferred data block is large, the
directory will become the bottleneck. These are the over-
heads of the CPU-GPU communication which degrade the
performance of heterogeneous multiprocessors.

3. Inter-Cache Hardware Communicator
Based on the GPGPU computing pattern and communication
characteristics, we proposes inter-cache hardware communi-
cator iCHAT to move the communication data between CPU
and GPU in parallel with computation to hide the commu-

2

CPU	 GPU	

L2	 Cache	 L2	 Cache	

L3	 Cache	

Directory	

Chip

Figure 2. The baseline heterogeneous system used in the
paper.

nication latency. The communicator detects when the GPU
requests data blocks that are owned by CPU, or when CPU
asks for GPU’s data. Thus it needs to be integrated with the
centralized memory hierarchy, which can watch both CPU
and GPU data accesses as well as identifying the owner for
a given address. So we connect the communicator to the di-
rectory. Figure 3 shows the integration of iCHAT commu-
nicator with the baseline system. It sits between L2 caches
and the shared L3 cache, connecting to the directory. Thus
the communicator can interact with the cache hierarchies
through directory and watch the data transfers between CPU
and GPU. The iCHAT communicator includes three compo-
nents: the communication detector detects communication
data and predicts when the communication happens; the last
evicted page records the latest evicted page during transfers
of the initialization data; the hot block table stores the ad-
dresses of the data blocks that are frequently transferred.
The communicator transfers the communication data ahead
of time through the following 3 steps. In the following sec-
tions, we will describe the mechanism of each step in details.

• Step 1: Capture the communication data and pattern .
• Step 2: Evict communication data from owner’s cache to

L3 cache.
• Step 3: Inject the communication data from L3 to re-

quester’s cache.

3.1 Communication Detection
In order to speedup the data transfer, it is critical for the
communicator to be able to detect the communication data
and their patterns. Communication detector captures those
information by watching the traffic between CPU and GPU.
The detection mechanisms for initialization data and hot
data are different due to their specific characteristics. The
captured information are stored in last evicted page buffer
and hot block table separately.

Initializaiton Data As discussed in previous section, GPGPU
computing can consume large amount of data and normally
those data will be initialized by CPU in Phase 1. When

GPU	 L2	 cache	

Tag	 state	 Owner	 Vector	

B0	 B1	 ….	 B63	

Directory	

L3	 cache	

	 	 	 1	 Request	
4	 Fetch	

Comm.	 Detector	

Hot	 Blk.	 Table	

	 	 	 2	 Invalidate	
3	 Writeback	

 iCHAT

CPU	 L2	 cache	

Last	 Evicted	 Page	

Figure 3. Integration of iCHAT with heterogeneous multi-
processors. Coarse grain coherence protocols are used in this
paper. Each directory entry has information for each page
(tag: page address, state: permission, owner: the ownership
of the entry). The 1, 2, 3 and 4 are the original four hops
to transfer data. With iCHAT, at least hop 2 and 3 will be
hidden.

switching to Phase 2, as many as hundreds or even thou-
sands of pages of initialization data will be then transferred
from CPU to GPU. Experiments show that the initialization
data has specific characteristics which can be used for de-
tection. First, initialization data is usually transferred just
once during the application execution. Second, CPU usually
streams through each element of the data structure to initial-
ize it. Thus the initialization data normally consists of large
amount of continuous pages with all cachelines within each
page touched by CPU. We add a validation vector in the
directory for each page as seen in Figure 3. The length of
the vector is 64 bits and each bit represents one cache block
of the page to indicate whether the block is in the cache.
By checking the validation vector the detector could tell
whether all the cachelines in the page are accessed. When
GPU starts to request CPU’s data, the detector will check
whether the data meets the above features. If yes, the data
will be identified as initialization data and the current page
ID will be stored in the the last evicted page buffer for eager
eviction.

Hot Data The basic idea to speed up hot data communi-
cation is to learn and capture the hot pages which are fre-
quently transferred between CPU and GPU, then predict and
proceed the data transfer before communication data is re-
quested. With the proposed communicator, the hot data can
be moved into the requestor (CPU or GPU) L2 cache before
it asks for it. So once the requestor starts to issue the fetch
instruction for the hot data, the data will be ready in the L2
cache. Thus there is no need to wait for the data to transfer
all the way from the owner’s side. The major benefit of this
technique is that it can hide the 4 hops data transfer latency
between CPU and GPU while reduce related directory and
cache traffic.

When CPU and GPU are requesting each other’s data, but
the features of the initialization data does not apply. The data

3

blocks will be identified as hot data. The hot data blocks can
be recorded at fine-grain or coarse-grain granularity. Page
level granularity together with valid bit for each cacheline is
used in this paper. The addresses of transferred data blocks
are stored in the hot block table with a counter that increases
each time when the block is transferred. By sorting the
counters, the hot data’s page ID will be identified and stored
in the hot block table. Since the hot pages are normally not
many, we set the hot block table to be 10 entries currently
and each counter takes 3 bits.

There are a few mechanisms to detect and predict the
time for communication. One straightforward mechanism is
interval-based prediction. As we found out in GPGPU com-
puting, each of the three phases showed in Figure 1 tends
to have uniformed interval. In order to calculate the inter-
val, communication detector can record each time stamp of
data transfers between CPU and GPU. The recorded com-
munication time can be local network or cache cycles. After
the communication happens a few times, the detector can get
an average interval length for each phase and prediction can
be made when switching between phases. However, given
the interval, when the communicator should start to move
the data is the critical design tradeoff. An inaccurate interval
based prediction might result in moving data too early (be-
fore the data is ready on the owner side) or too late (not until
the requestor needs it). A more accurate detector should rely
on the hardware information. One design alternative could
use write-activation mechanism, which means the communi-
cator decides that data is ready when the owner modifies the
data. This mechanism will make sure that data are touched
before moving back to the other side. A further last-write
technique could be used in case the owner will write the data
several times before data is finally ready to be transferred.
Another design alternative can be requestor initialized. The
communicator only starts to move the data once it sees one
access request falls into the hot block table (the requestor
starts to use the communication data). This technique will
avoid moving the data too early that causes the cache pollu-
tion in the requestor’s cache. We use the requestor initialized
mechanism in the initial implementation and evaluation.

3.2 Eager Eviction
In the previous subsection, the communicator detector iden-
tifies both the initialization and hot data, and stores the in-
formation separately in last evicted page and hot block ta-
ble. Eager eviction is a technique to evict the detected data
from the owner’s cache ahead of time. iCHAT conducts ea-
ger eviction by sending invalidation request (through direc-
tory) to the owner’s cache which evicts the data blocks and
writes back to L3 cache. Eager eviction requests will be sent
when the directory is free, to avoid bandwidth conflicts with
processor’s data demand.

The eager eviction for initialization data is triggered when
GPU starts to request the very first pages of the initialization
data. Eviction of the neighbouring pages will begin when

the directory is free. The iCHAT communicator will check
the validation vector of the page with the ID number next to
the last evicted page. If all the cacheline blocks of the next
page are in the CPU cache, the next page will also be taken
as initialization data and will be eagerly evicted. The eager
eviction will stop when the features of initialization data on
longer applies. Eager eviction for hot data is straightforward.
When communication is predicted to start, only data blocks
recorded in hot block table are evicted.

With eager eviction, when requestor later requests com-
munication data, it can go to fetch data directly from L3
cache without waiting for the owner to evict the requested
data. Thus eager eviction technique can transform the orig-
inal four-hop data transfer into two-hop transfer. As seen in
Figure 3, the hop 2 (invalidate) and 3 (writeback) will be
hidden, just hop 1 (request) and 4 (fetch) are left. The traffic
on directory will be reduced too.

3.3 Communication Injection
The last step for eagerly transferring the communication data
is to inject them from the L3 cache to the requestor’s private
caches. Since the L2 cache size is normally not big com-
pared to L3, the communication injection has to be designed
to avoid cache pollution to the requestor’s cache. The hot
pages for GPGPU applications are usually not much (most
are just one to three pages), and also will be consumed
pretty soon. So the injection will not cause cache pollution
by evicting other useful data. However, initialization data
blocks are usually very large. In order to avoid cache pol-
lution, a threshold based stepped injection mechanism will
be used in our future work. Injection can break into three
steps: first, dynamically determine an injection page num-
ber threshold based on the total number of communication
data; and then inject threshold number of the pages in the
requester’s cache; later when the requester is starting to con-
sume the data, inject another threshold number of the data
pages to the requester’s cache until all the communication
data are transferred.

After the three steps of communication data eager trans-
fer, the data will be in the requestor’s private cache already
when it is needed. As seen in Figure 3, the 1, 2, 3 and 4
hops latency will all be hidden and the data transfer traffic is
reduced.

The control logic of iCHAT is straightforward and sim-
ple. The hardware complexity mainly lies in the storage
overhead to store the communication information including
page validation vector, the addresses of the last evicted page
and the hot block table.

4. Experimental Results
For the CPU and memory system simulation, we use the
gem5 [2] simulator system. For simulating the GPU, we
use a proprietary simulator based on the AMD Graphics
Core Next architecture [9]. The heterogeneous architecture

4

CPU clock 2 GHz
CPU core # 2

CPU L1 data cache 64 kB (2-way banked)
CPU L1 instruction cache 64 kB (2-way banked)

CPU shared L2 cache 2 MB (8-way banked)
GPU clock 1 GHz

Compute Units # 8
CU SIMD width 64 scalar units by 4 SIMDs

GPU L1 data cache 64 kB (8-way banked)
GPU L1 instruction cache 64 kB (4-way banked)

GPU shared L2 cache 1 MB (16-way banked)
L3 Memory-Side Cache 4 MB (8-way banked)

Table 2. Simulator Parameters.

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

ce
ll#

ho
tsp
ot# bfs

#
lud
#

lav
a# nn

#

dy
np
roc
#

ba
ckp
rop
#

km
ea
ns
#

mu
mm

er# nw
#

pa
r=
cle
#

str
ea
mc
lus
ter
#

Av
era
ge
#Ea

ge
r&e

vi
c*
on

&/
&B
as
el
in
e&
&

Requested&evic*c*on&

(a) The eviction requests issued by the GPU.

0.75%
0.80%
0.85%
0.90%
0.95%
1.00%
1.05%
1.10%

ce
ll%

ho
tsp
ot% bfs

%
lud
%

lav
a% nn

%

dy
np
roc
%

ba
ckp
rop
%

km
ea
ns
%

mu
mm

er% nw
%

pa
r=
cle
%

str
ea
mc
lus
ter
%

Av
era
ge
%

Ea
ge
r&e

vi
c*
on

&/
&B
as
el
in
e&
&

Region&Dirctory&Traffic&

(b) The total traffic through directory.

1.00$
1.05$
1.10$
1.15$
1.20$
1.25$
1.30$

ce
ll$

ho
tsp
ot$ bfs

$
lud
$

lav
a$ nn

$

dy
np
roc
$

ba
ckp
rop
$

km
ea
ns
$

mu
mm

er$ nw
$

pa
r<
cle
$

str
ea
mc
lus
ter
$

Av
era
ge
$

Ea
ge
r&e

vi
c*
on

&/
&B
as
el
in
e&
&

Miss&evic*on&
1.73$

(c) Miss prediction rate.

Figure 4. Eager eviction technique behavior compared to
baseline architecture. The eviction requests and directory
traffic are reduced.

is simulated by combining the memory systems of gem5 and
the GPU simulator. The baseline architecture settings used
in this paper are shown in Table 2.

We choose the Rodinia benchmark suite with a medium
problem size as the heterogenous workloads in the evalu-
ation. In this paper, we evaluate the result of applying the
proposed technique for initialization data. The evaluation for
hot data transfer will be showed in a future publication.

As the eager eviction technique can evict the data from
CPU L2 cache to L3 cache in advance, the eviction requests
will be reduced. Successful eager eviction of a page enables
the GPU to fetch that page directly from L3. So the 4-hop
data transfer process will be reduced to 2 hops as explained
in Section 3.2. Figure 4(a) shows the total eviction requests
issued by GPU compared to the baseline. Eager eviction re-
duces the eviction traffic significantly, up to 74% for lud and
40% on average. The results clearly fall into two groups. For
the first seven benchmarks on the left side, the eager eviction
can reduce traffic by 60% on average. While for the rest six
benchmarks on the right side, the traffic is reduced less than
20%. The first reason for that is some of the six benchmarks
are scientific benchmarks without many pages transferred.
For example, kmeans just has five pages of initialization data
and particle just has one. Thus the potential space of opti-
mization for those benchmarks is not much. Another reason
is that our technique eagerly evicts pages in an incremental
sequence of page ID starting with an ID of the last evicted
page. However, if GPU has a scattered data access footprint,
it may request a page before the communicator has a chance
to evict it. In this situation, GPU still needs to go through the
original 4-hop data transfer process.

As the directory does not need to send invalidation re-
quests to the owner, the total traffic seen by the directory is
also reduced. As showed in Figure 4(b) depending on how
much eviction traffic counts in the total traffic, the total traf-
fic decreases from a few percent to 25% for nn, and 8% on
average. It is also separated into two groups for the similar
reasons as Figure 4(a). The total traffic for kmeans increases.
This is because of the miss predicted eviction, which results
in more data blocks being evicted than necessary. Figure 4(c)
shows the miss eviction rate for each benchmark. The miss
rate for kmeans is specially high resulting in an increase in
eviction traffic as well as extra requests to bring the miss
evicted data back from L3 cache into CPU L2 cache. How-
ever, since the initialization data is not much, just five pages
for kmeans, the absolute value of traffic increase won’t be
that much. For the other benchmarks with relatively high
miss prediction rate, such as bfs, the basic reason is that the
eager eviction evicts some non-initialization data which also
meets the features of initilization data and has continuous
page ID following the last evicted page. One way to fix this
problem is to set a threshold for the number of pages can be
evicted each time, such as 5, to slow down and double check
whether GPU consumes the data.

5. Related Work
Eager Eviction There are several eager write-back schemes
proposed before to reduce shared data coherence overhead
or increase row hits for CPU. However, none of them are
designed for inter CPU-GPU data transfer characteristics.

Lebeck et al. [7] propose the first speculative invalida-
tion technique, called Dynamic Self-Invalidation, for cache-

5

coherent distributed shared memory system. The idea of this
scheme is based on the observation that data blocks that have
recently had conflicting accesses—and hence would have
needed invalidation—are candidates for self-invalidations.
To predict when to self-invalidate a block, they use synchro-
nization boundaries to trigger block self-invalidation. The
technique can predict when a processor completes access-
ing a shared block and speculatively invalidate the block in
advance so that subsequent accesses by other processors can
be fastened. For similar purpose, Lai et al. [6] propose Last
Touch Predictors. It is based on the observation that memory
sharing and invalidation are triggered by program instruc-
tions. The technique maintains an instruction trace from a
coherence miss until last touch to a block before invalida-
tion. As the program behavior is repetitive, it is possible to
use this trace to predict block invalidation. Stuecheli et al.
[14] propose Virtual Write Queue scheme for eager write-
back to increase row-level access locality. While write oper-
ations in the DRAM write queue are being scheduled, other
dirty cache lines that mapped to the same row as the sched-
uled ones are searched in the last-level cache and immedi-
ately transferred to DRAM.

Compared to the existing solutions, our proposed iCHAT
communicator detects the hot regions transferred between
CPU and GPU, and eagerly evicts them from the owner’s
cache. The region-level invalidation can better match the
large data needs for GPU applications and reduce the cache
and directory traffic.

Cache Injection Cache injection was proposed to speedup
producer-consumer style communication on distributed par-
allel machine [11]. Once producer produced new data, it
would be sent and injected to the requestor’s cache. One ex-
ample for CPU cache injection technique is [5]. Cache in-
jection technique has not been applied to GPU related plat-
form. The hardware or software prefetchers [13] [12] [8]
serve similar purpose as injection, reducing data accessing
latency. However, the prefetching techniques may not cover
communication data since communication data has different
locality. Our injection technique can be used to supplement
prefetching techniques to speedup communication data ac-
cess.

6. Conclusions
The frequent transfers of large data blocks between CPU
and GPU result in high latency and heavy cache and mem-
ory traffic, which withhold the heterogeneous multiproces-
sors from potential speedups. This paper proposes a tech-
nique called iCHAT (inter-Cache Hardware-Assistant data
Transfer) to watch and detect the communication pattern, ea-
gerly evict the communication data from the current owner’s
caches and inject it into the requestor’s caches ahead of time.
Using iCHAT can reduce cache traffic and the long latency
involved in CPU and GPU communication, and thus enhance

the performance boost by leveraging GPU as hardware ac-
celerator.

References
[1] M. Alisafaee. Spatiotemporal coherence tracking. In 45th

Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 341–350, 2012.

[2] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt,
A. G. Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron. Rodinia: A benchmark suite for hetero-
geneous computing. In Proceedings of the 2009 IEEE Inter-
national Symposium on Workload Characterization (IISWC
2009), pages 44–54. IEEE, 2009. ISBN 978-1-4244-5156-2.

[4] C. Gregg and K. M. Hazelwood. Where is the data? Why you
cannot debate CPU vs. GPU performance without the answer.
In IEEE International Symposium on Performance Analysis of
Systems and Software, pages 134–144, 2011.

[5] R. Huggahalli, R. R. Iyer, and S. Tetrick. Direct cache access
for high bandwidth network i/o. In 32st International Sympo-
sium on Computer Architecture, pages 50–59, 2005.

[6] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. In Proceedings of
the 27th International Symposium on Computer Architecture,
pages 139–148, 2000.

[7] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation:
Reducing coherence overhead in shared-memory multiproces-
sors. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 48–59, 1995.

[8] J. Lee, N. B. Lakshminarayana, H. Kim, and R. W. Vuduc.
Many-thread aware prefetching mechanisms for gpgpu appli-
cations. In 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 213–224, 2010.

[9] M. Mantor and M. Houston. Amd Graphic Core Next. In
AMD Fusion dedeveloper summit, 2011.

[10] A. Moshovos. Regionscout: Exploiting coarse grain sharing in
snoop-based coherence. In Proceedings of 32st International
Symposium on Computer Architecture, pages 234–245, 2005.

[11] T. C. Mowry. Tolerating latency through software-controlled
data prefetching. PhD thesis, Stanford University, May 1994.

[12] NVIDIA. NVIDIA next generation CUDA compute architec-
ture: Fermi, 2009.

[13] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z.
Ueng, J. A. Stratton, and W. mei W. Hwu. Program optimiza-
tion space pruning for a multithreaded gpu. In Sixth Inter-
national Symposium on Code Generation and Optimization,
pages 195–204, 2008.

[14] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K.
John. The virtual write queue: coordinating dram and last-
level cache policies. In Proceedings of the 37th International
Symposium on Computer Architecture, pages 72–82, 2010.

6

