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Abstract—As our power system modernises to embrace
consumer-owned distributed energy resources (DER), network
operators must ensure a safe and reliable operation while
enabling consumers to trade their flexibility in the wholesale
market. To enable this, we obtain network-secure operating
envelopes that facilitate participation of consumers in energy
and reserve markets. Given the distributed nature of the real-
world problem, we use the alternating direction method of
multipliers (ADMM) to optimise for operating envelopes such
that any market action of consumers within these envelopes
satisfies the distribution network constraints. To guarantee that
the uncertainty realisation in live operation neither leads to
network infeasibilities (due to exceeding the operating envelope)
nor penalises DER-owners (due to market bid violation), we
introduce a piecewise affinely adjustable robust bidding approach
that can compensate for uncertainty variations in real-time.
We also open up network capacity and minimise its losses,
by proposing an additional piecewise affine Q-P controller that
exchanges inverter reactive power with the grid. Our results on
a 69-bus distribution network highlight the effectiveness of our
proposal compared to alternative approaches.

Index Terms—Distribution Network, Electricity Market, Op-
erating Envelope, OPF, Reserve.

I. INTRODUCTION
A. Research Motivation

The ongoing integration of distributed energy resources
(DER), such as rooftop PV and batteries, has brought eco-
nomic and environmental benefits to our power system. As a
side effect however, the large generating units that traditionally
provide frequency response are increasingly being pushed out
of electricity markets. Aggregated DER has the potential to
trade reserve services to compensate for this withdrawal. But
this raises new challenges for the optimisation and control of
our electricity system, which neither markets, networks, nor
the demand side are currently prepared for.

One of these challenges is that the synchronisation of many
DER, responding to price spikes, can exceed the technical lim-
its of the distribution network sitting between the DER and the
market. Another important issue is that the uncertainty about
demand and PV generation can compromise the reliability of
DER bids, and put our power system at a notable risk.

Our approach to these issues builds on the notion of dynamic
operating envelopes [1]-[3]], which has recently attracted the
attention of system operators as a solution to ensure the
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security of the distribution network. An operating envelope is
a convex set that defines the real and reactive power allowed
to be transferred to / from the network at a given customer
connection point, or for an aggregate of customers in a region.
Envelopes are calculated so that any joint combination of
consumption or generation within the envelope will not violate
any network constraints.

Current proposals recommend that distribution system oper-
ators (DSOs) should repeatedly calculate operating envelopes
and allocate them to each DER, without considering consumer
preferences, uncertainty or market participation (e.g., [[1]l, [2]).
Since some consumers might need less flexibility (e.g., due
to self consumption), such proposals can result in envelopes
conservatively limiting market-participating consumers. More
importantly, despite the initial motivation of guaranteeing
network security, current proposals ignore the consumer-side
of the envelopes, and do not check whether it is feasible
for consumers to remain within their given envelopes; yet
network constraints might be violated if they fail to do so,
for instance due to uncertainty around solar PV generation.
In addition, operating envelopes are not designed to guarantee
reliable bidding in the electricity market. Therefore a new and
comprehensive approach, closing these gaps, is essential.

In this paper, we enable consumers to participate in the
wholesale market by obtaining operating envelopes that ac-
count for consumer preferences and uncertainty in a rigorous
manner. To reflect the distributed nature of the problem and
the possible privacy concerns of stakeholders, we decompose
the problem into consumer and DSO subproblems and use
the alternating direction method of multipliers (ADMM) to
obtain the operating envelopes. More specifically, consumers
iteratively negotiate with the DSO their preferred envelopes
through ADMM, until convergence to consensus operating en-
velopes that satisfy consumer preferences and network limits.
To ensure that consumers can commit to their envelopes and
honour their bids to the market in live operation, we build
a piecewise affinely adjustable robust constraint optimisation
(PWA-ARCO) into our consumer subproblem. PWA-ARCO is
an extension to the conventional affinely ARCO (AARCO) [4]]
which increases the flexibility by breaking the uncertainty set
into more pieces, enabling the response to be better optimised
when operating away from the worst case conditions.

B. Related Work

With the rising adoption of DER into the demand side,
new regulations / solutions have been proposed to avoid
overloading distribution networks. These solutions create an
spectrum with central and local approaches at its two extremes.
Central approaches, e.g., [S[], optimise all consumers and
the distribution network on a single platform to obtain bids
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compliant with the grid technical limits. These approaches
often lead to a large-scale optimisation problem which not
only cannot scale to realistically sized networks, but also
compromise consumer and network privacy. To overcome the
challenges with a central tool, distributed optimisation ADMM
is used in [6]—[9] to break the large-scale central problem into
several smaller-scale subproblems which are coordinated using
dynamic locational marginal prices (DLMPs). However, unlike
[6]-[9], when bidding into the energy and reserve markets,
there is no well-defined operating point, as the operating point
depends on consumers’ dispatch in the energy market and
whether a contingency requiring a response occurs.

Contrary to the approaches based on either central [5]] or dis-
tributed optimisation [6]—[9]], local techniques limit consumer
network access to a predefined value. Placing limits on power
injected to the grid (e.g., on excess solar PV) is a common
practice Worldwideﬂ For example, in Germany, small-scale
PV systems are not allowed to export more than 70% of their
installed capacity [[10]]. Although simple, such fixed limits are
overly conservative, as they are obtained for a scenario with
maximum generation and minimum demand throughout a year.

To alleviate the overconservativeness of fixed limits, dy-
namic operating envelopes are proposed in [1]-[3]. Fig.
shows an example of an operating envelope — the green
area represents the network secure operating points for the
consumer. In [1] and [2] the DSO obtains operating envelopes
while neglecting consumer preferences, uncertainty or market
participation. Since some consumers might need less network
access (e.g., due to self consumption), [1]], [2] can result
in envelopes conservatively limiting market-participating con-
sumers. To obtain more precise envelopes, the DSO needs to
have full observability over consumers [3] — i.e., detailed in-
formation around thousands of consumers that is not available
to the DSOs. To conquer these challenges, inspired by [6]—
[9, we use DLMPs within the distributed approach ADMM
to enable consumers to negotiate their preferred operating
envelopes with the DSO, rather than a single operating point as
in [6]-[9]. This allows consumers to reflect their preferences
into the optimisation, while providing some levels of privacy
for consumers and the DSO. Notice that DLMPs can be used
to create a new market within the distribution network. While
this is a possible direction, in this paper we opt to minimise
disruption to existing market structures, and so, once the
network constraints are ensured, consumers participate in the
main energy and reserve markets.

The network guarantees provided by envelopes hold as
long as consumers can commit to their envelopes. However,
envelopes (or any other deterministic approach such as central
[5]] / distributed [6]—[9]], [11]], [12] tools) are calculated prior
to real time using forecast information. In live operation, the
discrepancy between the forecast and reality might push con-
sumers out of their envelopes, leading to a network violation.
In addition, [2]], [S]-[9], [11], [12] will pass on consumers’
uncertainty to the electricity market, leading to bid deliveries
different from the accepted offers. In the energy market,

'"When storage comes into the picture these limits need to be two-sided,
i.e., both for power injection and power withdrawal scenarios.
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Fig. 1: An Example of an Operating Envelope [1]

bid violations can be compensated for by regulation services
which, in the Australian national electricity market (NEM), are
paid for by the causers — a penalty not accounted for by the
deterministic approaches. In reserve markets, not honouring
bids can endanger power system’s security. Thus, the NEM
expels such participants from bidding into reserve markets,
leading to a loss of a highly profitable revenue stream, again
not accounted for by the deterministic approaches.

To account for uncertainties, stochastic programming (SP)
has been used, e.g., in demand response [|13]], network manage-
ment [14], and unit commitment problem [15]]. The scenarios
used in SP can bias the solution away from the “true” PDF
(probability distribution function). Thus, if the distribution of
scenarios differs from the actual realisation, SP can result
in poor out-of-sample performance. Moreover, considering a
large set of scenarios to enhance the prediction of uncertainty
realisation renders the problem computationally intractable. To
overcome the challenges with SP, robust optimisation (RO) is
used, e.g., in [[16]-[21]]. These works either neglect recourse
capability, as in [16]-[19], and make decisions based on the
worst case; or assume a linear recourse as in [20] and [21]] that
as we show in Section [Vl leads to over-conservative solutions.

Distributionally robust optimisation (DRO) has been used,
e.g., in [22] and [23]], to improve the performance of RO,
based on the distribution of the uncertain parameters. However,
the number of constraints of the DRO problem increases with
the number of samples, leading to high dimensionality [24].
Hence, given the real-time market time frame (5 minutes in
the NEM), these approaches are unlikely to scale, especially
within the ADMM context where every subproblem needs to
be solved several times for the algorithm to converge.

To meet the above challenges, we develop a piecewise
affine framework that enables live correction in response to
realisations that could belong to any PDF. Unlike [16]-[19],
[22], [23]] our approach can continuously tune the output based
on what actually occurs in reality. In contrast to linear recourse
[20], [21], we avoid over-conservative results by chunking
the uncertainty set into pre-defined pieces and optimising
for a piecewise linear function, each piece associated with a
segment in the uncertainty set.

To ensure that consumers can commit to their envelopes, we
integrate our piecewise affine functions into consumer side of
operating envelopes. During the optimisation, the parameters
of the piecewise functions are obtained such that consumers
can stick to the envelope for any realisation within a polyhedral
uncertainty set. To open up network capacity (i.e., wider
operating envelopes), we enable consumers to additionally
negotiate the reactive power support of their inverters with
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the grid. This is in contrast to [[11]], [18], [25]-[27] that only
rely on real power management. Moreover, we implement our
approach within a model predictive control (MPC) framework
which moves forward every 5 minutes in lock with the NEM
real-time market. This allows us to feed the optimisation with
the latest (most accurate) uncertainty information enabling the
use of less conservative uncertainty sets. More information
about the MPC framework is provided in Section

Compared to the DER coordination approach in [25], where
consumers have to keep their CPP constant, here consumers
CPPs can vary within an operating envelope. Moreover, con-
sumers can here participate in both energy and reserve mar-
kets, leading to a higher value use of DER. Unlike the standard
ARCO in [25], our PWA-ARCO produces a less conservative
solution as it does not have to optimise only according to the
worst-case scenario. To the best of our knowledge, we are
the first to propose a PWA-ARCO solution approach for a
consumer bidding problem.

Compared to [28]] and [29] that obtain a flexibility region at
the intersection of the transmission and distribution networks,
we obtain envelopes down at consumer connection points
while accounting for uncertainty. This enables consumers to
provide their network-secure flexibility to the transmission
network through the electricity market.

C. Contribution

In summary, we contribute to the state of the art by:

1) Proposing a distributed approach to obtain network-
secure envelopes that account for consumer preferences and
enable reliable market bidding. Unlike the operating envelopes
presented in [1]-[3]] that neglect consumer side, our approach
uses the distributed optimisation ADMM to obtain envelopes
that account for consumer preferences.

2) Proposing a piecewise affinely ARCO consumer bid-
ding approach which is less conservative than conventional
AARCO, leads to a higher value use of DER, and reduces
the need for frequent ADMM negotiation. Contrary to the
deterministic approaches [1]-[3], [51-[9], [11], [12], our ap-
proach accounts for PV power and demand uncertainty. Unlike
[16]-[19], [22], [23], our approach avoids over conservative
results by enabling the response to adjust to realisations in live
operation. In contrast to [20] and [21] that limit the recourse
to a linear function, we optimise for piecewise affine functions
that enable better response when operating away from the
worst cases. Plus, different from [16]-[23]], we characterise
uncertainties within a distributed framework.

3) Proposing a Q-P controller that enables consumers to
negotiate their reactive power support with the grid to in-
creases the network throughput. Unlike [9]], [L1], [18]], [25]-
[27] that only count on real-power curtailment, our approach
takes advantage of both real and reactive power of consumers.
Unlike [21]], our Q-P controller is piecewise, distributed, and
works alongside our real-power bidding approach.

D. Assumptions

In this paper, we assume consumers participate in the energy
and reserve markets within the NEM. Thus, compatible with
the NEM, we co-participate in 7 real-time markets: 1 energy
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Fig. 2: High-level structure of PWA-ARCO.

market, 3 contingency raise and 3 contingency lower reserve
markets. These reserve markets (known as contingency FCAS
markets) are differentiated based on their response time to
6-sec., 60-sec., and 5-min. raise / lower reserve markets. Nev-
ertheless, both our network-secure framework and uncertainty
characterisation are general and can be implemented for any
electricity systems with high DER penetration.

Currently, small-scale participants are mainly able to par-
ticipate in the wholesale market through a third party (e.g., an
aggregator or a retailer). To avoid working with any specific
number of aggregators / retailers, without loss of generality,
we assume that each consumer itself can participate in the
electricity market (i.e., each consumer is an aggregator /
a retailer). However, our approach allows any number of
aggregator / retailer.

E. Paper Organisation

The rest of this paper is organised as follows: Section
presents an upfront overall explanation on the proposed
approach. Section derives our PWA-ARCO methodology
which is used in sections[IV]and[V]to develop our PWA-ARCO
bidding approach. We provide the results and benchmarks
against the state of the art in Section finally, Section
concludes this paper.

II. OVERALL APPROACH

Our main goal for every 5-minute interval is to obtain bids
for the energy, 3 raise and 3 lower contingency reserve markets
(7 markets in total) that are both robust against uncertainty
and respect the grid operating limits. Fig. [2] shows a high-
level scheme of our proposed approach which is repeated
continuously using an MPC framework to generate and submit
consumer bids to the wholesale market every 5 minutes. At
the heart of our MPC framework lies an ADMM technique
to enable every consumer and the DSO to negotiate every
five minutes for an operating envelope that covers all mar-
ket actions of the consumer. In order to robustify our bids
against uncertainties and enable recourse actions, at every
MPC iteration, consumers solve a PWA-ARCO problem to
obtain their preferred market participation (bids) as well as
the parameters of their piecewise functions. These piecewise
functions will be enacted in real-time to deliver the bids ac-
cording to the uncertainty realisation. We also include market
bid deviation penalties in consumer objective function to help
consumers make informed decisions about the parameters of
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their piecewise functions. We also equip consumers with a Q-
P controller which enables them to offer their reactive power
support (generated / consumed by their inverters) to the DSO
during the ADMM negotiations @ At the convergence of our
ADMM approach, the robust bids for each market as well as
the parameters of our PWA-ARCO controllers are generated
prior to realisation of uncertainty (the top right box in Fig. 1).
The network-secure bids are then submitted to the electricity
markets (2) which then get dispatched according to market
clearing price @ In live operation, the controllers take local
recourse actions to keep consumers CPPs within the operating
envelope upon which the network and consumers agreed at
the convergence of ADMM, and avoid market penalties @

III. BUILDING GENERAL PIECEWISE AFFINELY ARCO

We start with the conventional AARCO, upon which we
build our proposed PWA-ARCO approach in Section [[IT-B}

A. Affinely Adjustable Robust Constraint Optimisation

Let € € R! be the uncertain parameters, e.g., raise and lower
reserve activation, solar power and demand uncertainty. We
model € in the following polyhedral uncertainty set:

Eé{eeRl|We§v :,u} (D

where W € R¥*! and v € R¥ are parameters of the polyhedral
uncertainty set, and p € R];o are dual variables. Let us begin
with constraints of a robust optimisation problem in their most
general form as:

Bx+Ce<d VYeeFE )

where x € R™ is the vector of decision variables, B € R™*",
C € R™*! and d € R™. The for-all quantifier implies that
(2) needs to be satisfied for any uncertainty realisatiorﬂ within
the uncertainty set E. To allow real-time recourse, an AARCO
approach allows the decision variables to be an affine function

of uncertainty as:
r— z(e) = Ae + b (3)

where A € R™*! and b € R™. Prior to real-time we optimise
to obtain A and b. In live operation, when the true value of €
is revealed, z(¢) will become fully known. This is in the spirit
of a linear feedback controller, where the value of x can be
constantly updated in response to the realisation of uncertainty.

We next substitute (B) into (Z) and rewrite () in its
equivalent robust form using a max protection function on
a per-constraint basis [4]. Using B;, C; and d; to represent the
i-th row of their respective matrices / vectors, we get:

€c

This maximisation problem is an LP for any given 5, A and
C; FE is a polyhedron and the objective is linear in €, so, we
can replace the max inside (@) with its dual form [4] as:

Bib + UT/M < dz
WTu; > B;A+C;

(5a)
(5b)

Notice that in the deterministic case @) needs to be satisfied only for the
forecast scenario.
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Fig. 3: Visualisation of a piecewise affine function

where 1; € RY are the dual variables associated with (T)
and (5a)—(5b) represent the constraint-wise robust counterpart
of problem (). Constraints (5a)—(5b) ensure that constraint (@)
can be satisfied for any realisation of uncertainty within the
uncertainty set E (i.e., the affine function z(¢) can be adjusted
to compensate for all uncertainty realisations within E'). Notice
that here we only focus on the constraints. The epigraph form
of the objective function can be written and thus the robust
objective can also be modelled as in (2, alternatively, the
objective may weigh up the outcome under a selection of
scenarios.

Immunising constraint (@) via affine functions can lead
to over conservative solutions, as it forces to respond with
the same slope (A in Ae + b) for any realisation within the
uncertainty set. To enable consumers to tune their behaviour
for different uncertainty realisation, we introduce the PWA-
ARCO in the following.

B. Piecewise Affinely ARCO

The idea here is to partition the uncertainty set into
contiguous subsets, and then optimise x(-) as a piecewise
affine function. We begin with encoding our piecewise affine
functions (see Fig. [6] for a visualisation of a piecewise affine
function with 4 breakpoints):

l
Q) 2 Yk, ©
T=1

Where 1, € R™ % are the “y-axis” breakpoints for each
variable, for the 7-th random parameter (what we optimise),
a; is the number of breakpoints and (; € [0, 1]%" are weights
for the 7-th random parameter. These weights encode the
position in the uncertainty set through:

=716 Y Ga=1 (7
a=1

Where v, € R are the “x-axis” breakpoints (each entry is
unique) for the 7-th random parameter. Notice that the weights
for each random parameter must sum to 1.

To further restrict the weights, so they encode a piecewise
linear function, we introduce binary variables u, € {0, 1}% !
and the following set of constraints:

ar_1
> =1 (8a)
a=1

C‘r,a < Ur,a—1 + Ur,a Va € {27 ey Qi — 1} (8b)
C‘r,l S Ur, 1 (80)
CT,oz,. S Ur,a,—1 (8d)
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When ensuring (2)) holds for all values in the uncertainty set,

using a max protection function per constraint ¢, we get:
max (B;xz(e) + Cie) < d; 9
ecE

When constraints and (Ba)-(8d) hold, there is a unique

mapping from e to ¢, allowing us to replace x(e) with z(().
Expanding out the maximisation we have:

!
max (Bq; ; VrCr + cie> (10a)
We <w (10b)
@. @a)-@d) (10c)

Equations (I0a)—(I0c) represent an MILP problem and thus it
is not possible to directly use duality theory and reformulate
it, so, a similar approach as in @—@D will not work here.
Notice that if we relax the binaries, the solution will be
greater or equal to the LHS of (9). This means that if we
utilise the binary relaxed formulation in order to obtain a dual,
our solution will still be robust, but potentially more than it
needs to be. Therefore, such a relaxation does not compromise
feasibility as all of the constraints are still guaranteed. In the
result section, we compare our results with a perfect case and
discuss the conservativeness of different approaches. Relaxing
the binary variables u, allows (€, 1,(;) to take on a position
anywhere in the convex hull of the breakpoints of the relaxed
piecewise linear function (recall (;, € [0,1]). Writing the
relaxation out explicitly, and indicating how the duals associate
with the constraints, we have:

max (B ng +C e> <d; (11a)
T=1

We<w (p>0) (11b)
— TG =0 (W) (110)
> Gra=1 W) (1d

a=1
CT,a <1 (M:Ia > 0) (116)
where p, u/, 1’ and ' are dual variables. Taking the dual

leads to:
iy (z 5 9 SN EANN

T=1a=1

WTu+u >¢ (12b)
1Y = Vrabra + 1 > Bithra (12¢)

Recall that these dual variables and constraints will have
a copy for each constraint in the original problem (i.e. a
further index of ¢ that has been treated implicitly in the
above). Notice that if (12a) is satisfied for a value of
(vTu—i— S e 1;/7”@), then it will be sat-
isfied for its minimum as well. Therefore we can drop the

min operator. The resulting problem (12a)—(12c) represents
our PWA-ARCO solution approach.

IV. HIGH-LEVEL CONSUMER AND NETWORK
NEGOTIATION

In this section, we aim to provide a high-level presentation
of the ADMM approach and what is being negotiated between
consumer and the DSO. In Section we only explain the
uncertainty sets and our piecewise affine operating envelopes
based on the theory we just covered. We then present our high-
level network subproblem and the ADMM approach in Section
The details of the consumer objective and constraints
that interact with the envelope as well as DSO constraints are
left until Section [V1

A. Consumer Subproblem

In our bidding problem, the uncertain parameter € includes
FCAS activation €/’ € [—1, 1], PV power ¢’V € [PPV,BPV]
and residential demand ¢ € [P, PP]. Regarding the FCAS
activation, notice that raise and lower FCAS services will not
be activated at the same time, plus, the activation of 6-sec,
60-sec and 5-min reserves (raise or lower) are sequential, e.g.,
if SMW is bid into 6-sec, 60-sec and 5-min, then at most
SMW response is required at any one moment (rather than
15MW). Notice that network constraints need to be satisfied
independently of the type of raise or lower reserve response.
Therefore, we use a single uncertain parameter ¢/ to account
for the most extreme reserve activation across all markets.
Similarly to z(¢), we write the real power generated by a
consumer p(¢) € RIT! as:

ZwFCF_'_aszwPVCPV +ZwD<D (13a)

F=qfrer Zcf = (13b)
Pt

B ‘“Z PV 1 (130
=i

e =P1¢P fjcf =1 (13d)
Pt

(13a)—(13d) correspond to (6)-(7) yet with the uncertain

parameters broken up into independent subsets. Notice that
p(C) represents all possible CPPs of the consumer for any
realisation of uncertain parameters e¢. To increase readability,
we interchangeably use p({) and p(e¢) throughout this paper
(both meaning that p is a function of uncertain parameters). To
have an upper and lower bound on these CPPs, we define the
vector variables p,p € R? indicating the operating envelope
where:

p(e) € Veec E

The above equation indicates that the CPP resulting from
participating in any or all 7 energy and reserve markets for any
realisation of uncertainty within the polyhedron E will remain
within the operating envelope [p, p]. When network constraints
are neglected, the operating envelope will not limit the market
actions, i.e., [—00, oo]. However, this envelope might signifi-
cantly limit consumers when the network constraints are taken
into account. To increase network throughput and to enable

[p. 7] (13e)
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consumers to bid with less network restriction, we obtain the
reactive power support associated with the operating envelope
with the following Q-P controller:
afp , apy , ap ,
g2 WS+ WSS+ e s
a=1 a=1 a=1
We use the above decision rule to obtain the reactive power
that can be exchanged with the grid at the uncertainty reali-
sation (. Let g, be the reactive power associated with p and
5 denote the reactive power associated with p. When reactive
power is neglected both g, and g are zero. More details about
this is provided in Section @ Next, we negotiate the pairs s =
(p, qp) and 5 2(p, gp), output of consumer energy management
system (EMS), with the grid. The DSO then solve two OPFs
one for each pair to ensure network feasibility. To ease the
presentation, we put s and S in a vector s, where s £ (s,5).

B. Network Subproblem and ADMM Algorithm

So far, at a high level, we explained the operating envelope s
obtained at the consumer subproblem. To ensure that consumer
envelopes are network secure, here we negotiate them with the
DSO using the ADMM approach. This completes @ in Fig.
1. Using s’ for the same variable (i.e., duplication of s) but
from the network perspective, in the final solution we have:

N (14a)
We write the augmented Lagrangian associated with (I4a)) as:

£(s,8'2) = XT(s = ) + EJs = | 3

s—8 =0

(14b)

where A\ is a vector of dual variables of and p is
the penalty parameter of the augmented Lagrangian. We use
the ADMM algorithm [30] as a negotiation tool between
consumers and the network to obtain the network-secure re-
sults. Given the consumer objective function f(.), the network
internal variables y, and the objective and constraint functions
G and H, our ADMM approach solves the following per
iteration k:

S(k) = Hl(lI)l [f() + L*(s’sl(kfl),A(kfl))]

st (12a)-(T2c), (T3a)-(T31) (15a)

/%) .= min [g(8/7y) n E*(S(k)7s/, )\(k—l)ﬂ
H(s',y) <0 (15b)
AR = \(k=D) ) (glk) _ (R (150)

In the first phase @, consumers are optimised for s, while
holding s” and \ constant at their & — 1-th value. In the second
phase (15b), the network is optimised for s’, while holding s
and A constant at their £ and k — 1-th values respectively.
Finally, the dual variables \ are updated in (I5c), completing
the k-th iteration. In line with [11]], our approach converges if
the infinity norms of the primal |\R§,k)||oo and dual residuals
||R((ik) || are both smaller than a threshold.

Remark 1: Here, we only solve two OPFs associated with
the most extreme operating points, i.e., s and 5, in which con-
sumers simultaneously inject / absorb power to / from the grid.

Since no network constraint is violated at these worst cases,
we argue that the network constraints are also satisfied for
less extreme scenarios in between. It is worth acknowledging
that this assumption holds for radial networks that operate
within the voltage stable mode. We provide a proof for this
in Appendix [A]l Since most real-world distribution networks
are radial (or operated radially), we believe the radial-network
assumption does not limit the application of our approach
in a real-world setting. We leave the extension of operating
envelopes for mesh networks to future work.

Remark 2: The dual values )\ represent the DLMPs as-
sociated with their respective envelopes. In this paper, we
use dual variables to signal network constraints and ensure
reliable and robust consumer bidding in the wholesale market.
We acknowledge that at the last step dual values can be
used to charge customers for their network access. However,
this opens up non-trivial questions such as: how these prices
should interact with the current fixed network access fees,
or whether additional DSO income (on top of fixed access
fees) is justified. Plus, DSOs might need schemes to ensure
that customers, located at the end of the feeders, are not
overly-disadvantaged by DLMPs. Answering these questions
are out of the scope of the current study. We leave further
investigations into this aspect to future work.

V. DETAILED CONSUMER AND NETWORK SUBPROBLEM

Here, we develop a PWA-ARCO energy management sys-
tem (EMS) problem for a consumer participating in energy,
and 6-sec, 60-sec, and 5-min raise and lower reserve markets
which is then followed by a detailed DSO subproblem.

A. Detailed EMS Subproblem

1) DER Constraints: We need to ensure the DER con-
straints are satisfied for any CPP realisation, resulting from
reserve market activation or PV and demand realisations. To
do so, we represent DER variables to be piecewise affine
functions of uncertainty and then use the piecewise affine
function to write each constraint. The consumer subproblem
also includes real-power (I3a)), the uncertainty set (I3b)—(13d),
the envelope (I3¢) and the reactive power (I31).

Solar PV: Solar PV forecast has been modelled in the
uncertainty set. We also use a piecewise affine function
s (¢r) € [0,€PV] to model the curtailment as a function
of uncertainty. Using the max protection function we have:

max{pi""(¢r) VTV <o (16a)

Battery Storage: We define the piecewise affine functions
for battery charge p{(¢;) € [0,R] and discharge pP(¢,) €
[0,R] variables. Given battery efficiency 7, the protection
functions for battery’s bounding constraints can be written as:

min{p ()} 2 0; max{pl’(G)} < R (16b)
minfp ()} 205 max{p’(¢-)} <R (16¢)
min {eo+Y", (85 (G)-pF(C)/mb ze (160
max {eo+d_ (5 (G)-pF(CH/mb<e (160



IEEE TRANSACTION ON SMART GRIDS

where R is the charging / discharging rate and e and € are
the minimum and maximum values for the battery SoC. To
ensure that simultaneous charge and discharge does not occur,
we use a binary variable u; and the following constraints:

0<pf(() <R w (16f)
0<pf Q) <R-(1—u) (16g2)

We only apply these binaries to the energy market, i.e., ¢ = (.
Because in reserve markets, the battery can transit form charge
to discharge (or visa versa) to provide a greater response.

Combined Power: The combined household power can be
written as follows:

PG )=y (Gr)=pf (G =" (Gr)+er ¥ + €

The equality constraint gives the relation between the
combination of the piecewise affine parameters on the LHS
with the piecewise affine parameters of the CPP on the RHS
of (T6h). Having obtained all the protection functions, we use
duality theory to convert each protection functions into some
linear constraints as in (12a)—(12d).

2) Objective Function: The market payments to the cus-
tomer consist of what energy they exchange with the network
and the reserve market commitments (whether deployed or
not). They are also penalised if the energy they exchange devi-
ates from their energy market amount, unless this deviation is
accounted for by reserve market activation. What we propose
to do is evaluate the revenue from the energy market at the
most likely realisation of uncertainty (i.e., forecast, shown by
e={el' =0,e'V =PV P = P}, given by p(€). This will
also be the amount we bid into the energy market. Notice that
this is not equivalent to making energy bids deterministically
as the output of our functions also account for uncertainties
at the forecast scenarios €.

For the reserve markets, we assume that we have to meet
the bid capacity under all circumstances. Also, the reserve
activation € can vary between -1 (max lower activation) to 1
(max raise activation) where e = 0 represents a case where
no reserve is required (energy case). Using 7’ for raise and [’
for lower, we can write:

’I“/ :p(€F _ 1)€PV’€D) —p(GF — O,GPV,GD)

4 :p(eF :076PV,6D) —p(eF = —1,6PV,6D)

(16h)

(17a)
(17b)

Notice that the contribution of € in p(e) is separable from
the other sources of uncertainty, because it is an independent
piecewise affine function and €!" can be considered not part
of the E polyhedron. This means the rest (uncertain PV and
demand) cancel out, and we do not have to resort to doing a
forall e. In other words, our reserve bids are robust to PV and
demand uncertainty and are deliverable for any realisations
within the PV and demand uncertainty sets. This is an impor-
tant feature of our approach since it makes consumers reliable
reserve providers. In the NEM, if a participant cannot honour
its reserve bids (e.g., a likely scenario for consumers due to
uncertainty), they will be excluded from future reserve market
participation. However, by obtaining deliverable reserve bids,
our approach secures a spot for consumers in these highly
prices yet rarely activated markets.

Since contingency reserve markets in the NEM are activated
sequentially, the NEM allows the same capacity to be submit-
ted to any or all contingency reserve markets. Let 76 /16, 760 /
150, and 7® / I° respectively denote raise / lower reserve offers
to 6-sec, 60-sec, and 5-min reserve markets, using and

(T76), we have:
70 < 1"/;

15<:

7’5§7”

p<l

TGU < 7’/;

l60 < l/.

(17¢)
(17d)

Let 7¢ denote the energy market price; 7" = {n"6, 7760,

77} and 7! = {7'6 760 7!} be the raise and lower 6-
sec, 60-sec and 5-min market prices, 7 = {r® 7% r5} and
I = {15,1%0,15} be the offers to the raise and lower reserve
market. The obtained benefit can be modelled as follows:

cBen = np(e) + n"r 4 7'l (17e)

The above equation calculates the benefits obtained in the
energy and contingency reserve market. However, as we men-
tioned earlier there is a penalty associated with bid violation in
energy market. To model this penalty, we interpret the causer
pays policy in the NEM, to be penalising energy-bid deviation
at the regulation market priceﬂ We add the penalty C7¢" to
the objective function to provide consumers with information
about the bid deviation penalty, helping them to make more
informed decisions. Given the penalty price w~ this can be
written as:

CFen = a™|p(e, eV, €”) —p(e, "V, 7))

(17%)

we use auxiliary variables to model the absolute value function
| -] in a linear manner, which is then treated robustly.

3) Reactive Power Network Support: The reactive power
generated / consumed by the inverter can be modelled as:

¢ < pm” (182)

The above equation is a circle in (g, p""?) coordinates, which
can be linearised using a set of linear constraints as follows:

a(cos(6) + sin(9)) < V2s — p (cos(6) — sin(¢)) (18b)

where ¢ € {0, 7/b, 27 /b, ..., (2b—1)7/b}, and b is an arbitrary
integer number. Here, we use 24 lines E] (i.e., an icositetragon)
which overestimate the circle with at most 0.001% error. Note
that p'™" in our case can be battery charge / discharge and
PV power which are modelled via piecewise affine functions
x(¢). As explained in (I3f) ¢ is also a function of uncertain
parameters. Using z(¢) and ¢(¢), can be written as:

q(¢)(cos(¢)+sin(9)) < V2s—x({)(cos(¢)—sin(¢)) (18c)

The goal to provide reactive power support is to improve
voltages so that consumers can have a bigger operating en-
velope. However, grid and consumers only negotiate on the
required reactive power at the extremes. Thus, this does not
provide any information about the required reactive power

3The reason for this is that regulation market is activated to compensate
for violations in the energy market.

“Due to the distributed nature of our approach, each consumer problem can
be solved separately. Thus, adding even more lines does not significantly add
to the computational complexity.
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away from the extremes. To obtain the required reactive power
within the envelope, we take advantage of the results presented
in [21]], where the authors provide a closed-form solution to
the problem of how much reactive power injection / absorption
is needed at a node to fully compensate voltage changes due to
real power deviations at that node. As discussed in [21], a ¢({)
affine function with a slope equal to the closed-form solution
RJ (where j is a network node) would completely compensate
the voltage deviation due to the active power deviations. This,
for 7-th uncertain parameter, can be written as:

9q(¢) 9p(<)
e /e
Finally, given the piecewise function (5) the partial differential
equations can be written as:

<RI

(18d)

Vi1 <RI i =R, Vi€ {l,..,a-} (18e)
where R’ is the closed-form solution from [21]:
' n K\‘vlqK\.vlp
R = 2= (18f)

where, K j‘ k|q g;’f and K Mp . In summary, the con-
straints of our piecewise afﬁnely ARCO EMS subproblem for
a single customer consist of the objective function (T7a)—(T71),
the affine functions (13a)—(13f), DER operating constraints

(T6a)—(T6h), and the Q-P controller (I8c)—(T8¢).
B. Network Subproblem

The network subproblem needs to solve two multi-period
OPFs associated with the extremes of s’ at every MPC
iterations. Notice that our ADMM approach decomposes con-
sumers and the network. Thus, there are no time coupling
constraints in the network subproblem, because all such con-
straints are part of the consumer subproblems, e.g., the SoC
coupling constraint and (I6e)). This means that the OPF
for each time step can be solved separately and in parallel.

In the following, we use the Dist-flow equations to model
our network subproblem for the upper bound of 3, i.e., P}, and
q%n. Index ¢ is dropped to increase readability. We duplicate
similar variables and constraints for s’. We use 1, j,k € N for
nodes in a tree network; F*¢, F/¢ and I; are the active power,
reactive power and the current flowing into node 7 from the
parent node k, where the line has resistance r;, reactance x;
and impedance z;. D, represents the child nodes of node .
The network subproblem for 3’ can be written as follows:

{p., qp b= argmlnz moril; + L£(.)] (192)
P’ qp iEN
L= =Y Ff VieN, (19b)
neCt JjED;
L=y =3 F° YieN, (1%
neCt JED;
Vi=V — 2<riF-“C + xF) Y22 YieN  (19d)
Umin < V < U ax Vie N (196)
F;‘C2 +F?=ViI, YieN (191)
0<I; < imer? Vie N (19¢)

The objective function is to minimise the total loss as well
as the augmented Lagrangian penalty function £*(.). Active
and reactive power flow equations are given through (I9b)—
- The voltage of each node is calculated through @)
and is enforced to be within its safe limits (v, and v2,,.)
through (19¢). The complex power, flowing in each line, is
given in (I9f) and finally, (I9g) limits the current of each
line to the maximum line capacity i;’m'ﬂ. Note that due to
having generation (PV and battery), a convex relaxation of
(I91) might not lie within the feasible region of the original
problem. Thus, to avoid infeasible results, we opt to solve the
exact non-convex OPF using the IPOPT solver. Similarly to
[8], [90, [11]], we have also observed that our original OPF
model could be solved efficiently by the IPOPT solver within
the ADMM context. Nevertheless, we acknowledge the need
for further investigations around theoretical convergence proof.

C. Model Predictive Control Implementation

The length of our MPC window is 24 hours discretised
every 5 minute, i.e., 288 time steps per day. Every 5 minutes,
in lock with the NEM real-time market, consumers and the
DSO optimise to obtain envelopes, energy-reserve bids, and
the parameters of the piecewise affine controllers. If during
a 5-minute operating interval a reserve response gets called,
our MPC accounts for it in the next optimisation by using the
latest battery SoC.

We presented our PWA-ARCO treatment for all £ in Section
However, when integrated within our MPC framework,
we apply the robust treatment for PV power and demand
only to the first time step. The reason is that our MPC
framework enables us to use the latest (most accurate) forecast
information every 5 minute when a new optimisation problem
is solved. Since the uncertainty variation within the next 5
minute is often insignificant, the uncertainty set can cover
the deviations from the forecast. On the contrary, constructing
the uncertainty set for future time steps might lead to over-
conservative results, as the forecast values (around which we
construct the uncertainty set) can change significantly. In our
simulations, this could bring 3% higher benefits compared to
the case where the entire horizon was treated robustly.

VI. NUMERICAL RESULTS

To illustrate the effectiveness of the proposed approach, we
modify a 69-bus distribution network [11]] with 3 consumers at
each node. Consumers connecting to the grid are consuming
20 kWh per day on average and own a 5 kW rooftop PV
and a 5kW / 10kWh battery with the round trip efficiency of
81%. We use anonymised solar and demand data of consumers
in Tasmania, Australia 9], and randomly assign this data to
207 consumers in our 69-bus network. The 5-minute energy
and reserve market prices for the day 24/01/2020 are taken
from the NEM website. Every 5 minute, we measure PV
power and demand and use this values as forecasts. We then
construct our uncertainty set to cover uncertainty realisations
within +20% of the forecast values. Five breakpoints is used
to chunk the uncertainty sets resulting in four equal segments
in our piecewise functions. The ADMM penalty parameter
p for active and reactive power is chosen to be 1 [[11] and
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0.01, respectivelyﬂ Finally, we use the Gurobi and IPOPT
solvers in JuMP, Julia [31]] to solve our consumer and network
subproblems, respectively.

—Energy
—Raise 6-sec
—Raise 60-sec
—Raise 5-min
—Lower 6-sec
Lower 60-sec
- -Lower 5-min

200

Price ($)

Time (5 minutes)

Fig. 4: Energy and FCAS prices

To assess the performance of our proposed PWA-ARCO
approach, we study the following 4 approaches:

Deterministic: This is the work [[11] in which consumers
and the grid negotiate every five minutes through the standard
multi-period ADMM algorithm (I5a)—(I5c). The consumer
subproblem is only satisfied for the forecast scenario.

Perfect: This approach intends to provide a perfect but
unachievable baseline in which (assuming that computation
and communication time is not an issue) two multi-period
OPFs (associated with the operating envelope) are solved every
minute to ensure the grid feasibility for all scenarios. Thus,
neither the piecewise controllers nor the binary relaxation does
apply to this case. Since all the future information is assumed
to be available, the FCAS bid offers of this case are all made
to be deliverable.

AARCO: This is the conventional affinely ARCO where we
use the affine decision rule z(e) £ Ae + b and (Ga)—(Gh) to
obtain our robust bids.

PWA-ARCO: This is the proposed approach in which the
grid envelopes and the parameters of our piecewise affine con-
trollers are obtained using a grid-wide ADMM coordination.
In real-time our controllers are continually taking recourse
actions to keep the CPP within the negotiated envelope.

We implement the above approaches within an MPC frame-
work which moves forward every 5 minutes. During every 5-
minute operating interval, we use the 1-minute data as live
realisations, to evaluate the effectiveness and real cost of each
approach. Having the whole horizon covered, we track the SoC
of batteries and move to the next horizon in which the same
process is repeated until the whole horizon is covered, i.e., 288
horizons with 1440 realisation scenarios. In the following, we
first study the 1-day performance of our approach in details
and then provide a 3-month experiment to evaluate the longer-
term performance of our approach.

A. Total Benefit in Energy and Reserve Markets

Table [[ reports the total benefits obtained by our introduced
approaches as well as network violations, in normal operating
conditions (Energy) and when either raise or lower reserve
market gets called (Reserve). We also report the number of

SWe found these values to provide a good convergence. Investigating on
ADMM penalty parameters is out of the scope of this study.

times that the available FCAS capacity was less than the bid
submitted to the market. As reported, PWA-ARCO obtains
2.6% less benefit compared to the perfect yet unachievable
case. Notice that our approach requires 5 times less compu-
tation and communication than Perfect. Plus, unlike Perfect,
we do not have all the future information. It might seem
counter intuitive that Deterministic has obtained benefit close
to Perfect. However, here we have not applied any penalty for
reserve violation and as reported in Table [, in 372 scenarios
out of our total 1440 scenarios, Deterministic was not able to
honour the accepted reserve bids. In addition, as reported in
Table [, Deterministic violates the safe voltage limits in 341
scenarios. Fig. [5|provides a visualisation on maximum voltages
across the network using Deterministic and PWA-ARCO.

TABLE I: Total Benefit, Network / Reserve Bid Violations

#Violation
Approach Beréeﬁt PREI' g,) Network Reserve
® er. (%) Energy | Reserve Bids
Deterministic | 3502.5 -2.0 92 249 372
Perfect 3574.9 - 0 0 0
AARCO 2746.2 -23 0 0 0
PWA-ARCO 3481.5 -2.6 0 0 0

While AARCO could keep the voltages within the safe
limits and honour its FCAS bids, it adds a significant cost
to the bidding problem. The reason is that, compared to a
piecewise function, compensating uncertainty with affine func-
tions will lead to over-conservative results. We further study
this in Section Also, remember that we relaxed binary
variables (8a)—(8b) which can potentially make PWA-ARCO
more conservative. However, notice that the perfect case does
not count on PWA-ARCO local control and solve optimisation
every minute to find the optimum solution. Therefore, it serves
as the best upper bound to the benefit we could obtain. In
our case, our PWA-ARCO could get as close as 2.6% to this
perfect yet unachievable solution. Although this gap might
vary in different cases, it still provides a good insight on how
much room there is for improvement.
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Fig. 5: Maximum voltages across the grid

Fig. [6] breaks the total benefit obtained by each approach
down to the energy and reserve market components. As can
be seen in Fig. [6] the majority of the total benefit for all cases
is made through the FCAS market. The reason is that unlike in
reserve markets, consumers have a cost in the energy market,
e.g., to meet their background load / charge their batteries. It
is worth mentioning that the revenue in reserve market could
be lost in the deterministic approach due to the likelihood of
failing to fulfil the reserve bids.
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Fig. 7: An example of CPP function: PWA-ARCO vs. AARCO

B. PWA-ARCO vs. AARCO

As we mentioned before, instead of optimising for affine
functions as in AARCO, we optimise for piecewise affine
functions which enables a better response to uncertainty. To
compare the piecewise affine policy with just affine, we plot
the optimised functions for CPP obtained by AARCO and
PWA-ARCO approaches for a random consumer at 1:30 PM
in Fig.[/| Subfigures a, b, ¢ are respectively associated with the
first (reserve activation), second (PV) and third (demand) terms
in (I3a). As plotted, AARCO compensates for uncertainty with
the same slope (i.e. A in Ae + b), yet PWA-ARCO responds
differently for different part of the uncertainty set to obtain
higher benefits. For instance, regarding Fig.[7] a, notice that in
AARCO the reserve capacity is limited to the same slope (2.5
kW raise, 2.5kW lower). On the other hand, PWA-ARCO is
able to allocate the flexibility differently within the uncertainty
set, leading to 2kW lower (i.e. p(¢4") —p(¢{')) and 10kW raise
(ie. p(¢d) — p(¢)) offers.

C. ADMM envelope vs. Fixed Envelopes

To study the effectiveness of accounting for consumer pref-
erences in calculation of operating envelopes, here, we study
3 other approaches in which the DSO obtains the operating
envelope and allocate them to consumers without our ADMM
negotiation tool. We study the following envelopes:

Equal-Width Envelopes: In which the DSO allocates equal-
width envelopes to all consumers owning DER.

Max Export Envelopes [2]]: In which the DSO allocates
envelopes of different widths to consumers at different nodes
such that the absolute network throughput is maximised.

Fair Envelopes: We use the objective function (1) in [2] to
obtain fair operating envelopes for each consumer.

Consumers use these envelopes as hard constraints to obtain
their bids. To have a fair comparison, we used PWA-ARCO
in consumer subproblems for all approaches. Table [[I] reports

the benefit obtained via the equal-width, max export and fair
envelopes vs. our proposed distributed envelope. Since our
approach continuously negotiates and obtains the operating
envelopes, it attains the best results in total. Notice that in
line with [3]], the equal-width, max-export and fair envelopes
are obtained assuming that the DSO has full observability of
consumers’ DER. However, in reality, such observability may
not be available to the DSO, resulting in less representative
envelopes further reducing consumers’ benefit.

TABLE II: Dynamic Operating Envelopes vs. Proposed

Envelopes Benefits ($) Rel. to
Energy | Reserve Total Proposed %
Equal-Width | 226.6 2956.3 | 31829 -8.5
Max-Export 208.5 3072.8 | 3281.3 -5.6
Fair 212.7 3098.6 | 3311.3 -4.8
Proposed 214.8 3266.8 | 3481.6 —

D. Longer Term Benefit

To evaluate the longer-term performance of PWA-ARCO,
we have run our approach for 3 months, from 1st January
to 31st March 2021. Table [ reports the benefit obtained
by Deterministic, PWA-ARCO as well as a case in which
consumers use PWA-ARCO to participate only in the en-
ergy market. To ensure that PWA-ARCO covers the real-data
variations over three months, we have chosen the uncertainty
sets to cover +£35% deviation about the forecasts. Notice that
smaller uncertainty sets can be chosen based on the month or
the day of the week. However, here we keep the uncertainty
set constant for all days. PWA-ARCO could both honour
the reserve bids and keep the voltages within the accepted
range. We have also run PWA-ARCO with a constant +20%
uncertainty coverage, yet in few operating points, such an
uncertainty set was not big enough to cover all scenarios. In
our test case, with +20% uncertainty coverage, we obtained
5% higher benefit (70,644.5 compared to 70,314.3), yet in
105 operating points out of the total of 78k, the network was
violated.

TABLE III: Three-Month Benefit

Approach Total Violation
Benefit ($) | Network | Reserve
Energy -3,344.0 - -
Deterministic 70,396.6 3,883 9,261
PWA-ARCO 70,314.3 - —

In our experiment, Deterministic violated both the network
constraints (in 3.9k out of the total 78k operating points) and
reserve bids (in 9.3k out of 155.5k reserve bids). Notice that in
the NEM, not honouring reserve bids can exclude consumers
from these highly beneficial markets. We also report the benefit
that could be obtained in the energy market alone. As can be
seen, if consumers cannot bid into reserve markets their benefit
would shrink significantly.

E. Convergence and Problem Size

Table [IV] reports the number of optimisations that needs
to be solved within every ADMM iteration in the consumer
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and the DSO subproblem, the number of VariablesE] at a single
optimisation, as well as the total number of ADMM iterations.

TABLE IV: Problem Size and Convergence

Approach No. Tter No. of Problems X Var. in a Problem
Consumer DSO
Deterministic 66 207 x 4.5k 564 x 482
Perfect 73 207 x 27.4k 2880 x 482
AARCO 33 207 x 5.2k 564 x 482
PWA-ARCO 10 207 x 12.9k 564 x 482

Notice that our ADMM approach enables us to use parallel
computing in both consumer and network subproblems. For
example in the consumer subproblem, every consumer solves
its optimisation problem at the same time on their EMS. Thus,
the consumer sub-problem is solved fully in parallel in a real-
world setting. Similarly, the OPFs for every time step can be
solved in parallel. Thus, the solve time of each subproblem at
every iteration is equal to the longest time taken by a single
optimisation within the subproblem. In our implementation,
we solve the problem of every consumer and OPF in a loop
one after another and use the longest time at every loop as the
time taken by the parallel real-world case. We report the time
taken by our sequential as well as the equivalent parallel run
time in Table [V] The reported run times are obtained using a
laptop computer with a 2.50 GHz Intel® Core™ i7 and 8
GB of memory.

TABLE V: Computation Time

Parallel (Sequential) Implementation
Approach Single Iteration
P Consumef Network Total
Deterministic 0.08s (7.6s) 0.14s(23.25) 14.1s (33.9m)
Perfect 0.24s (45.3s) | 0.14s(118.2s) | 27.8s (198.9m)
AARCO 0.09s (9.3s) 0.14s(22.6s) 7.7s (17.6m)
PWA-ARCO 0.18s (29.4s) 0.14s(24.4s) 3.1s (9.0m)

VII. CONCLUSION

We obtained network-secure operating envelopes which
facilitate market participation of consumers. To ensure that
consumers can commit to their envelopes, account for bid
violation penalties, and generate reliable reserve bids, we
introduce a novel PWA-ARCO consumer bidding. Both the
envelopes and parameters of our piecewise affine controllers
are obtained during the negotiation of the ADMM approach.
This tunes our local controllers based on global measurements
and helps improve the results. In live operation, PV power and
demand are continually measured and together with any FCAS
activation signals are fed into our PWA-ARCO controllers
upon which proper recourse actions are taken. This is a really
valuable feature of our approach as it can reduce the need for
frequent negotiations making our approach more functional
in practice. To increase network throughput, we enable con-
sumers to grant the grid with their reactive power support. Our
results demonstrate that our PWA-ARCO approach serves its
purpose whilst providing an excellent compromise between
computational cost and the solution quality.

6The number of constraints in our optimisations are approximately equal
to the number of variables.

APPENDIX A
PROOF OF REMARK 1

Here, we aim to prove that if the network is radial and oper-
ates within the voltage stable region, then solving two OPFs,
associated with the extremes, captures the worst conditions.

Proof: Let us begin by linearising the power flow equations
about an operating point, which in our case can be considered
the forecasted values. Let V; denote the voltage magnitude at
node ¢ at an initial operating point, and let Ap; denote the
deviation of real power injection at node 7 from its value at
that operating point. Also, let K? be the sensitivity matrix,
where K ij denotes the voltage magnitude sensitivity of node
1 to real power injection at node j. Assuming zero reactive
power change{]> we write the following relation:

N
Vi=Vi+ > KIAp;, (A.1)
j=1
where V; denotes the voltage magnitude at node i; and N is
the number of nodes in the network. We wish to obtain the
conditions under which the voltage magnitude at all the nodes
stay within a desired bound for all realisations of the nodal real
power deviations within a box uncertainty set. More formally:

N
Vi <Vi+ Y KhAp; <V; VApjelUjie{l,...N}.

j=1

(A2)

where U; = [Ap;, Ap;], and V; and V; denote the acceptable
lower and upper voltage limits at note ¢, respectively. Using
max and min protection functions, we rewrite (A.2) as:

N

_ ) _

Vi+ &fﬁ%ﬁj{; K} Ap;} <V, (A.32)
N

(/. ; P A>TV

Vi + A, j{; K Ap;} > Vi (A.3b)

We now assume that KP is a non-negative matrix, i.e., we
assume that all its elements are equal to or greater than zero
(in one moment we will discuss the requirements for this
assumption to hold). Thus, we rewrite (A.3) as the following:

N

Vit ) Khdp <Vi (A4a)
j=1

N N

Vi+ > KPAp; >V (A.4b)
j=1

Hence under the assumption that KP is a non-negative
matrix, to make sure that all the combinations of real power
deviations will not lead to voltage violations, we only need
to check for the two scenarios where all the injections are
simultaneously on either side of the uncertainty set ;.

We now check the requirements for our assumption. Based
on the voltage stability definition [32], Chapter 14, if the

"The same proof holds when the reactive power is included. Because
reactive power is controllable here and is only meant to improve the voltages.
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sensitivity of voltage magnitude to real power injection be-
comes negative the system is voltage unstable. Hence our
first requirement is working in voltage stable operating region,
which is a fair assumption in a power system operation setting.
Notice that in the stability argument, we are only looking
at the diagonal elements in the sensitivity matrix. For the
rest of the elements in the sensitivity matrix, we look at the
physical structure of nodal connections. For a radial networks,
neglecting the higher order real and reactive power loss terms,
we can write the power flow equations as in (AZ3). This
approximation introduces a small relative error of at most
0.25% if there is a 5% deviation in voltage magnitude.

Vi=W +2Rijpj,

J

(A.5)

where 1} denotes the voltage magnitude at the slack node, and
R;; denotes the resistance of the direct path between nodes
and j. Comparing (A-3) and (AI), we can see that R;; is an

approximation of K f’j, and indeed, is equal to it when we are
linearising the power flow equation at the no-load condition.

Notice that since the elements in R are the summation of
positive resistance of the lines on the path between the nodes,
they all have positive values. Hence, in radial system, the
assumption of non-negative sensitivity is valid. A similar proof
can be written for the thermal limits of the network.
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