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Abstract—A theoretically derived antenna saturation point which has the detrimental effect of reducing capacity growth

is shown to exist for MIMO systems, at which the system from linear to logarithmic with increasing antenna numbers.
suffers a capacity growth decrease from linear to logarithmic

with increasing antenna numbers. We show this saturation point II. CAPACITY OF MULTIPLE ANTENNA SYSTEMS

increases linearly with the radius of the region containing the . o .
receiver antennas and is independent of the number of antennas. Consider a MIMO system consisting o transmitting
Using an alternative formulation of capacity for MIMO systems —antennas with statistically independent equal power compo-
we derive a closed form capacity expression which uses thenents each with Gaussian distributed signals, @neceiving
physics of signal propagation combined with statistics of the 5ntennas. Then for a fixed linear channel, represented by a

scattering environment. This expression gives the capacity of a . . o . . .
MIMO system in terms of antenna placement and scattering S x @ channel matrixH, with additive white Gaussian noise

environment and shows that the saturation effect is due to spatial theé channel capacity is given by [1], [2]
correlation between receiver antennas. n
Cu =log|Io+ ~HH' (1)

I. INTRODUCTION S

. . ... wheren is the average signal-to-noise ratio (SNR) at each
Multiple-Input Multiple-Output (MIMO) communication receiver branch| - | is the determinant operator, arjdthe

system.s using multl-an'tenna arrays S|multa'1ne'o'usly .du“p%{mitian operator. In the case of a random channel model the
transmission and reception have generated significant mterer?annel matrix is stochastic hence the capacity given by (1)
in recent years. Theoretical work of [1] and [2] showed th

potential for significant capacity increases in wireless channé%salso random. In this situation the mean (ergodic) capacity

utilizing spatial diversity. However, in reality the capacity ig> obtained by taking the expectation of capacity over all

significantly reduced when the signals received by differeR
anten_nas are correlated, corresponding to a red_uction of t_he C=E {log ’IQ + QHHT‘}. )
effective number of sub-channels between transmit and receive S
antennas [2], [3]. Previous studies have given insights a&guation (2) is often used in Monte Carlo simulations to
bounds into the effects of correlated channels [3]-[5], howevprovide capacity results for different channel matrix mod-
most have been for a limited set of channel realizations. els, however these simulations offer little insight and fail
In contrast, one contribution of this paper is an alternatite provide a rigorous demonstration into factors determining
form for capacity which overcomes current limitations, that igapacity. Some analytical lower and upper bounds on the
with additional theory for modelling scattering environmentergodic capacity have been derived (e.g., see [2], [3]), more
which we refine here, we derive a model which can be readilgcently, [4] gave an upper bound on ergodic capacity based
reconciled with a multitude of scattering models and allowsn the correlation between each channel matrix element. In
us to derive a closed form capacity expression. Using thisntrast, we use a capacity formula based on the spatial
new model we show that there is a only a small subset of tberrelation of the antennas at the receiver and the statistics
eigenvalues generated by a spatial correlation matrix betwesfnthe scattering environment, and thus remove any explicit
elements of an array which effect capacity, regardless of thependencies on the random channel matrix. Due to subtle
number of antennas in the array. This result leads to th#ferences between our capacity result and that of the classical
channel capacity suffering a saturation effect with increasifigrmulation we provide a detailed derivation. To study the
antenna numbers, after which additional antennas give limiteffects of correlation on capacity we restrict ourselves to
capacity growth. receive correlation only and assume no transmit correlation,
Although previous work has focused on eigenvalues asvalid assumption given the less geometrical size restrictions
a means to bound or simplify the tedious ergodic capacityr base-station arrays.
computation [1], [5]-[7], the emphasis was on the eigenvalues ] ) o
of the random channel matrix product giving little insighf) Alternative MIMO Capacity Derivation
into environmental effects on capacity. In this paper we Let x = [x1,z2,...,25]T be the vector of symbols sent
expose characteristics of the eigenvalues of an antenna spdjalthe S transmitting antennasp = [n1,n2,...,n9]7 be
correlation matrix that leads to an antenna saturation effettte zero mean additive white gaussian noise vector, and

PSsibIe channel realizations,



Yy =[y1,v2,...,y0|" be the vector of received symbolsthe statistical scattering environment, antenna numbers and
whereT denotes the vector transpose, then placement.

In this paper we use a receiver antenna spatial correlation
approach which gives the capacity without the explicit need
wherer is the vector ofQ noiseless symbols received aftefor the use of a random channel matrix. Here the scattering
propagation ofS symbolsz through a flat fading channel. environment and antenna placement is captured by the noise-
The channel capacity of a MIMO channel with total transmiess received symbols correlation mat#y and is utilized to
power restricted taP is defined as [8] give an analytical capacity formula.

y=r+mn ®)

C= max  I(x;y) (4) B. Spatial Correlation Matrix Approach

p(@):tr(Ve) <P . : . .
Define the normalized spatial correlation between the com-
églex envelopes of the received signal at two antennasdg
S

where p(x) is the transmitter statistical distribution
V, = E{xx'} is the covariance matrix of the transmitte
symbolsx, with E{-} the expectation operator, addx; y)

is the mutual information of the transmitted and received g 2 Erprg} (10)
. . . .. prq 2
symbols. Assuming the receiver noise is independent from the 0%
transmitted symbols, the mutual information is given by  whereo? is the average signal power received at any receive
I(z;y) = H(y) — H(n) (5) \:;Ivr:itteenna, assuming normalized channel gains. We can then
with H(-) the differential entropy of a continuous random vari- 1
able, hence maximizing capacity is achieved by maximizing ;VT =nRq (11)

the entro . The entropy of a complex gaussian vector . . . .
= has thg)f/(})ill(o%\)/ing inequalirt)))// [1] piex g with the @ x @ spatial correlation matrix

H(z) < log|meVa| (6) . proo e "
with log base 2 and entropy is expressed in bits. Equality N ' ' ' (12)
in (6) is achieved if and only ifc is a circularly symmetric per "t PQ
complex Gaussian. It is easy to showaif is a circularly where eaclp,, depends on antenna separation and the power
symmetric complex Gaussian then soqjs thus, assuming distribution of the scattering environment.
optimal gaussian distribution for the transmit vector the For a two dimensional propagation environment [9] showed
mutual information becomes that

(z;y) = log V.| Ppq = Z " Brdn(kllzp — 24])e™ (13)

whereV,, = E{yy'}, andV;, = E{nn'} are the received , - : :
. : . . where z, is the location of thepth point, ¢, is the angle of
and noise covariance matrices, respectively. W,et= E{rrf} t! % Pth point, oy, g

be th ) trix of th isel ved baje vector connecting,, andz,, k = 27 /X is the wavenumber
€ the covanance matrix of Ih€ NOISEless received sym th A the wavelength, and,, is thenth order bessel function
then, assuming the receiver noise is independent from ¢t

¢ itted sianals. th ved . Vix b the first kind. The coefficients,, characterize any possible
Crgnn;? €d signais, the received covariance malrx be- scattering environment and are given by

27
JO
n\?)ﬂh P(p) the average power density distribution over
the angle to the scatters. For essentially all common choices
of P(p): von-Mises, gaussian, truncated gaussian, uniform,
I(a:y) = log ®) piecewise constant, polynomial, Laplacian, Fourier series ex-
’ pansion, etc., there is a closed form expression forsth§9].

In the situation where the transmitter has no knowledge abdterefore we have a closed form representation for the spatial
the channel, it is optimal to uniformly distribute the powefOrrelation (13) and, as we will see next, for the capacity of

across all the transmit antennas [1], thus from (4) and (8) tR&VIMO channel.
MIMO channel capacity is given by The capacity in (9) can now be expressed as

C =log|Ig +nRg (15)

then, assuming uncorrelated noise in each receiver bra
the noise covariance matri¥,, becomess?1, with noise
variances?, and the mutual information can be written as,

1
IQ+§‘/7-.

1
C =log IQJr?VT

: )

which is the capacity for the MIMO system given the scat-
The capacity in (9) is the Shannon capacity for the noiseletssing environment, described by the average power density
received symbol correlation matri¥%,. which is defined by distributionP(y), and antenna placement. The capacity given



by (15) is maximized when there is no correlation betweegiven differing scattering environments, antenna numbers and
the receive antennas, i.d2o = I, giving, placement. It is important to note that the eigenvalues in (22)
belong to the spatial correlation mat and not the random

Cinax = Qlog(1 +1). (16) channel matrix producH H', as anaﬂsged in other work (for
Therefore, in the idealistic situation of zero correlation bexample see [1], [5]-[7]). Unlike previous work where the
tween receiver antennas we see the best capacity gro®t@envalues of the channel matrix product are used simply as
achievable is linear in the number of antennas. This res@itmeans to bound or simplify the tedious ergodic capacity
agrees with the traditional capacity formulation [1], [2] whicttomputation, in the following we expose characteristics of
is widely used to advocate the use of MIMO systems. Howhe spatial correlation matrix eigenvalues that lead to valuable
ever, as we shall show in the following section, the linedpsights into the channel capacity.

capacity growth result does not hold for the more realisti& Eigenvalues of Spatial Correlation MatriRe,

situation where the antennas are restricted to a region in space. _ o
The eigenvalues of the symmetric circulant matitg are

[I1. CAPACITY OF A UNIFORM CIRCULAR ARRAY IN A 2D  given by a simple closed form expression [10]
ISOTROPICDIFFUSEFIELD

Q-1
Consider a uniform circular array (UCA) with radiusand A, = Z ppei2mmt/Q (23)
Q receiver elements. Denote the $€t},(=0,...,Q—1as =0

the distance between any element and the afhed elements For a UCA in a 2D isotropic diffuse field the correlation

in tEe T)”fdy ('E a d9|°CkW'Sbe or antlcrllock:/wse d'recé'(_)n)'I;N'thkboefficients are real and symmetric, hence (23) represents the
do = 0 being the distance between the element and itself, thgfy yete Cosine Transform (DCT) of the spatial correlation

d¢ 2 2rsin(nl/Q). (17) coefficients;

For the special case of scattering over all angles in the plane
we have a 2D isotropic diffuse field (often referred to as a
rich scattering environment) at the receiver and the normalized ) - S - ) )
average power reduces ®(y) = 1/27, ¢ € [0,2n), giving SinceRy, is a positive-semidefinite Hermitian matrix and with
the spatial correlation between any two points in the plane % Properties of the DCT it is easy to show the following:

Q-1
Am = Z pecos (2rml/Q) . (24)
=0

Prq = Jo(klzp — 2z4ll)- (18) Am € R (25)
' . . Am >0 (26)
Define the spatial correlation between any element on the UCA
and its/th neighbour as AQ-m = Am, m >0 (27)
pe 2 Jo(kdy) (19) that is, a_II the eigenvalues d® are real, non-negative and
symmetric.
then due to UCA symmetryy, = po—,, and the correlation  Theorem 1 (Maximum Eigenvalue Threshol&pr a UCA
matrix becomes &) x ) symmetric circulant matrix, of radiusr in a 2D isotropic diffuse field define the Maximum
) Eigenvalue Threshold:
Rq = Circ |po, p1, -5 praz1y, ezt -5 p2, 01| (20) N
M = [mwer/\] (28)
where[-] and |-| are the ceiling and floor operators respec- )
tively, and then, form € {M +1,Q — M — 1} the eigenvalues,,,, are
vanishingly small.
Ty T2 -0 IN Before proving Theorem 1 we clarify its significance with the
A | N T IN-2 following interpretation:

Circ [z1,x2,. .., TN] (21)

For any UCA in a 2D isotropic diffuse field there is a finite
set of non-zero spatial correlation matrix eigenvalues, where
the set size increases linearly with the radius of the array and

defines the circulant matrix. . is independent of the number of antennas.
The determinant in the capacity formula (15) can be ex- proof: Substitution of (19) and (17) into (24) gives
panded by the product of eigenvalues of the argument, giving,

T2 xs3 e 1

Q-1
= = rsin (7 mi
C= Z log(1 + nAm) (22) Am = ; Jo(2kr sin (7£/Q)) cos (2mml/Q) (29)

m=0

] ) letting £ = 7¢/Q and assuming a large number of antennas,
where),,, € o(Rg) are the) eigenvalues of the circulant spase can approximate (29) with the integral
tial correlation matrixR¢. Therefore we see that the capacity

is governed by the eigenvalues of the spatial correlation matrix, A\, A Q /7T Jo(2kr sin €) cos (2mé) d¢ (30)
and as such their properties dictate the behavior of the capacity T Jo



form ={0,1,...,[(Q—1)/2]}. Using the identity [11, p.32]

J2(2) = 1 /7r Jo(2z sin ) cos(2nyp)de (31)
T Jo

20

o

then the eigenvalues can be expressed as
Am = QT3 (k) (32)

which is asymptotically equal to (29) with the antenna numbe
Using the the following bound [12, p.362] on the bess¢ 2~
functions forn > 0

eigenvalue A
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the eigenvalues are then upper-bounded by - } 2
10
(C/2>\)m 2 0 0 5 eigenvalue number m
Am < Q () (34)
F(m + 1) Fig. 1. The eigenvalues of the spatial correlation matrix for various UCA

. . . . radii in a 2D isotropic diffuse scattering field. The dark solid line represents
with C = 27r the circumference of the circular array. SinCehe theoretical Maximum Eigenvalue Threshold derived in Theorem 1, and

Gamma functiorI‘(m+ 1) increases faster than the exponentiaplearly shows the boundary between the significant and vanishing eigenvalues
(C/QA)m then (34) will rapidly approactt for somem > of the spatial correlation matrix for each array radius.
0 for which I'(m + 1) > (C/2X)™. Using a relaxed Stirling

lower bound for I'(m + 1), we wish to findm for which Qs as the minimum number of antennas that generate a full

(m)m . ( C >m (35) set of non-zero eigenvalues,,;
e 2X Qu 22M +1 (37)

The inequality in (35) is clearly satisfied whem > Ce/2), Fhen, for anyQ > Qs the channel capacity is governed by

asserting thatn must be an integer and from the definition o

C we see that the eigenvalues vanish for> [mer/A], thus R M R

giving the maximum eigenvalue threshold in (28). C ~log(1+ 7o) +2 Z log(1 + 77Am) (38)
Given the symmetric nature of the eigenvalues in (27) then m=1

for any number of antennag), > 2M + 1, there is a finite set wherenj = (Q/Qxs)n is the scaled average SNR ratio at each

of 2M + 1 non-zero eigenvalues, receiver branch.

Before giving a proof of Theorem 2 we give the following
A={Xo, A1 A Ag-n, o Ag-2, A1 (36)  interpretation:

whose number of elements grows only with the radius of t _eFOr a MIMQ system W't.h a U.CA. in a 2D isotropic diffuse
array, and is independent on the number of antennas. m |elq th_ere exists a saturation point in the number of antennas,
Fig. 1 shows the eigenvalues of the spatial correlation matwpICh IS (_jependent only on the rgd|us _of_the array, afte_r Wh'.Ch
Ry, for various UCA radii in a 2D isotropic diffuse field.t e ad.dltlon. of more antennas gives diminishing (logarithmic)
Shown as a solid black line, it can be seen that the theoreti€3P3!Y galns. Q) he ei |
maximum eigenvalue threshold derived in Theorem 1 gives a Proof: Denoting A, € o(Rq) as t ¢ elgenvalues
good indication of the maximum non-vanishing eigenvalue f&enerated from antennas on a UCA of radius then the

each radius capacity (22) can be expressed as
Q-1
B. Capacity Growth Limits: Antenna Saturation 3 log (1 + 77/\5,?)) (39)
Due to the dependence of the capacity formula (22) on m=0

the eigenvalues of the spatial correlation matrix we see thahich, when using (27) and assuming an odd number of
Theorem 1 has significant implications on the capacity growtimtennas can be written?as
with increasing antenna numbers. In this section we show that (Q-1)/2

this fixed set size of eigenvalues, regardless of the numberc — 144 (1 +77/\8Q)) +2 Y log (1 +n>\§§)> . (40)
of antennas, leads to an antenna saturation effect on MIMO oo

capacity. . . Consider the UCA placed in a 2D isotropic diffuse field, then
_The(_)rem 2 (_A”te”f?a S_aturatl_on Pom_IB’-Dr a UCA _Of fa" "as a direct result of Theorem 1 fay > 2M + 1 the channel
diusr in a 2D isotropic diffuse field define a saturation point

2from Theorem 1 the case of evep gives identical results, however to
IM(z+1)>V2mz27e™* > 2%e %, 2>0 simplify notation we assume an odd number of antennas



capacity given by (40) is well approximated using the set «

2M + 1 non-vanishing eigenvalues, that is, o

Czlog(lJrn)\éQ))+2§:10g(1+77/\,(§))~ 41)
m=1

Given two UCAs of equal radius with antenna numberg,
Q2 > 2M+1, and spatial correlation matrix eigenvalu’égl)
and A'\@) respectively, then from (32) we have the followincg _ |

relationship between eigenvalues for systems with differeS
numbers of receive antennas,

IN
o

ity (bps/Hz)
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Q1 Qo (“42) 10
with the approximation asymptotically equal with the numbe

of antennas. Defin@,; £ 2M +1 as the minimum number of oL : " = - = = = 40
antennas which generate the full set of non-zero eigenvalu _ _, Number of Antennas

then letting@: = Q and Q> = Q we have

Fig. 2. Capacity of MIMO systems for various antenna numbers of a UCA

) Q with radii » = 0.1,0.3,0.5, and 0.7 wavelengths in a 2D isotropic diffuse
)\m =\ (43) scattering field, along with the theoretical maximum capacity. As indicated
M by the dashed lines for each radii, the Antenna Saturation Point theoretically

where),,, are the eigenvalues of the spatial correlation matrg@rived in Theorem _2 give§ a good indication Where the MIMQ system
. . . saturates and hence increasing antenna numbers gives only marginal capacity
Rg,,. Thus the eigenvalues for any UCA of radiuswith — gain.
number of antennag) > Q,; are simply scaled versions
of the eigenvalues generated by an array witfy antennas.
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have shown that there are only evei! 4+ 1 significant

eigenvalues generated by arbitrarily placed antennas within a

circular region of radiug. We believe the saturation effect

seen in UCAs also holds for any antenna configuration within

a circular region and we are currently developing theoretical

results to support this.



