
Tableaux for Policy Synthesis for MDPs with PCTL*
Constraints

Peter Baumgartner, Sylvie Thiébaux, and Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU, Australia
Email: first.last@anu.edu.au

Abstract. Markov decision processes (MDPs) are the standard formalism for
modelling sequential decision making in stochastic environments. Policy synthe-
sis addresses the problem of how to control or limit the decisions an agent makes
so that a given specification is met. In this paper we consider PCTL*, the proba-
bilistic counterpart of CTL*, as the specification language. Because in general the
policy synthesis problem for PCTL* is undecidable, we restrict to policies whose
execution history memory is finitely bounded a priori. Surprisingly, no algorithm
for policy synthesis for this natural and expressive framework has been developed
so far. We close this gap and describe a tableau-based algorithm that, given an
MDP and a PCTL* specification, derives in a non-deterministic way a system of
(possibly nonlinear) equalities and inequalities. The solutions of this system, if
any, describe the desired (stochastic) policies. Our main result in this paper is the
correctness of our method, i.e., soundness, completeness and termination.

1 Introduction

Markov decision processes (MDPs) are the standard formalism for modelling sequential
decision making in stochastic environments, where the effects of an agent’s actions are
only probabilistically known. The core problem is to synthesize a policy prescribing
or restricting the actions that the agent may undertake, so as to guarantee that a given
specification is met. Popular specification languages for this purpose include CTL, LTL,
and their probabilistic counterparts PCTL and probabilistic LTL (pLTL). Traditional
algorithms for policy synthesis and probabilistic temporal logic model-checking [9,17]
are based on bottom-up formula analysis [15,16] or Rabin automata [2,11,21].

We deviate from this mainstream research in two ways. The first significant devia-
tion is that we consider PCTL* as a specification language, whereas previous synthesis
approaches have been limited to pLTL and PCTL. PCTL* is the probabilistic counter-
part of CTL* and subsumes both PCTL and pLTL. For example, the PCTL* formula
P≥0.8 G ((T > 30°) → P≥0.5 F G (T < 24°)) says “with probability at least 0.8, when-
ever the temperature exceeds 30° it will eventually stay below 24° with probability at
least 0.5”. Because of the nested probability operator P the formula is not in pLTL, and
because of the nested temporal operators FG it is not in PCTL either.

Because in its full generality the policy synthesis problem for PCTL* is highly
undecidable [5], one has to make concessions to obtain a decidable fragment. In this
paper we chose to restrict to policies whose execution historymemory is finitely bounded
a priori. (For example, policies that choose actions in the current state dependent on

first.last@anu.edu.au

the last ten preceding states.) However, we do target synthesizing stochastic policies,
i.e., the actions are chosen according to a probability distribution (which generalizes
the deterministic case and is known to be needed to satisfy certain formulas [2]).
Surprisingly, no algorithm for policy synthesis in this somewhat restricted yet natural
and expressive framework has been developed so far, and this paper closes this gap.

The second significant deviation from the mainstream is that we pursue a different
approach based on analytic tableau andmathematical programming.Our tableau calculus
is goal-oriented by focusing on the given PCTL* formula, which leads to analysing runs
only on a by-need basis. This restricts the search space to partial policies that only cover
the states reachable from the initial state under the policy and for which the formula
imposes constraints on the actions that can be selected. In contrast, traditional automata
based approaches require a full-blown state space exploration. (However, we do not have
an implementation yet that allows us to evaluate the practical impact of this.) We also
believe that our approach, although using somewhat non-standard tableau features, is
conceptually simpler and easier to comprehend. Of course, this is rather subjective.

On a high level, the algorithm works as follows. The input is an MDP, the finite-
history component of the policy to be synthesized, and a PCTL* formula to be satisfied.
Starting from the MDP’s initial state, the tableau calculus symbolically executes the
transition system given by the MDP by analysing the syntactic structure of the given
PCTL* formula, as usual with tableau calculi. Temporal formulas (e.g., FG-formulas)
are expanded repeatedly using usual expansion laws and trigger state transitions. The
process stops at trivial cases or when a certain loop condition is met. The underlying
loop checking technique was developed only recently, by Mark Reynolds, in the context
of tableau for satisfiability checking of LTL formulas [18]. It is an essential ingredient
of our approach and we adapted it to our probabilistic setting.

Our tableaux have two kinds of branching. One kind is traditional or-branching,
which represents non-deterministic choice by going down exactly one child node. It is
used, e.g., in conjunction with recursively calling the tableau procedure itself. Such calls
are necessary to deal with nested P-operators, since at the time of analyzing a P-formula
it is, roughly speaking, unknown if the formula will hold true under the policy computed
only later, as a result of the algorithm. The other kind of branching represents a union
of alternatives. It is used for disjunctive formulas and for branching out from a state into
successor states. Intuitively, computing the probability of a disjunctive formula φ1 ∨ φ2
is a function of the probabilities of both φ1 and φ2, so both need to be computed. Also,
the probability of an X-formula Xφ at a given state is a function of the probability of φ
at all successor states, and so, again, all successor states need to be considered.

The tableau construction always terminates and derives a system of (possibly non-
linear) equalities and inequalities over the reals. The solutions of this system, if any,
describe the desired stochastic, finite-history policies. The idea of representing policies
as the solutions of a set of mathematical constraints is inspired by the abundant work
in operations research, artificial intelligence, and robotics that optimally solves MDPs
with simpler constraints using linear programming [1,12,10,22].

Our main result in this paper is the correctness of our algorithm, i.e., soundness,
completeness and termination. To our knowledge, it is the first and only policy synthesis
algorithm for PCTL* that doesn’t restrict the language (but only slightly the policies).

2

Related work. Methods for solving the PCTL* model checking problem over Markov
Chains are well established. The (general) policy synthesis however is harder than the
model checking problem; it is known to be undecidable for even PCTL. The main
procedure works bottom-up from the syntax tree of the given formula, akin to the
standard CTL/CTL* model checking procedure. Embedded P-formulas are recursively
abstracted into boolean variables representing the sets of states satisfying these formulas,
which are computed by LTL model checking techniques using Rabin automata. Our
synthesis approach is rather different. While there is a rough correspondence in terms of
recursive calls to treat P formulas, we do not need Rabin (or any other) automata; they
are supplanted by the loop-check technique mentioned above.

The work the most closely related to ours is that of Brázdil et. al. [8,6,7]. Using
Büchi automata, they obtain complexity results depending on the variant of the synthesis
problem studied. However, they consider only qualitative fragments. For the case of
interest in this paper, PCTL*, they obtain results for the fragment qPCTL*. The logic
qPCTL* limits the use of the path quantifier P to formulas of the form P=1 ψ or P=0 ψ,
where ψ is a path formula. On the other hand, we cover the full logic PCTL* which has
arbitrary formulas of the form P∼z ψ where ∼ ∈ {<, ≤, >, ≥} and z ∈ [0, 1]. In contrast
to the works mentioned, we have to restrict to memory-dependent policies with an a
priori limited finite memory. Otherwise the logic becomes highly undecidable [5].

2 Preliminaries

We assume the reader is familiar with basic concepts of Markov Decision Processes
(MDPs), probabilistic model checking, and policy synthesis. See [17,13,3] for introduc-
tions and overviews. In the following we summarize the notions relevant to us and we
introduce our notation.

Given a fixed finite vocabulary AP of atomic propositions a, b, c, . . . , a (proposi-
tional) interpretation I is any subset of AP. It represents the assignment of each element
in I to true and each other atomic proposition in AP \ I to false. A distribution on a
countable set X is a function µ : X 7→ [0, 1] such that

∑
x∈X µ(x) = 1, and Dist(X) is

the set of all distributions on X .
A Markov Decision Process (MDP) is a tupleM = (S, sinit, A, P, L) where: S is a

finite set of states; sinit ∈ S is the initial state; A is a finite set of actions and we denote by
A(s) ⊆ A the set of actions enabled in s ∈ S; P(t |s, α) is the probability of transitioning
to t ∈ S after applying α ∈ A(s) in state s; and L : S 7→ 2AP labels each state in S with an
interpretation. We assume that every state has at least one enabled action, i.e., A(s) , ∅
for all s ∈ S, and that P is a distribution on enabled actions, i.e., P(·|s, α) ∈ Dist(S)
iff α ∈ A(s). For any s and α ∈ A(s) let Succ(s, α) = {t | P(t |s, α) > 0} be the states
reachable from s with non-zero probability after applying α.

Given a state s ∈ S ofM, a run from s (ofM) is an infinite sequence r = (s = s1)
α1
−→

s2
α2
−→ s3 · · · of states si ∈ S and actions αi ∈ A(si) such that P(si+1 |si, αi) > 0, for all

i ≥ 1. We denote by Runs(s) the set of all runs from s ∈ S and Runs = ∪s∈S Runs(s). A
path from s ∈ S (ofM) is a finite prefix of a run from s and we define Paths(s) and Paths
in analogy to Runs(s) and Runs. We often write runs and paths in abbreviated form as

3

state sequences s1s2 · · · and leave the actions implicit. Given a path p = s1s2 · · · sn let
first(p) = s1 and last(p) = sn. Similarly, for a run r = s1s2 · · · , first(r) = s1.

A policy π represents a decision rule on how to choose an action given some infor-
mation about the environment. In its most general form, a history-dependent (stochastic)
policy (forM) is a function π : Paths 7→ Dist(A) such that, for all p ∈ Paths, π(p)(α) > 0
only if α ∈ A(last(p)). Technically, the MDPM together with π induces an infinite-state
Markov chainMπ over Paths and this way provides a probability measure for runs of
M under π [14,3]. However, since Paths is an infinite set, a history-dependent policy
might not be representable; moreover, the problem of finding such a policy that satisfies
PCTL* constraints is undecidable [5]. To address these issues we limit ourselves to
finite-memory policies. Such policies provide a distribution on actions for a current
state from S and a current mode, and are more expressive than Markovian policies.

Formally, a finite-memory policy (for M) is a DFA πfin = (M, start,∆, act) where
M is a finite set of modes, start : S 7→ M returns an initial mode to pair with a state
s ∈ S, ∆ : M × S 7→ M is the (mode) transition function, and act : M × S 7→ Dist(A)
is a function such that, for all 〈m, s〉 ∈ M × S, act(m, s)(α) > 0 only if α ∈ A(s). We
abbreviate act(m, s)(α) as act(m, s, α).

Any finite-memory policy can be identified with a history-dependent policy, see
again [3] for details. Essentially, an MDPM together with πfin again induces a Markov
chainMπfin , this time over the finite state space M ×S, labelling function Lπfin (〈m, s〉) :=
L(s), and transition probability function PMπfin (〈m′, s′〉|〈m, s〉) := Σα∈A(s) act(m, s, α) ·
P(s′ |s, α) ifm′ = ∆(m, s) and 0 otherwise.A path from 〈m1, s1〉 (ofMπfin) is a sequence of
the form 〈m1, s1〉 · · · 〈mn, sn〉 such thatmi+1 = ∆(mi, si) andPMπfin (〈mi+1, si+1〉|〈mi, si〉) >
0, for all 1 ≤ i < n. If m1 = start(s1) we get a path from s1 (of Mπfin), similarly
for runs. The definition of the satisfaction relation “|=” below applies to such runs
〈start(s1), s1〉 · · · from s1 ofMπfin if π is a finite-memory policy πfin.

The definition of finite-memory policies πfin can be made more sophisticated, e.g.,
by letting ∆ depend also on actions, or by making modes dependent on a given PCTL*
specification. In its current form, the ∆-component of πfin can be setup already, e.g., to
encode in 〈m, s〉 “the last ten states preceding s”.

Policy synthesis for PCTL*. (PCTL*) formulas follow the following grammar:

φ := true | a ∈ AP | φ ∧ φ | ¬φ | P∼z ψ (State formula)
ψ := φ | ψ ∧ ψ | ¬ψ | Xψ | ψ Uψ (Path formula)

In the definition of state formulas, ∼ ∈ {<, ≤, >, ≥} and 0 ≤ z ≤ 1. A proper path
formula is a path formula that is not a state formula. A formula is classical iff it is made
from atomic propositions and the Boolean connectives ¬ and ∧ only (no occurrences of
P, X or U). We write false as a shorthand for ¬true.

Given an MDPM, a history-dependent policy π, state s ∈ S and state formula φ,
define a satisfaction relationM, π, s |= φ, briefly s |= φ, as follows:

s |= true s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= a iff a ∈ L(s) s |= ¬φ iff s 6 |= φ

s |= P∼z ψ iff PrMπ ({r ∈ RunsMπ (s) | M, π, r |= ψ}) ∼ z

4

In the preceding line, RunsMπ (s) denotes the set of all runs from s ofMπ , and PrMπ (R)
denotes the probability of a (measurable) set R ⊆ RunsMπ . That is, the probability
measure forM and π is defined via the probability measure of the Markov chainMπ .

We need to define the satisfaction relation M, π, r |= ψ, briefly r |= ψ, for path
formulas ψ. Let r = s1s2 · · · be a run ofM and r[n] := snsn+1 · · · , for any n ≥ 1. Then:

r |= φ iff first(r) |= φ r |= ψ1 ∧ ψ2 iff r |= ψ1 and r |= ψ2

r |= ¬ψ iff r 6 |= ψ r |= Xψ iff r[2] |= ψ
r |= ψ1 Uψ2 iff exists n ≥ 1 s.t. r[n] |= ψ2 and r[m] |= ψ1 for all 1 ≤ m < n

In this paper we focus on the problem of synthesizing only the act-component of an
otherwise fully specified finite memory policy. More formally:

Definition 2.1 (Policy Synthesis Problem). LetM = (S, sinit, A, P, L) be an MDP, and
πfin = (M, start,∆, ·) be a partially specified finite-memory policy with act unspecified.
Given state formula φ, find act s.th.M, πfin, sinit |= φ if it exists, otherwise report failure.

Useful facts about PCTL* operators. Next we summarize some well-known or easy-to-
prove facts about PCTL* operators. By the expansion laws for the U-operator we mean
the following equivalences:

ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X (ψ1 Uψ2)) ¬(ψ1 Uψ2) ≡ ¬ψ2 ∧ (¬ψ1 ∨ X¬(ψ1 Uψ2)) (E)

For ∼ ∈ {<, ≤, >, ≥} define the operators ∼ and [∼] as follows:

< = ≥ ≤ = > > = ≤ ≥ = < [<] = > [≤] = ≥ [>] = < [≥] = ≤

Some of the following equivalences cannot be used for “model checking” PCTL*
(the left (P1) equivalence, to be specific) which involves reasoning over all policies. In
the context of Markov Chains, which we implicitly have, there is no problem:

¬P∼z ψ ≡ P∼z ψ P∼z ¬ψ ≡ P[∼] 1−z ψ (P1)
P≥0 ψ ≡ true P>1 ψ ≡ false (P2)
P≤1 ψ ≡ true P<0 ψ ≡ false (P3)

P≥u P∼z ψ ≡ P∼z ψ if u , 0 P>u P∼z ψ ≡ P∼z ψ if u , 1 (P4)
P≤u P∼z ψ ≡ P≥1−u P∼z ψ P<u P∼z ψ ≡ P>1−u P∼z ψ (P5)

Nonlinear programs. Finally, a (nonlinear) program is a set Γ of constraints of the form
e1 ./ e2 where ./ ∈ {<, ≤, >, ≥, �} and e1 and e2 are arithmetic expressions comprised of
numeric real constants and variables. The numeric operators are {+,−, ·, /}, all with their
expected meaning (the symbol � is equality). All variables are implicitly bounded over
the range [0, 1]. A solver (for nonlinear programs) is a decision procedure that returns
a satisfying variable assignment (a solution) for a given Γ, and reports unsatisfiability
if no solution exists. We do not further discuss solvers in the rest of this paper, we just
assume one as given. Examples of open source solvers include Ipopt and Couenne.1

1 http://projects.coin-or.org/.

5

http://projects.coin-or.org/

3 Tableau Calculus

Introduction and overview. We describe a tableau based algorithm for the policy syn-
thesis problem in Definition 2.1. Hence assume as given an MDPM = (S, sinit, A, P, L)
and a partially specified finite-memory policy πfin = (M, start,∆, ·) with act unspecified.

A labelled formula F is of the form 〈m, s〉 : Ψ where 〈m, s〉 ∈ M × S and Ψ is a
possibly empty set of path formulas, interpreted conjunctively. When we speak of the
probability of 〈m, s〉 : Ψ we mean the value of PrMπfin ({r ∈ Runs(〈m, s〉) | M, πfin, r |=∧
Ψ}) for the completed πfin. For simplicity we also call Ψ a “formula” and call 〈m, s〉

a policy state. A sequent is an expression of the form Γ ` F where Γ is a program.
Our algorithm consists of three steps, the first one of which is a tableau construction.

A tableau for Γ ` F is a finite tree whose root is labelled with Γ ` F and such that
every inner node is labelled with the premise of an inference rule and its children are
labelled with the conclusions, in order. If Γ ` F is the label of an inner node we call
F the pivot of the node/sequent/inference. By a derivation from Γ ` F , denoted by
Tableau(Γ ` F), we mean any tableau for Γ ` F obtained by stepwise construction,
starting from a root-node only tree and applying an inference rule to (the leaf of) every
branch as long as possible. There is one inference rule, the P-rule, which recursively
calls the algorithm itself. A branch is terminated when no inference rule is applicable,
which is exactly the case when its leaf is labelled by a pseudo-sequent, detailed below.
The inference rules can be applied in any way, subject to only preference constraints.

Given a state formula φ, the algorithm starts with a derivation from Γinit ` Finit :=
{x {φ}
〈start(sinit),sinit 〉

� 1} ` 〈start(sinit), sinit〉 : {φ}. (The constraint Γinit forces φ to be “true”.)
The derivation represents the obligation to derive a satisfiable extension Γfinal ⊇ Γinit. A
(any) solution σ then determines the act-component actσ of πfin such thatM, πfin, sinit |=

φ. In more detail, Γfinal will contain constraints of the form xα
〈m,s〉

� 0 or xα
〈m,s〉

> 0
for the probability of applying action α in policy state 〈m, s〉. Let the policy domain of
a program Γ be the set of all policy states 〈m, s〉 ∈ M × S such that xα

〈m,s〉
occurs in

Γ, for some α. This lets us initially define actσ(m, s, α) := σ(xα
〈m,s〉
) for every 〈m, s〉

in the policy domain of Γfinal. Only for the purpose of satisfying the definition of finite
memory policies, we then make actσ trivially total by choosing an arbitrary distribution
for actσ(m, s) for all remaining 〈m, s〉 ∈ M × S. (The latter are not reachable and hence
do not matter.) We call πfin(σ) := (M, start,∆, actσ) the policy completed by σ.

Similarly, Γfinal contains variables of the form xΨ
〈m,s〉

, and σ(xΨ
〈m,s〉
) is the probability

of 〈m, s〉 : Ψ under the policy πfin(σ). (We actually need these variable indexed by tableau
nodes, see below.) If Ψ is a state formula its value will be 0 or 1, encoding truth values.

Contrary to traditional tableau calculi, the result of the computation – the extension
Γfinal – cannot always be obtained in a branch-local way. To explain, there are two
kinds of branching in our tableaux: don’t-know (non-deterministic) branching and union
branching. The former is always used for exhaustive case analysis, e.g., whether xα

〈m,s〉
�

0 or xα
〈m,s〉

> 0, and the algorithm guesses which alternative to take (cf. step 2 below).
The latter analyzes the Boolean structure of the pivot. Unlike as with traditional tableaux,
all children need to be expanded, and each fully expanded branch contributes to Γfinal.

More precisely, we formalize the synthesis algorithm as a three-step procedure. Step
one consists in deriving Tableau(Γinit ` Finit). Step two consists in removing from the

6

step one tableau every don’t-know branching by retaining exactly one child of the parent
node of the don’t-know branching, and deleting all other children and the subtrees below
them. This itself is a don’t-know non-deterministic process; it corresponds to going down
one branch in traditional tableau. The result is denoted by Choose(T1), where T1 is the
step one tableau. Step three consists in first building a combined program by taking the
union of the Γ’s in the leaves of the branches of the step two tableau. This program then
is extended with a set of constraints by the Force operator. More precisely, Forceing
captures the situation when a run reaches a bottom strongly connected component
(BSCC). Any formula is satisfied in a BSCC with probability 0 or 1, which can be
determined solely by qualitative formula evaluation in the BSCC. Details are below.
For now let us just define Gamma(T2) =

⋃
{Γ | Γ ` · is the leaf of a branch in T2} ∪

Force(T2) where T2 = Choose(T1).
We can formulate our main results now. Proofs are in the long version [4].

Theorem 3.1 (Soundness). LetM = (S, sinit, A, P, L) be an MDP, πfin = (M, start,∆, ·)
be a partially specified finite-memory policy with act unspecified, and φ a state formula.
Suppose there is a program Γfinal := Gamma(Choose(Tableau({x {φ}

〈start(sinit),sinit 〉
� 1} `

〈start(sinit), sinit〉 : {φ}))) such that Γfinal is satisfiable. Let σ be any solution of Γfinal and
πfin(σ) be the policy completed by σ. Then it holdsM, πfin(σ), sinit |= φ.

Theorem 3.2 (Completeness).LetM = (S, sinit, A, P, L) be anMDP, πfin = (M, start,∆, act)
a finite-memory policy, and φ a state formula. Suppose M, πfin, sinit |= φ. Then there
is a satisfiable program Γfinal := Gamma(Choose(Tableau({x {φ}

〈start(sinit),sinit 〉
� 1} `

〈start(sinit), sinit〉 : {φ}))) and a solution σ of Γfinal such that actσ(m, s, α) = act(m, s, α)
for every pair 〈m, s〉 in the policy domain of Γfinal. MoreoverM, πfin(σ), sinit |= φ.

Inference rules. There are two kinds of inference rules, giving two kinds of branching:

Name
Γ ` 〈m, s〉 : Ψ

Γleft ` 〈m, s〉 : Ψ Γright ` 〈m, s〉 : Ψ
if condition

(Don’t-know branching)

The pivot in the premise is always carried over into both conclusions. Only the constraint
Γ is modified into Γleft ⊇ Γ and Γright ⊇ Γ, respectively, for an exhaustive case analysis.

Name
Γ ` 〈m, s〉 : Ψ

Γ1 ` 〈m1, s1〉 : Ψ1 ∪ · · · ∪ Γn ` 〈mn, sn〉 : Ψn
if condition (n ≥ 1)

(Union branching)

All union branching rules satisfy Γi ⊇ Γ, and 〈mi, si〉 = 〈m, s〉 or 〈mi, si〉 = 〈∆(m, s), t〉
for some state t. The∪-symbol is decoration for distinguishing the two kinds of branching
but has no meaning beyond that. Union branching stands for the union of the runs from
〈mi, si〉 satisfying Ψi , and computing its probability requires developing all n children.

Weneed to clarify a technical add-on. Let u be the tableau nodewith the premise pivot
〈m, s〉 : Ψ. A union branching inference extends u with children nodes, say, u1, . . . , un,
with conclusion pivots 〈mi, si〉 : Ψi . The program Γn will contain a constraint that
makes a variable (xu)Ψ〈m,s〉 for the premise dependent on all variables (xui)

Ψi

〈mi,si 〉
for

the respective conclusions. This is a key invariant and is preserved by all inference

7

rules. In order to lighten the notation, however, we usually drop the variable’s index,
leaving the node implicit. For instance, we write xΨ

〈m,s〉
instead of (xu)Ψ〈m,s〉 . The index

u is needed for not inadvertently identifying the same pivot at different points in the
symbolic execution of a run. Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise Γ ` 〈m, s〉 : {ψ}] Ψ and the
conclusion is Γ, γone ` 〈m, s〉 : Ψ′, for some Ψ′. The pivot is specified by pattern
matching, where] is disjoint union, and γone is amacro that expands to x {ψ}]Ψ

〈m,s〉
� xΨ

′

〈m,s〉
.

Other inference rules derive pseudo-sequents of the form Γ ` 7, Γ ` 3, Γ ` Yes-Loop
and Γ ` No-Loop. They indicate that the probability of the pivot is 0, 1, or that a loop
situation arises that may need further analysis. Pseudo-sequents are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of preference.

>
Γ ` 〈m, s〉 : {ψ}] Ψ
Γ, γone ` 〈m, s〉 : Ψ


if ψ is clas-
sical and
L(s) |= ψ

7
Γ ` 〈m, s〉 : {ψ}] Ψ
Γ, x {ψ}]Ψ
〈m,s〉

� 0 ` 7


if ψ is clas-
sical and
L(s) 6|= ψ

3
Γ ` 〈m, s〉 : ∅
Γ, x∅
〈m,s〉

� 1 ` 3
¬¬

Γ ` 〈m, s〉 : {¬¬ψ}] Ψ
Γ, γone ` 〈m, s〉 : {ψ} ∪ Ψ

¬P
Γ ` 〈m, s〉 : {¬P∼z ψ}] Ψ
Γ, γone ` 〈m, s〉 : {P∼z ψ} ∪ Ψ

P¬
Γ ` 〈m, s〉 : {P∼z ¬ψ}] Ψ

Γ, γone ` 〈m, s〉 : {P[∼] 1−z ψ} ∪ Ψ

These are rules for evaluating classical formulas and for negation. The 7 rule terminates
the branch and assigns a probability of 0 to the premise pivot, as no run from 〈m, s〉
satisfies (the conjunction of) {ψ}] Ψ, as ψ is false in s. A similar reasoning applies to
the > and 3 rules. The ¬P and P¬ rules are justified by law (P1). The P¬ rule is needed
for removing negation between P-formulas as in P∼z ¬P∼v ψ.

∧
Γ ` 〈m, s〉 : {ψ1 ∧ ψ2}] Ψ

Γ, γone ` 〈m, s〉 : {ψ1, ψ2} ∪ Ψ

¬∧
Γ ` 〈m, s〉 : {¬(ψ1 ∧ ψ2)}] Ψ

Γ ` 〈m, s〉 : {¬ψ1} ∪ Ψ ∪ Γ, γ ` 〈m, s〉 : {ψ1,¬ψ2} ∪ Ψ

where γ = x {¬(ψ1∧ψ2)}]Ψ
〈m,s〉

� x {¬ψ1 }∪Ψ
〈m,s〉

+ x {ψ1,¬ψ2 }∪Ψ
〈m,s〉

These are rules for conjunction. Not both ψ1 and ψ2 can be classical by preference of
the > and 7 rules. The ∧ rule is obvious with the conjunctive reading of formula sets.
The ¬∧ rule deals, essentially, with the disjunction ¬ψ1 ∨¬ψ2, which requires splitting.
However, unlike to the classical logic case, ¬ψ1 ∨ ¬ψ2 represents the union of the runs
from s satisfying ¬ψ1 and the runs from s satisfying ¬ψ2. As these sets may overlap the
rule works with a disjoint union by taking ¬ψ1 on the one side, and ψ1 ∧ ¬ψ2 on the
other side so that it is correct to add their probabilities up in γ.

P1
Γ ` 〈m, s〉 : {P∼z ψ}] Ψ
Γ, γone ` 〈m, s〉 : {ψ′} ∪ Ψ

{
if P∼z ψ is the left hand side of an equivalence
(P2)-(P5) and ψ′ is its right hand side

P2
Γ ` 〈m, s〉 : {P∼z ψ}] Ψ
Γ, γone ` 〈m, s〉 : {ψ} ∪ Ψ

if see text P3
Γ ` 〈m, s〉 : {P∼z ψ}] Ψ
Γ, γone ` 〈m, s〉 : {¬ψ} ∪ Ψ

if see text

8

These are rules for simplifying P-formulas. The condition in P2 is “∼ ∈ {>, ≥} and ψ
is a state formula”, and in P3 it is “∼ ∈ {<, ≤} and ψ is a state formula”. In the rules
P2 and P3 trivial cases for z are excluded by preference of P1. Indeed, this preference is
even needed for soundness. The rule P2 can be explained as follows: suppose we want
to know if M, π, 〈m, s〉 |= P∼z ψ. For that we need the probability of the set of runs
from 〈m, s〉 that satisfy ψ and compare it with z. Because ψ is a state formula this set
is comprised of all runs from s ifM, π, 〈m, s〉 |= ψ, or the empty set otherwise, giving
it probability 1 or 0, respectively. With ∼ ∈ {>, ≥} conclude M, π, s |= P∼z ψ, or its
negation, respectively. The rule P3 is justified analogously. The only difference is that
∼ ∈ {<, ≤} and so the P∼z quantifier acts as a negation operator instead of idempotency.

At this stage, when all rules above have been applied exhaustively to a given branch,
the leaf of that branch must be of the form Γ ` 〈m, s〉 : {P∼z1 ψ1, . . . ,P∼zn ψn}, for some
n ≥ 0, where each ψi is a non-negated proper path formula.

P
Γ ` 〈m, s〉 : Ψ

Γ, Γ′, γleft ` 〈m, s〉 : Ψ Γ, Γ′, γright ` 〈m, s〉 : Ψ

{
if P∼z ψ ∈ Ψ, and
γleft < Γ and γright < Γ

P>
Γ ` 〈m, s〉 : {P∼z ψ}] Ψ
Γ, γone ` 〈m, s〉 : Ψ

if γleft ∈ Γ

P7
Γ ` 〈m, s〉 : {P∼z ψ}] Ψ
Γ, x {P∼z ψ}]Ψ
〈m,s〉

� 0 ` 7
if γright ∈ Γ

where Γ
′ = Gamma(Choose(Tableau(∅ ` 〈start(s), s〉 : {ψ}))),

γleft = x {ψ}
〈start(s),s〉 ∼ z, and γright = x {ψ}

〈start(s),s〉 ∼ z

These are rules for P-formulas. Unlike classical formulas, P-formulas cannot be evalu-
ated in a state, because their truth value depends on the solution of the program Γfinal.
The P rule analyzes P∼z ψ in a deferred way by first getting a constraint x {ψ}

〈start(s),s〉 � e,
for some expression e, for the probability of 〈start(s), s〉 : {ψ} by a recursive call.2 This
call is not needed if Γ already determines a truth value for P∼z ψ because of γleft ∈ Γ or
γright ∈ Γ. These tests are done modulo node labels of variables, i.e., (xu)

{ψ}

〈start(s),s〉 and

(xv)
{ψ}

〈start(s),s〉 are considered equal for any u, v. Because the value of e is not known at
the time of the inference, the P rule don’t-know non-deterministically branches out into
whether x {ψ}

〈start(s),s〉 ∼ z holds or not, as per the constraints γleft and γright. The P> and
P7 rules then lift the corresponding case to the evaluation of P∼z ψ, which is possible
now thanks to γleft or γright.

Observe the analogy between these rules and their counterparts> and 7 for classical
formulas. Note that the rules P, P> and P7 cannot be combined into one, because γleft
or γright could have been added earlier, further above in the branch, or in a recursive call.
In this case only P>/P7 can applied.

At this stage, in a leaf Γ ` 〈m, s〉 : Ψ the set Ψ cannot contain any state formulas,
as they would all be eliminated by the inference rules above; all formulas in Ψ now are
possibly negated X-formulas or U-formulas.

2 By the semantics of the P-operator, the sub-derivation has to start from 〈start(s), s〉, not 〈m, s〉.

9

U
Γ ` 〈m, s〉 : {ψ1 Uψ2}] Ψ

Γ ` 〈m, s〉 : {ψ2} ∪ Ψ ∪ Γ, γ ` 〈m, s〉 : {ψ1,¬ψ2, X (ψ1 Uψ2)} ∪ Ψ

where γ = x {ψ1 Uψ2 }]Ψ
〈m,s〉

� x {ψ2 }∪Ψ
〈m,s〉

+ x {ψ1,¬ψ2,X (ψ1 Uψ2)}∪Ψ
〈m,s〉

¬U
Γ ` 〈m, s〉 : {¬(ψ1 Uψ2)}] Ψ

Γ ` 〈m, s〉 : {¬ψ1,¬ψ2} ∪ Ψ ∪ Γ, γ ` 〈m, s〉 : {ψ1,¬ψ2,X¬(ψ1 Uψ2)} ∪ Ψ

where γ = x {¬(ψ1 Uψ2)}]Ψ
〈m,s〉

� x {¬ψ1,¬ψ2 }∪Ψ
〈m,s〉

+ x {ψ1,¬ψ2,X¬(ψ1 Uψ2)}∪Ψ
〈m,s〉

These are expansion rules for U-formulas. The standard expansion law is ψ1 Uψ2 ≡
ψ2 ∨ (ψ1 ∧ X (ψ1 Uψ2)). As with the ¬∧ rule, the disjunction in the expanded formula
needs to be disjoint by taking ψ2 ∨ (ψ1 ∧ ¬ψ2 ∧ X (ψ1 Uψ2)) instead. Similarly for ¬U.

¬X
Γ ` 〈m, s〉 : {¬Xψ}] Ψ

Γ, γone ` 〈m, s〉 : {X¬ψ} ∪ Ψ

The ¬X rule is obvious.
At this stage, if Γ ` 〈m, s〉 : Ψ is a leaf sequent thenΨ is of the form {Xψ1, . . . ,Xψn},

for some n ≥ 1. This is an important configuration that justifies a name: we say that
a labelled formula 〈m, s〉 : Ψ, a sequent Γ ` 〈m, s〉 : Ψ or a node labelled with
Γ ` 〈m, s〉 : Ψ is poised if Ψ is of the form {Xψ1, . . . ,Xψn} where n ≥ 1. (The notion
“poised” is taken from [18].) A poised 〈m, s〉 : {Xψ1, . . . ,Xψn} will be expanded by
transition into the successor states of s by using enabled actions α ∈ A(s). That some
α is enabled does not, however, preclude a policy with actσ(m, s, α) = 0. The rule A
makes a guess whether this is the case or not:

A
Γ ` 〈m, s〉 : Ψ

Γ, γleft ` 〈m, s〉 : Ψ Γ, γright ` 〈m, s〉 : Ψ

{
if Γ ` 〈m, s〉 : Ψ is poised,
α ∈ A(s), γleft < Γ and γright < Γ

where γleft = xα
〈m,s〉 � 0 and γright = xα

〈m,s〉 > 0

With a minor modification we get a calculus for deterministic policies. It only requires
to re-define γright as γright = xα

〈m,s〉
� 1. As a benefit the program Γfinal will be linear.

After the A rule has been applied exhaustively, for each α ∈ A(s) either xα
〈m,s〉

> 0 ∈
Γ or xα

〈m,s〉
� 0 ∈ Γ. If xα

〈m,s〉
> 0 ∈ Γ we say that α is prescribed in 〈m, s〉 by Γ and

define Prescribed(〈m, s〉, Γ) = {α | xα
〈m,s〉

> 0 ∈ Γ}.
The set of prescribed actions in a policy state determines the Succ-relation of the

Markov chain under construction. To get the required distribution over enabled actions,
it suffices to enforce a distribution over prescribed actions, with this inference rule:

Prescribed
Γ ` 〈m, s〉 : Ψ

Γ, γα
〈m,s〉

` 〈m, s〉 : Ψ

{
if Γ ` 〈m, s〉 : Ψ is poised,
α ∈ A(s) and γα

〈m,s〉
< Γ

where γα
〈m,s〉 = Σα∈Prescribed(〈m,s〉,Γ) xα

〈m,s〉 � 1

If the Choose operator in step two selects the leftmost branch among the A-inferences
then Γfinal contains xα

〈m,s〉
� 0, for all α ∈ A(s). This is inconsistent with the constraint

10

introduced by the Prescribed-inference, corresponding to the fact that runs containing
〈m, s〉 in this case do not exist.

We are now turning to a “loop check” which is essential for termination, by, essen-
tially, blocking the expansion of certain states into successor states that do not mark
progress. For that, we need some more concepts. For two nodes u and v in a branch we
say that u is an ancestor of v and write u ≤ v if u = v or u is closer to the root than v.
An ancestor is proper, written as u < v, if u ≤ v but u , v. We say that two sequents
Γ1 ` F1 and Γ2 ` F2 are indistinguishable iff F1 = F2, i.e., they differ only in their
Γ-components. Two nodes u and v are indistinguishable iff their sequents are. We write
Ψu to denote the formula component of u’s label, i.e., to say that the label is of the form
Γ ` 〈m, s〉 : Ψu; similarly for Fu to denote u’s labelled formula.

Definition 3.3 (Blocking). Let w be a poised leaf and v < w an ancestor node. If
(i) v and w are indistinguishable, and (ii) for every X-eventuality X (ψ1 Uψ2) in Ψv

there is a node x with v < x ≤ w such that ψ2 ∈ Ψx then w is yes-blocked by v. If
there is an ancestor node u < v such that (i) u is indistinguishable from v and v is
indistinguishable from w (and hence u is indistinguishable from w), and (ii) for every
X-eventuality X (ψ1 Uψ2) in Ψu , if there is a node x with ψ2 ∈ Ψx and v < x ≤ w then
there is a node y with ψ2 ∈ Ψy and u < y ≤ v, then w is no-blocked by u.

Whenwe say that a sequent is yes/no-blockedwemean that its node is yes/no-blocked.

In the yes-blocking case all X-eventualities in Ψv become satisfied along the way from
v to w. This is why w represents a success case. In the no-blocking case some X-
eventualities in Ψv may have been satisfied along the way from u to v, but not all, as this
would be a yes-blocking instead. Moreover, no progress has been made along the way
from v to w for satisfying the missing X-eventualities. This is why w represents a failure
case. The blocking scheme is adapted from [18] for LTL satisfiability to our probabilistic
case. See [19,18] for more explanations and examples, which are instructive also for its
usage in our framework.

Blocking is used in the following inference rules, collectively called the Loop rules.
In these rules, the node v is an ancestor node of the leaf the rule is applied to.

Yes-Loop
Γ ` 〈m, s〉 : Ψ

Γ, xΨ
〈m,s〉

� (xv)Ψ〈m,s〉 ` Yes-Loop
if Γ ` 〈m, s〉 : Ψ is yes-blocked by v

No-Loop
Γ ` 〈m, s〉 : Ψ

Γ, xΨ
〈m,s〉

� (xv)Ψ〈m,s〉 ` No-Loop
if Γ ` 〈m, s〉 : Ψ is no-blocked by v

In either case, if v is indistinguishable from w then the probability of Fv and Fw are
exactly the same, just because Fv = Fw . This justifies adding xΨ

〈m,s〉
� (xv)Ψ〈m,s〉 .

The Loop rules have a side-effect that we do not formalize: they add a link from
the conclusion node (the new leaf node) to the blocking node v, called the backlink. It
turns the tableau into a graph that is no longer a tree. The backlinks are used only for
reachability analysis in step three of the algorithm. Figure 1 has a graphical depiction.

By preference of inference rules, the X rule introduced next can be applied only if a
Loop rule does not apply. The Loop rules are at the core of the termination argument.3

3 The argument is standard for calculi based on formula expansion, as embodied in the U and ¬U
rules: the sets of formulas obtainable by these rules is a subset of an a priori determined finite

11

For economy of notation, when Ψ = {ψ1, . . . , ψn}, for some ψ1, . . . , ψn and n > 0,
let XΨ denote the set {Xψ1, . . . ,Xψn}.

X
Γ ` 〈m, s〉 : XΨ

Γ ` 〈m′, t1〉 : Ψ ∪ · · · ∪ Γ ` 〈m′, tk−1〉 : Ψ ∪ Γ, γ1 ` 〈m′, tk〉 : Ψ

where m′ = ∆(m, s)

{t1, ..., tk } =
⋃
α∈Prescribed(〈m,s〉,Γ) Succ(s, α) , for some k ≥ 0

γ1 = xXΨ
〈m,s〉 � Σα∈Prescribed(〈m,s〉,Γ) [x

α
〈m,s〉 · (Σt∈Succ(s,α) P(t |s, α) · xΨ

〈m′,t 〉)]

This is the (only) rule for expansion into successor states. If u is the node the X rule is
applied to and u1, . . . , uk are its children then each ui is called an X-successor (of u).

The X rule follows the set of actions prescribed in 〈m, s〉 by Γ through to successor
states. This requires summing up the probabilities of carrying out α, as represented by
xα
〈m,s〉

, multiplied by the sums of the successor probabilities weighted by the respective
transition probabilities. This is expressed in the constraint γ1. Only these k successors
need to be summed up, as all other, non-prescribed successors, have probability 0.

Forcing probabilities. We are now turning to the Force operator which we left open
in step three of the algorithm. It forces a probability 0 or 1 for certain labelled for-
mulas occurring in a bottom strongly connected component in a tree from step two.

/see text

Backlink

Poised node

Fig. 1.An example tableau T from step
2. The subgraph below u2 is a strongly
connected component if u10 is 7-ed.

The tree in the figure to the right helps to illustrate
the concepts introduced in the following.

We need some basic notions from graph the-
ory. A subset M of the nodes N of a given graph
is strongly connected if, for each pair of nodes u
and v in M , v is reachable from u passing only
through states in M . A strongly connected compo-
nent (SCC) is a maximally strongly connected set
of nodes (i.e., no superset of it is also strongly con-
nected). A bottom strongly connected component
(BSCC) is a SCC M from which no state outside
M is reachable from M .

LetT = Choose(Tableau(Γ ` F)) be a tree without don’t-know branching obtained
in step 2. We wish to take T together with its backlinks as the graph under consideration
and analyse its BSCCs. However, for doing so we cannot take T as it is. On the one hand,
our tableaux describe state transitions introduced by X rule applications. Intuitively,
these are amenable to BSCC analysis as one would do for state transition systems. On
the other hand, T has interspersed rule applications for analysing Boolean structure,
which distort the state transition structure. These rule applications have to be taken into
account prior to the BSCC analysis proper.

set of formulas. This set consists of all subformulas of the given formula closed under negation
and other operators. Any infinite branch hence would have to repeat one of these sets infinitely
often, which is impossible with the loop rules. Moreover, the state set S and the mode set M
are finite and so the other rules do not cause problems either.

12

For this, we distinguish between X-links and +-links in T . An X-link is an edge
between a node and its child if the X rule was applied to the node, making its child an
X-successor, otherwise it is a +-link. (“+-link” because probabilities are summed up.)

Let u be a node in T and SubtreeT (u), or just Subtree(u), the subtree of T rooted at u
without the backlinks. We say that u is a 0-deadend (in T) if SubtreeT (u) has no X-links
and every leaf in SubtreeT (u) is 7-ed. In a 0-deadend the probabilities all add up to a
zero probability for the pivot of u. This is shown by an easy inductive argument.

Definition 3.4 (Ambiguous node). Let u be a node in T . We say that u is ambiguous (in
T) iff (i) SubtreeT (u) contains no3-ed leaf, and (ii) SubtreeT (u) contains no X-successor
0-deadend node. We say that u is unambiguous iff u is not ambiguous.

Themain application of Definition 3.4 is when the node u is the root of a BSCCs, defined
below. The probability of u’s pivot 〈m, s〉 : Ψ then is not uniquely determined. This is
because expanding u always leads to a cycle, a node with the same pivot, and there is
no escape from that according to conditions (i) or (ii) in Definition 3.4. In other words,
the probability of 〈m, s〉 : Ψ is defined only in terms of itself.4

In the figure above, the node u1 is unambiguous because of case (i) in Definition 3.4.
Assuming u10 is 3-ed, the node u2 is unambiguous by case (i). The pivot in u10, then,
has probability 1 which is propagated upwards to u4 (and enforces probability 0 for the
pivot of u7). It contributes a non-zero probability to the transition from u2 to u4 and this
way escapes a cycle. If u10 is 7-ed, the node u2 is ambiguous.

If case (ii) in Definition 3.4 is violated there is an X-successor node whose pivot has
probability 0.Because everyX-link has a non-zero transition probability, the probabilities
obtained through the other X-successor nodes add up to a value strictly less than 1. This
also escapes the cycle leading to underspecified programs (not illustrated above).

Let 0(T)= {w | w is a node in some 0-deadend of T} be all nodes in all 0-deadends
in T . In the example, 0(T)= {u6, u10, u8} if u10 is 7-ed and 0(T)= {u8} if u10 is 3-ed.

Let u be a node in T and M(u) = {w | w is a node in Subtree(u)} \ 0(T). That is,
M(u) consists of the nodes in the subtree rooted at u after ignoring the nodes from
the 0-deadend subtrees. In the example M(u2) = {u2, u4, u5, u7, u9, u12, u13, u14} if u10 is
7-ed. If u10 is 3-ed then u6 and u10 have to be added.

We say that u is the root of a BSCC (in T) iff u is poised, ambiguous and M(u) is a
BSCC in T (together with the backlinks). In the example, assume that u10 is 7-ed. Then
u2 is poised, ambiguous and the root of a BSCC. In the example, that M(u2) is a BSCC
in T is easy to verify.

Now suppose that u is the root of a BSCC with pivot 〈m, s〉 : XΨ. This means that
the probability of 〈m, s〉 : XΨ is not uniquely determined. This situation then is fixed

4 In terms of the resulting program, (xu)
ψ
〈m,s〉

is not constrained to any specific value in [0..1].
This can be shown by “substituting in” the equalities in Γfinal for the probabilities of the pivots
in the subtree below u and arithmetic simplifications.

13

by means of the Force operation, generally defined as follows:

Bscc(T) := {u | u is the root of a BSCC in T }
Force(T) := {(xu)XΨ〈m,s〉 � χ | u ∈ Bscc(T), and

if some leaf of the subtree rooted at u is a Yes-Loop
then χ = 1 else χ = 0 }

That is, Forceing removes the ambiguity for the probability of the pivot 〈m, s〉 : XΨ at
the root u of a BSCC by setting it to 1 or to 0. If Forceing adds (xu)XΨ〈m,s〉 � 1 then there
is a run that satisfies every X-eventuality in XΨ, by following the branch to a Yes-Loop.
Because we are looking at a BSCC, for fairness reasons, every run will do this, and
infinitely often so, this way giving XΨ probability 1. Otherwise, if there is no Yes-Loop,
there is some X-eventuality in XΨ that cannot be satisfied, forcing probability 0.

4 Example

The following is only a brief summary of an example spelled out in detail in the
long version [4] of this paper. Consider the MDP on the right. The initial state is s1.

s1

s2

s3

β

0.5

0.5

α1 α2

α3

{a}Action β leads non-deterministically to states s2 and s3, each
with probability 0.5. The actions αi for i ∈ {1, 2, 3} are self-
loops with probability one (not shown). The label set of s2
is {a} in all other states it is empty. The partially specified
finite-memory policy πfin = ({m}, start,∆, ·) has a single mode
m, making πfin Markovian. The functions start and ∆ hence
always return m, allowing us to abbreviate 〈m, si〉 as just si . Let the state formula of
interest be φ = P≥0.3 F G a.Wewish to obtain a Γfinal such that any solutionσ synthesizes
a suitable actσ , i.e., the policy πfin(σ) completed by σ satisfiesM, πfin(σ), s1 |= φ.

The BSCCs depend on whether actσ(m, s1, β) > 0 holds, i.e., if β can be executed
at s1. (This is why the calculus needs to make a corresponding guess, with its A-rule.) If
not, then s2 and s3 are unreachable, and the self-loop at s1 is the only BSCC, which does
not satisfy G a. If yes, then there are two BSCCs, the self-loop at s2 and the self-loop at
s3, and the BSCC at s2 satisfies G a. By fairness of execution, with probability one some
BSCC will be reached, and the BSCC at s2 is reached with probability 0.5, hence, if
actσ(m, s1, β) > 0. In other words, devising any policy that reaches s2 will hence suffice
to satisfy φ. The expected result thus is just a constraint on σ saying actσ(m, s1, β) > 0.
Indeed, the derivation will show that.

In brief, the derivation starts with the initial sequent {xφs1 � 1} ` s1 : {φ}. The first
inference is a P-inference, branching out on xF G a

s1
≥ 0.3 and its negation. (The latter

case quickly leads to an unsatisfiable program.) The P-inference triggers a recursive
call with the start sequent ∅ ` xF G a

s1
. This tableau leads to an open branch with sequent

∅ ` xX F G a
s1

and all other branches 7-ed, inducing a constraint xF G a
s1

� xX F G a
s1

. This
is plausible, as s1 falsifies G a, and hence exactly the successor states of s1 need to be
considered.

As said, the interesting case is if β can be executed at s1, so let us assume that. The
tableau derivation continues the open branch and arrives at s3. Further expansion leads

14

to No-Loop leaves only. This gives a trivial constraint xF G a
s3

� xF G a
s3

only, but Forceing
adds xF G a

s3
� 0. The tableau derivation also arrives at s2, this time with a BSCC with a

Yes-Loop leaf, contributing xF G a
s2

� 1.
If desired, the resulting program Γfinal can be simplified so that it becomes obvious

that only the constraint xβs1 > 0 is essential for satisfiability.

5 Conclusions and Future Work

In this paper we presented a first-of-its kind algorithm for the controller synthesis
problem forMarkovDecision Processeswhose intended behavior is described by PCTL*
formulas. The only restriction we had to make – to get decidability – is to require policies
with finite history. We like to propose that the description of the algorithm is material
enough for one paper, and so we leave many interesting questions for future work.

The most pressing theoretical question concerns the exact worst-case complexity
of the algorithm. Related to that, it will be interesting to specialize and analyze our
framework for fragments of PCTL*, such as probabilistic LTL and CTL or simpler
fragments and restricted classes of policies that might lead to linear programs (and
ideally to solving only a polynomial number of such programs). For instance, we already
mentioned that computing deterministic policies leads to linear programs in our tableau
(see the description of the A inference rule how this is done.) Moreover, it is well-
known that cost-optimal stochastic policies for classes of MDPs with simple constraints
bounding the probability of reaching a goal state can be synthesized in linear time in
the size of the MDP by solving a single linear program [1,12]. An interesting question
is how far these simple constraints can be generalised towards PCTL* whilst remaining
in the linear programming framework (see e.g. [20]).

On implementation, a naïve implementation of the algorithm as presented above
would perform poorly in practice. However, it is easy to exploit some straightforward
observations for better performance. For instance, steps one (tableau construction) and
two (committing to a don’t-know non-deterministic choice) should be combined into
one. Then, if a don’t know non-deterministic inference rule is carried out the first time,
every subsequent inference with the same rule and pivot can be forced to the same
conclusion, at the time the rule is applied. Otherwise an inconsistent program would
result, which never needs to be searched for. Regarding space, although all children of
a union branching inference rule need to be expanded, this does not imply they always
all need to be kept in memory simultaneously. Nodes can be expanded in a one-branch-
at-a-time fashion and using a global variable for Γfinal for collecting the programs
in the leaves of the branches if they do not belong to a bottom strongly connected
component. Otherwise, the situation is less obvious and we leave it to future work.
Another good source of efficiency improvements comes from more traditional tableau.
It will be mandatory to exploit techniques such as dependency-directed backtracking,
lemma learning, and early failure checking for search space pruning.

15

Acknowledgements

This research was funded by AFOSR grant FA2386-15-1-4015. We would also like to
thank the anonymous reviewers for their constructive and helpful comments.

References

1. E. Altman. Constrained Markov Decision Processes, Volume 7. CRC Press, 1999.
2. C. Baier, M. Größer, M. Leucker, B Bollig, and F. Ciesinski. Controller Synthesis for

Probabilistic Systems. In TCS2004, 2004.
3. C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.
4. Peter Baumgartner, Sylvie Thiébaux, and Felipe Trevizan. Tableaux for Policy Synthesis for

MDPS With PCTL* Constraints. CoRR, abs/1706.10102, 2017.
5. T. Brázdil, V. Brozek, V. Forejt, and A. Kucera. Stochastic Games With Branching-time

Winning Objectives. In 21th IEEE Symp. on Logic in Computer Science LICS, 2006.
6. T. Brázdil and V. Forejt. Strategy Synthesis for Markov Decision Processes and Branching-

time Logics. In 18th Int. Conf. on Concurrency Theory CONCUR, 2007.
7. T. Brázdil, V. Forejt, and A. Kucera. Controller Synthesis and Verification for Markov

Decision Processes With Qualitative Branching Time Objectives. In ICALP, 2008.
8. T. Brázdil, A. Kucera, and O. Strazovský. On the Decidability of Temporal Properties of

Probabilistic Pushdown Automata. In STACS, 2005.
9. C. Courcoubetis and M. Yannakakis. The Complexity of Probabilistic Verification. J. ACM,

42(4):857–907, 1995.
10. X. C. Ding, A. Pinto, and A. Surana. Strategic Planning Under Uncertainties via Constrained

Markov Decision Processes. In IEEE Int. Conf. on Robotics and Automation ICRA, 2013.
11. X. C. Ding, S. Smith, C. Belta, and D. Rus. Optimal Control of Markov Decision Processes

With Linear Temporal Logic Constraints. IEEE Trans. Automat. Contr., 59(5):1244–1257,
2014.

12. D. Dolgov and E. Durfee. Stationary Deterministic Policies for Constrained Mdps With
Multiple Rewards, Costs, and Discount Factors. In IJCAI, 2005.

13. V. Forejt, M. Z. Kwiatkowska, G. Norman, and D. Parker. Automated Verification Techniques
for Probabilistic Systems. In SFM, 2011.

14. J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains: With a Chapter of Markov
Random Fields by David Griffeath, volume 40. Springer, 2012.

15. A. Kucera and O. Strazovský. On the Controller Synthesis for Finite-state Markov Decision
Processes. In Theoretical Computer Science, 2005.

16. M. Z. Kwiatkowska, G. Norman, and D. Parker. Stochastic Model Checking. In SFM, 2007.
17. M. Z. Kwiatkowska and D. Parker. Automated Verification and Strategy Synthesis for

Probabilistic Systems. In ATVA, 2013.
18. M. Reynolds. A New Rule for LTL Tableaux. In GandALF, 2016.
19. M. Reynolds. A Traditional Tree-style Tableau for LTL. CoRR, abs/1604.03962, 2016.
20. J. Sprauel, A. Kolobov, and F. Teichteil-Königsbuch. Saturated Path-constrained MDP:

Planning Under Uncertainty and Deterministic Model-checking Constraints. In AAAI, 2014.
21. M. Svorenová, I. Cerna, and C. Belta. Optimal Control of Mdps With Temporal Logic

Constraints. In CDC, 2013.
22. F. Trevizan, S. Thiébaux, P. Santana, and B. Williams. Heuristic Search in Dual Space for

Constrained Stochastic Shortest Path Problems. In ICAPS, 2016.

16

	Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

