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Abstract— A theoretically derived antenna saturation point
is shown to exist for MIMO systems, at which the system
suffers a capacity growth decrease from linear to logarithmic
with increasing antenna numbers. We show this saturation point
increases linearly with the radius of the region containing the
receiver antennas and is independent of the number of antennas.
Using an alternative formulation of capacity for MIMO systems
we derive a closed form capacity expression which uses the
physics of signal propagation combined with statistics of the
scattering environment. This expression gives the capacity of a
MIMO system in terms of antenna placement and scattering
environment and shows that the saturation effect is due to spatial
correlation between receiver antennas.

I. I NTRODUCTION

Multiple-Input Multiple-Output (MIMO) communication
systems using multi-antenna arrays simultaneously during
transmission and reception have generated significant interest
in recent years. Theoretical work of [1] and [2] showed the
potential for significant capacity increases in wireless channels
utilizing spatial diversity. However, in reality the capacity is
significantly reduced when the signals received by different
antennas are correlated, corresponding to a reduction of the
effective number of sub-channels between transmit and receive
antennas [2], [3]. Previous studies have given insights and
bounds into the effects of correlated channels [3]–[5], however
most have been for a limited set of channel realizations.

In contrast, one contribution of this paper is an alternative
form for capacity which overcomes current limitations, that is,
with additional theory for modelling scattering environments
which we refine here, we derive a model which can be readily
reconciled with a multitude of scattering models and allows
us to derive a closed form capacity expression. Using this
new model we show that there is a only a small subset of the
eigenvalues generated by a spatial correlation matrix between
elements of an array which effect capacity, regardless of the
number of antennas in the array. This result leads to the
channel capacity suffering a saturation effect with increasing
antenna numbers, after which additional antennas give limited
capacity growth.

Although previous work has focused on eigenvalues as
a means to bound or simplify the tedious ergodic capacity
computation [1], [5]–[7], the emphasis was on the eigenvalues
of the random channel matrix product giving little insight
into environmental effects on capacity. In this paper we
expose characteristics of the eigenvalues of an antenna spatial
correlation matrix that leads to an antenna saturation effect,

which has the detrimental effect of reducing capacity growth
from linear to logarithmic with increasing antenna numbers.

II. CAPACITY OF MULTIPLE ANTENNA SYSTEMS

Consider a MIMO system consisting ofS transmitting
antennas with statistically independent equal power compo-
nents each with Gaussian distributed signals, andQ receiving
antennas. Then for a fixed linear channel, represented by a
S ×Q channel matrixH, with additive white Gaussian noise
the channel capacity is given by [1], [2]

CH = log
∣∣∣IQ +

η

S
HH†

∣∣∣ (1)

where η is the average signal-to-noise ratio (SNR) at each
receiver branch,| · | is the determinant operator, and† the
Hermitian operator. In the case of a random channel model the
channel matrix is stochastic hence the capacity given by (1)
is also random. In this situation the mean (ergodic) capacity
is obtained by taking the expectation of capacityCH over all
possible channel realizations,

C̃ = E
{

log
∣∣∣IQ +

η

S
HH†

∣∣∣
}

. (2)

Equation (2) is often used in Monte Carlo simulations to
provide capacity results for different channel matrix mod-
els, however these simulations offer little insight and fail
to provide a rigorous demonstration into factors determining
capacity. Some analytical lower and upper bounds on the
ergodic capacity have been derived (e.g., see [2], [3]), more
recently, [4] gave an upper bound on ergodic capacity based
on the correlation between each channel matrix element. In
contrast, we use a capacity formula based on the spatial
correlation of the antennas at the receiver and the statistics
of the scattering environment, and thus remove any explicit
dependencies on the random channel matrix. Due to subtle
differences between our capacity result and that of the classical
formulation we provide a detailed derivation. To study the
effects of correlation on capacity we restrict ourselves to
receive correlation only and assume no transmit correlation,
a valid assumption given the less geometrical size restrictions
for base-station arrays.

A. Alternative MIMO Capacity Derivation

Let x = [x1, x2, . . . , xS ]T be the vector of symbols sent
by the S transmitting antennas,n = [n1, n2, . . . , nQ]T be
the zero mean additive white gaussian noise vector, and



y = [y1, y2, . . . , yQ]T be the vector of received symbols,
whereT denotes the vector transpose, then

y = r + n (3)

wherer is the vector ofQ noiseless symbols received after
propagation ofS symbolsx through a flat fading channel.
The channel capacity of a MIMO channel with total transmit
power restricted toP is defined as [8]

C = max
p(x):tr(Vx)≤P

I(x; y) (4)

where p(x) is the transmitter statistical distribution,
Vx = E

{
xx†

}
is the covariance matrix of the transmitted

symbolsx, with E{·} the expectation operator, andI(x; y)
is the mutual information of the transmitted and received
symbols. Assuming the receiver noise is independent from the
transmitted symbols, the mutual information is given by

I(x; y) = H(y)−H(n) (5)

with H(·) the differential entropy of a continuous random vari-
able, hence maximizing capacity is achieved by maximizing
the entropyH(y). The entropy of a complex gaussian vector
x has the following inequality [1]

H(x) ≤ log |πeVx| (6)

with log base 2 and entropy is expressed in bits. Equality
in (6) is achieved if and only ifx is a circularly symmetric
complex Gaussian. It is easy to show ifx is a circularly
symmetric complex Gaussian then so isy, thus, assuming
optimal gaussian distribution for the transmit vectorx, the
mutual information becomes

I(x; y) = log
|Vy|
|Vn|

whereVy = E{yy†}, and Vn = E{nn†} are the received
and noise covariance matrices, respectively. LetVr = E{rr†}
be the covariance matrix of the noiseless received symbols,
then, assuming the receiver noise is independent from the
transmitted signals, the received covariance matrixVy be-
comes

Vy = Vr + Vn (7)

then, assuming uncorrelated noise in each receiver branch,
the noise covariance matrixVn becomesσ2IQ, with noise
varianceσ2, and the mutual information can be written as,

I(x;y) = log
∣∣∣∣IQ +

1
σ2

Vr

∣∣∣∣ . (8)

In the situation where the transmitter has no knowledge about
the channel, it is optimal to uniformly distribute the power
across all the transmit antennas [1], thus from (4) and (8) the
MIMO channel capacity is given by

C = log
∣∣∣∣IQ +

1
σ2

Vr

∣∣∣∣ . (9)

The capacity in (9) is the Shannon capacity for the noiseless
received symbol correlation matrixVr which is defined by

the statistical scattering environment, antenna numbers and
placement.

In this paper we use a receiver antenna spatial correlation
approach which gives the capacity without the explicit need
for the use of a random channel matrix. Here the scattering
environment and antenna placement is captured by the noise-
less received symbols correlation matrixVr and is utilized to
give an analytical capacity formula.

B. Spatial Correlation Matrix Approach

Define the normalized spatial correlation between the com-
plex envelopes of the received signal at two antennasp andq
as

ρpq ,
E{rpr

∗
q}

σ2
s

(10)

whereσ2
s is the average signal power received at any receive

antenna, assuming normalized channel gains. We can then
write

1
σ2

Vr = ηRQ (11)

with the Q×Q spatial correlation matrix

RQ ,




ρ11 · · · ρ1Q

...
. . .

...
ρQ1 · · · ρQQ


 (12)

where eachρpq depends on antenna separation and the power
distribution of the scattering environment.

For a two dimensional propagation environment [9] showed
that

ρpq =
∞∑

n=−∞
inβnJn(k‖zp − zq‖)einφpq (13)

wherezp is the location of thepth point, φpq is the angle of
the vector connectingzp andzq, k = 2π/λ is the wavenumber
with λ the wavelength, andJn is thenth order bessel function
of the first kind. The coefficientsβn characterize any possible
scattering environment and are given by

βn =
∫ 2π

0

P(ϕ)e−inϕdϕ (14)

with P(ϕ) the average power density distribution overϕ
the angle to the scatters. For essentially all common choices
of P (ϕ): von-Mises, gaussian, truncated gaussian, uniform,
piecewise constant, polynomial, Laplacian, Fourier series ex-
pansion, etc., there is a closed form expression for theβn [9].
Therefore we have a closed form representation for the spatial
correlation (13) and, as we will see next, for the capacity of
a MIMO channel.

The capacity in (9) can now be expressed as

C = log |IQ + ηRQ| (15)

which is the capacity for the MIMO system given the scat-
tering environment, described by the average power density
distributionP(ϕ), and antenna placement. The capacity given



by (15) is maximized when there is no correlation between
the receive antennas, i.e.,RQ = IQ, giving,

Cmax = Q log(1 + η). (16)

Therefore, in the idealistic situation of zero correlation be-
tween receiver antennas we see the best capacity growth
achievable is linear in the number of antennas. This result
agrees with the traditional capacity formulation [1], [2] which
is widely used to advocate the use of MIMO systems. How-
ever, as we shall show in the following section, the linear
capacity growth result does not hold for the more realistic
situation where the antennas are restricted to a region in space.

III. C APACITY OF A UNIFORM CIRCULAR ARRAY IN A 2D
ISOTROPICDIFFUSEFIELD

Consider a uniform circular array (UCA) with radiusr and
Q receiver elements. Denote the set{d`}, ` = 0, . . . , Q−1 as
the distance between any element and the otherQ−1 elements
in the array (in a clockwise or anticlockwise direction), with
d0 = 0 being the distance between the element and itself, then

d` , 2r sin(π`/Q). (17)

For the special case of scattering over all angles in the plane
we have a 2D isotropic diffuse field (often referred to as a
rich scattering environment) at the receiver and the normalized
average power reduces toP(ϕ) = 1/2π, ϕ ∈ [0, 2π), giving
the spatial correlation between any two points in the plane as

ρpq = J0(k‖zp − zq‖). (18)

Define the spatial correlation between any element on the UCA
and its`th neighbour as

ρ` , J0(k d`) (19)

then due to UCA symmetry,ρ` = ρQ−`, and the correlation
matrix becomes aQ×Q symmetric circulant matrix,

RQ = Circ
[
ρ0, ρ1, . . . , ρdQ−1

2 e, ρbQ−1
2 c, . . . , ρ2, ρ1

]
(20)

whered·e and b·c are the ceiling and floor operators respec-
tively, and

Circ [x1, x2, . . . , xN ] ,




x1 x2 · · · xN

xN x1 · · · xN−2

...
. . .

...
x2 x3 · · · x1


 (21)

defines the circulant matrix.
The determinant in the capacity formula (15) can be ex-

panded by the product of eigenvalues of the argument, giving,

C =
Q−1∑
m=0

log(1 + ηλm) (22)

whereλm ∈ σ(RQ) are theQ eigenvalues of the circulant spa-
tial correlation matrixRQ. Therefore we see that the capacity
is governed by the eigenvalues of the spatial correlation matrix,
and as such their properties dictate the behavior of the capacity

given differing scattering environments, antenna numbers and
placement. It is important to note that the eigenvalues in (22)
belong to the spatial correlation matrixRQ and not the random
channel matrix productHH†, as analyzed in other work (for
example see [1], [5]–[7]). Unlike previous work where the
eigenvalues of the channel matrix product are used simply as
a means to bound or simplify the tedious ergodic capacity
computation, in the following we expose characteristics of
the spatial correlation matrix eigenvalues that lead to valuable
insights into the channel capacity.

A. Eigenvalues of Spatial Correlation MatrixRQ

The eigenvalues of the symmetric circulant matrixRQ are
given by a simple closed form expression [10]

λm =
Q−1∑

`=0

ρ`e
i2πm`/Q. (23)

For a UCA in a 2D isotropic diffuse field the correlation
coefficients are real and symmetric, hence (23) represents the
Discrete Cosine Transform (DCT) of the spatial correlation
coefficients;

λm =
Q−1∑

`=0

ρ` cos (2πm`/Q) . (24)

SinceRQ is a positive-semidefinite Hermitian matrix and with
the properties of the DCT it is easy to show the following:

λm ∈ R (25)

λm ≥ 0 (26)

λQ−m = λm , m > 0 (27)

that is, all the eigenvalues ofRQ are real, non-negative and
symmetric.

Theorem 1 (Maximum Eigenvalue Threshold):For a UCA
of radiusr in a 2D isotropic diffuse field define the Maximum
Eigenvalue Threshold:

M , dπer/λe (28)

then, form ∈ {M + 1, Q −M − 1} the eigenvaluesλm are
vanishingly small.
Before proving Theorem 1 we clarify its significance with the
following interpretation:

For any UCA in a 2D isotropic diffuse field there is a finite
set of non-zero spatial correlation matrix eigenvalues, where
the set size increases linearly with the radius of the array and
is independent of the number of antennas.

Proof: Substitution of (19) and (17) into (24) gives

λm =
Q−1∑

`=0

J0(2kr sin (π`/Q)) cos (2mπ`/Q) (29)

letting ξ = π`/Q and assuming a large number of antennas,
we can approximate (29) with the integral

λm ≈ Q

π

∫ π

0

J0(2kr sin ξ) cos (2mξ) dξ (30)



for m = {0, 1, . . . , d(Q−1)/2e}. Using the identity [11, p.32]

J2
n(z) =

1
π

∫ π

0

J0(2z sinψ) cos(2nψ)dψ (31)

then the eigenvalues can be expressed as

λm ≈ QJ2
m(kr) (32)

which is asymptotically equal to (29) with the antenna number.
Using the the following bound [12, p.362] on the bessel

functions forn ≥ 0

|Jn(z)| ≤ |z|n
2nΓ(n + 1)

(33)

the eigenvalues are then upper-bounded by

λm ≤ Q

(
(C/2λ)m

Γ(m + 1)

)2

(34)

with C = 2πr the circumference of the circular array. Since
Gamma functionΓ(m+1) increases faster than the exponential
(C/2λ)m then (34) will rapidly approach0 for somem >
0 for which Γ(m + 1) > (C/2λ)m. Using a relaxed Stirling
lower bound1 for Γ(m + 1), we wish to findm for which

(m

e

)m

>

(
C

2λ

)m

. (35)

The inequality in (35) is clearly satisfied whenm > Ce/2λ,
asserting thatm must be an integer and from the definition of
C we see that the eigenvalues vanish form > dπer/λe, thus
giving the maximum eigenvalue threshold in (28).

Given the symmetric nature of the eigenvalues in (27) then
for any number of antennas,Q ≥ 2M +1, there is a finite set
of 2M + 1 non-zero eigenvalues,

λ = {λ0, λ1, · · · , λM , λQ−M , · · · , λQ−2, λQ−1} (36)

whose number of elements grows only with the radius of the
array, and is independent on the number of antennas.
Fig. 1 shows the eigenvalues of the spatial correlation matrix
RQ for various UCA radii in a 2D isotropic diffuse field.
Shown as a solid black line, it can be seen that the theoretical
maximum eigenvalue threshold derived in Theorem 1 gives a
good indication of the maximum non-vanishing eigenvalue for
each radius.

B. Capacity Growth Limits: Antenna Saturation

Due to the dependence of the capacity formula (22) on
the eigenvalues of the spatial correlation matrix we see that
Theorem 1 has significant implications on the capacity growth
with increasing antenna numbers. In this section we show that
this fixed set size of eigenvalues, regardless of the number
of antennas, leads to an antenna saturation effect on MIMO
capacity.

Theorem 2 (Antenna Saturation Point):For a UCA of ra-
dius r in a 2D isotropic diffuse field define a saturation point

1Γ(z + 1) >
√

2πz zz e−z > zz e−z , z > 0

Fig. 1. The eigenvalues of the spatial correlation matrix for various UCA
radii in a 2D isotropic diffuse scattering field. The dark solid line represents
the theoretical Maximum Eigenvalue Threshold derived in Theorem 1, and
clearly shows the boundary between the significant and vanishing eigenvalues
of the spatial correlation matrix for each array radius.

QM as the minimum number of antennas that generate a full
set of non-zero eigenvaluesλm;

QM , 2M + 1 (37)

then, for anyQ ≥ QM the channel capacity is governed by

C ≈ log(1 + η̂λ0) + 2
M∑

m=1

log(1 + η̂λm) (38)

whereη̂ = (Q/QM )η is the scaled average SNR ratio at each
receiver branch.
Before giving a proof of Theorem 2 we give the following
interpretation:

For a MIMO system with a UCA in a 2D isotropic diffuse
field there exists a saturation point in the number of antennas,
which is dependent only on the radius of the array, after which
the addition of more antennas gives diminishing (logarithmic)
capacity gains.

Proof: Denoting λ
(Q)
m ∈ σ(RQ) as the eigenvalues

generated fromQ antennas on a UCA of radiusr, then the
capacity (22) can be expressed as

Q−1∑
m=0

log
(
1 + ηλ(Q)

m

)
(39)

which, when using (27) and assuming an odd number of
antennas can be written as2

C = log
(
1 + ηλ

(Q)
0

)
+ 2

(Q−1)/2∑
m=1

log
(
1 + ηλ(Q)

m

)
. (40)

Consider the UCA placed in a 2D isotropic diffuse field, then
as a direct result of Theorem 1 forQ ≥ 2M + 1 the channel

2from Theorem 1 the case of evenQ gives identical results, however to
simplify notation we assume an odd number of antennas



capacity given by (40) is well approximated using the set of
2M + 1 non-vanishing eigenvalues, that is,

C ≈ log
(
1 + ηλ

(Q)
0

)
+ 2

M∑
m=1

log
(
1 + ηλ(Q)

m

)
. (41)

Given two UCAs of equal radiusr with antenna numbersQ1,
Q2 ≥ 2M+1, and spatial correlation matrix eigenvaluesλ

(Q1)
m

andλ
(Q2)
m respectively, then from (32) we have the following

relationship between eigenvalues for systems with different
numbers of receive antennas,

λ
(Q1)
m

Q1
≈ λ

(Q2)
m

Q2
(42)

with the approximation asymptotically equal with the number
of antennas. DefineQM , 2M +1 as the minimum number of
antennas which generate the full set of non-zero eigenvalues,
then lettingQ1 = QM andQ2 = Q we have

λ(Q)
m ≈ Q

QM
λm (43)

whereλm are the eigenvalues of the spatial correlation matrix
RQM

. Thus the eigenvalues for any UCA of radiusr with
number of antennasQ ≥ QM are simply scaled versions
of the eigenvalues generated by an array withQM antennas.
Substituting (43) into (41) gives

C ≈ log
(

1 +
ηQλ0

QM

)
+ 2

M∑
m=1

log
(

1 +
ηQλm

QM

)
(44)

which behaves logarithmically withQ since the eigenvalues
are constant for allQ, hence the capacity gain is reduced
to logarithmic growth once the antenna number reaches the
saturation point given byQM . Let η̂ = (Q/QM )η be the
scaled average SNR at each antenna, then the capacity (44)
becomes (38), thus we see that the effect of any additional
antennas above the saturation point is just an increase in the
average SNR, or in other words, a noise-averaging effect due
to the assumption of independent noise at each antenna.

It can be observed from Fig. 2 that the capacity does
indeed increase approximately linearly up until the theoretical
saturation point defined in Theorem 2, after which the capacity
reduces to logarithmic increase with antenna number. This
result has significant implications for practical MIMO systems,
we have shown that there is a saturation point in antenna
numbers after which there are diminishing returns in capacity
for additional antennas, therefore the saturation point gives the
optimal number of antennas that achieve maximum capacity
with minimum cost. Further to the UCA case, empirical studies
have shown that there are only ever2M + 1 significant
eigenvalues generated by arbitrarily placed antennas within a
circular region of radiusr. We believe the saturation effect
seen in UCAs also holds for any antenna configuration within
a circular region and we are currently developing theoretical
results to support this.
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Fig. 2. Capacity of MIMO systems for various antenna numbers of a UCA
with radii r = 0.1, 0.3, 0.5, and 0.7 wavelengths in a 2D isotropic diffuse
scattering field, along with the theoretical maximum capacity. As indicated
by the dashed lines for each radii, the Antenna Saturation Point theoretically
derived in Theorem 2 gives a good indication where the MIMO system
saturates and hence increasing antenna numbers gives only marginal capacity
gain.
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