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Abstract

For the past 25 years, heuristic search has been used
to solve domain-independent probabilistic planning
problems, but with heuristics that determinise the
problem and ignore precious probabilistic infor-
mation. In this paper, we present a generaliza-
tion of the operator-counting family of heuristics
to Stochastic Shortest Path problems (SSPs) that
is able to represent the probability of the actions
outcomes. Our experiments show that the equiv-
alent of the net change heuristic in this general-
ized framework obtains significant run time and
coverage improvements over other state-of-the-art
heuristics in different planners.

Introduction

Over the past two decades, heuristic search has established
itself as the method of choice for optimal deterministic plan-
ning. This is in large part thanks to the strong focus on de-
veloping domain-independent admissible heuristics, of which
there is now a large supply to choose from — see e.g. works
on delete-relaxation [Bonet and Geffner, 2001], critical path
[Haslum and Geffner, 2000], abstraction [Helmert et al.,
20071, landmark [Helmert and Domshlak, 20091, operator-
counting [van den Briel et al., 2007, Pommerening et al.,
2014], and potential heuristics [Pommerening et al., 2015].

Heuristic search also has the potential to be a power-
ful approach for optimally solving probabilistic planning
problems such as Stochastic Shortest Path problems (SSPs).
Many search algorithms have been developed for this pur-
pose, including (L)TRDP [Barto ef al., 1995, Bonet and
Geffner, 2003], LAO* [Hansen and Zilberstein, 2001], FRET
[Kolobov et al., 2011, Steinmetz et al., 2016], and i-dual [Tre-
vizan et al., 2016]. However, in contrast to the situation in de-
terministic planning, the success of these algorithms has been
limited by the lack of effective domain-independent heuristics
dedicated to SSPs. Existing heuristics simply determinise the
problem and fall back on well-established deterministic plan-
ning heuristics, failing to exploit valuable information about
the probabilities of action outcomes.

In this paper, we present the regrouped operator counting
heuristics (h™°) [Trevizan et al., 2017b] that, as far as we are
aware, is the first domain-independent admissible heuristic

for SSPs that reasons about both cost and outcomes probabil-
ities of actions. h'* is an extension of the operator-counting
heuristics used in the deterministic setting [Pommerening et
al., 2014] in which additional constraints are added to model
the outcome probability distribution of the each action. Our
experiments show that iLAO* and LRTDP guided by h™° of-
ten explore significantly fewer nodes than when guided by
state-of-the-art heuristics for SSPs obtaining up to 56x speed
up in running time. Moreover, h"° is able to improve the scal-
ability of the planners allowing them to solve larger problems
than with the previous heuristics.

This paper focuses on one of the contributions in our
ICAPS 2017 paper [Trevizan et al., 2017b], and briefly sum-
marises the others. We refer to that paper for further details.

Stochastic Shortest Path Problems

We start with some background about stochastic shortest
paths problems, which we represent using a probabilistic vari-
ant of SAST. We then follow with a description of relevant
solution methods and heuristics for SSPs.

Probabilistic SAST. A probabilistic SAS™ task is a tuple
(V, A, s0, %, C). V is a finite set of state variables, and each
variable v has a finite domain D,,. A partial state (or valua-
tion) is a function s on a subset Vs of V, such that s[v] € D,
for v € Vs and v = L otherwise. If Vs = V), we say that s
is a state. sg is the initial state and s, is a partial state repre-
senting the goal. Given two partial states s and s’, we write
s’ C s when §'[v] = s[v] forall v € V.

The result of applying a (partial) valuation e in state s is the
state res(s, e) such that res(s, e)[v] = e[v] if e[v] # L and
res(s,e)[v] = s[v] otherwise. A is a finite set of probabilistic
actions. Each a € A consists of a precondition pre(a) rep-
resented by a partial valuation over V, a set eff (a) of effects,
each of which is a partial valuation over V, and a probabil-
ity distribution Pr,(-) over effects e € eff(a) representing
the probability of res(s, ) being the state resulting from ap-
plying a in s. Finally, C(a) € R is the immediate cost of
applying a.

Stochastic Shortest Path Problem. A probabilistic SAS™
task is a factored representation of a Stochastic Shortest Path
problem (SSP) [Bertsekas and Tsitsiklis, 1991]. A SSP is a
tuple S = (S, s0, G, A, P,C) in which S is the finite set of
states, so € S is the initial state, G C S is the non-empty



set of goal states, A is the finite set of actions, A(s) is the
subset of actions applicable in state s, P(s’|s,a) represents
the probability that s’ € S is reached after applying action
a € A(s) in state s, and C(a) € R is the immediate cost of
applying action a.

Corresponding SSP. The correspondence between SSPs
and their probabilistic SAS™ representation is straightfor-
ward: a probabilistic SAS™ task (V, A, s¢, s«, C) defines an
SSP (S, 50,G,A, P,C) where S = X,.,,D,, G = {5 €
Sls« C s}, A(s) = {a € Alpre(a) C s}, and Pr(s'|s,a) =

e€eff(a) s.t. s'=res(s,e) Pra(e).

Policies. A solution for an SSP is a policy 7: S — A such
that w(s) € A(s) is the action to be applied in state s. An
optimal policy minimises the total expected cost of reaching
G from sg. In this paper, we assume that sg ¢ G and that
the goal is always reachable, i.e., that there are no dead ends.
However, our experiments feature problems with dead ends
and relax this assumption using the fixed-cost penalty formu-
lation of dead ends [Kolobov et al., 2012].1

The optimal policy 7* for an SSP might not be unique;
however, any optimal policy can be obtained from the unique
optimal value function V* [Bertsekas and Tsitsiklis, 1991].
Given a state s, V*(s) represents the minimum total expected
cost of reaching G from s and it is formally defined as the
fixed-point solution of the Bellman equations:

Vi) = min 30 P(1s0)(Cla) + V() (1)
“ s s’eS

fors €S\ Gand V*(s) =0fors € G.

Heuristic Search. Directly solving the Bellman equa-
tions (1) requires exploring the entire state space at once.
In contrast, heuristic search algorithms for SSPs such as
(i)LAO* [Hansen and Zilberstein, 2001] and LRTDP [Bonet
and Geffner, 2003] start from the factored problem repre-
sentation (e.g., as a probabilistic SAS™ task), and incremen-
tally generate parts of the search space, guided by admissible
heuristics that estimate the expected cost to reach the goal
from each newly generated state (fringe state).

All-outcomes determinisation. A key technique to com-
pute heuristics for SSPs is the all-outcomes determinisa-
tion [Jimenez et al., 2006]. Formally, given a probabilistic
SAST task, its all-outcomes determinisation is the determin-
istic SAST task with identical set of variables, initial state,
and goal, but whose actions are split into one deterministic
action ay . for each probabilistic action a € A and effect
e € eff(a), such that pre(aqe) = pre(a), eff(aq.) = {e},
and C(ag,e) = C(a).

Current Heuristics for SSPs. The admissible heuristics
(i.e.,Jower bounds on V*) used by heuristic search algo-
rithms are typically obtained in two steps: (i) compute the
all-outcomes determinisation of the given SSP; (ii), since
the resulting deterministic planning problem is still PSPACE-
complete, it is further relaxed into an admissible determin-
istic planning heuristic computable in polynomial time, such

"More principled treatments of dead ends are also possible [Tre-
vizan et al., 2017al.

as h-max or Im-cut [Bonet and Geffner, 2001, Helmert and
Domshlak, 2009]. Unfortunately, these relaxations of V* do
not take probabilities into account, foregoing valuable infor-
mation.

Regrouped Operator Counting Heuristics

In this section, we present the Regrouped Operator-Counting
Heuristic h™°, our probabilistic version of the family of
operator-counting heuristics. This family of heuristics are de-
scribed using a linear program (LP) of variables known as
operator counts [Pommerening ef al., 2014]. When applied
to the all-outcomes determinisation of a given probabilistic
SAS™ task, an operator count variable Y, . represents, for
each action a and effect e of a, the number of times « is exe-
cuted and e occurs. These operator counts variables Y, . are
used in linear constraints to represent a relaxation of the orig-
inal problem and an LP is formulated to find the solution with
minimum cost for this relaxed problem. The idea behind h™°
is to add a set of linear constraints to any operator-counting
heuristic that regroup the operator counts Y, . of the same
probabilistic action a and enforce the relationship between
the respective probabilities of the effects e of a.

In this paper, we focus on the net change heuristic A",
that is, the operator-counting heuristic using net change con-
straints. Intuitively, the net change heuristic keeps track of
the changes in the value of each state variable from a state
to another. For each possible state variable assignment (or
atom) v = d € D,, this heuristic distinguishes between 4
disjoint classes of action/effect pairs, depending on whether
they always produce (AP), sometimes produce (SP), always
consume (AC) or sometimes consume (SC) the atom:

AP,_; ={(a,e) | e[v] = d,pre(a)[v] = d’ # d}
SPy=a = {(a,¢) | e[v] = d,pre(a)[v] = L1}
ACy=q = {(a,€) | e[v] = d' # d,pre(a)[v] = d}
SCy=qa = {(a,e) | e[v] = d' # d,pre(a)[v] = L}
The possible net change that a variable can accumulate
from a state s where s[v] = d to the goal s, is:
{0,1}  if s,[v] = L and s[v] # d
{-1,0} ifs.v]=_Lands[v]=d
if s, [v] = d and s[v] # d
if s,[v] =d' and s[v] =d # d’
{0} otherwise
With these notations, given v € V,d € D,, and a state
s, the net change constraints Nv>45 are defined as the linear
constraints (C1) and (C2) and the net change heuristic A" is
formally described in Definition 1.

D Yae = D Vae + > YaeZminpncZir  (Cl)
(a,e)€AP,—q (a,e)€AC,—q (a,e)ESP,—q
ZYa,e - ZYa,e - ZYa,e Smaxpnczzj* (Cz)

(a,e)€AP,—q (a,e)€AC,—q (a,e)€SCy—q

Definition 1 (net change heuristic). Given a probabilistic
SAST task, the net change heuristic h™' at state s is the solu-
tion of the LP:

net _ : v,d,s
' (s) = n%}naze: Y,Cla) ‘ N YveV,deD,



In order to recover the information about the probabilistic
effects of each action lost by the all-outcomes determinisation
(a necessary step to compute N”>%*), our heuristic A" uses
the following set of linear constraints:

Definition 2 (Regrouping constraints). The set of regroup-
ing constraints, denoted as Regroup, is

Pro(e1)Yae, = Pro(e2)Yee, Vae€A {e,ex}ceff(a).

These constraints enforce that the expected number of times
outcome e; of action a occurs is proportional with a factor
Pry(e1)/ Pra(e2) to the expected number of times any other
outcome eo of the same action occurs. Therefore, not only
the probability of each effect is recovered, but also their de-
pendency, i.e., Yy o, >0iff Y, ., >0forall {e1,ea} Ceff(a).

The heuristic A" is presented in Definition 3. h™° is
an admissible heuristic for SSPs, that is, for all s € S,
hr¢(s) < V*(s) [Trevizan et al., 2017b]. Intuitively, the ad-
missibility of h™¢ is due the admissibility of A" and the fact
the only difference between them is the set of regroup con-
straints that enforces the probabilistic definition of actions
through the ratio of their expectations; therefore, as in the
original SSP, if a particular effect of an action is desirable, all
other effect of the same action must be accounted for since
they will happen with positive probability.

Definition 3 (Regrouped operator-counting heuristic).
Given a probabilistic SAST task, the regrouped operator-
counting heuristic h'™° at state s is the solution of the LP:

roc _ : v,d,s
h(s) = Ir%}n; Y, .C(a) ‘ Regroup, N YveV,deDb,

Empirical Evaluation

In this section we empirically evaluate h™° against the fol-
lowing state-of-the-art heuristics for SSPs: h™*, hI™ and
net change heuristic A™'. Notice that all these heuristics
are determinisation-based heuristics. We use LRTDP and
iLAO¥* as the search algorithms for this comparison. Each
parametrization of planner and heuristic solves the same
problem 30 times using a different random seed on each run
to initialize the planner to account for the stochastic nature of
the problem. For each run, we enforce a 30-minutes and 4-Gb
cut-off for all experiments. We use two metrics for our exper-
iments: (i) coverage, the number of runs a given parametriza-
tion found the optimal solution (out of 30) for each problem;
and (ii) runtime, the average time spent to find the optimal
solution over the runs that found the optimal solution.

We consider the following domains from the 2008 Interna-
tional Planning Competition (IPC’08): probabilistic Blocks
World, Exploding Blocks World, and Triangle Tire World.
We also consider a new domain, Probabilistic Parc Printer.
This domain is a probabilistic extension of the sequential Parc
Printer domain from IPC in which s sheets need to be printed
on a modular printer. The printer has ¢ unreliable compo-
nents in which a sheet can jam with probability 0.1 making
the component unavailable and requiring a new exemplar of
this sheet to be printed. The unavailability of components cre-
ates avoidable dead ends. Also, a high-cost repair action that

LRTDP iLAO
hmax ‘ hlmc ‘ hnet ‘ hmc hmax ‘ hlmc ‘ hnet ‘ hmc

- 3 3] 0] 26| 30 2] 30] 30| 30
B 8| 28] of 30| 30| 30| 30| 30| 30
= 8 20 0| 12| 30 2] 30| 30| 30
N (] o] of ol 30 o of 1| 30
2 10 ol o] of 30 ol o] of 30
12 ol o]l ofl o ol o] ol 30

F42 30 30] 30] 30 41 30] 30| 30

5 E43(| 30| 30| 30| 30 0| 30| 30| 30
E ES52 o| 30| o 30 2| 16| ol 30
& F53 0| 30| o 30 ol o] ol 30
2 T42 of of of 1 1| 30| 30| 30
&~ T43 ol o] ofl o 0| 30| 30| 30
T5,1 ol o]l ofl o ol o] ol 30

71 30] 30] 30| 30]] 30] 30| 30] 30

zZ 8|l 30| 30| o| 30 o| o] o 3
P 9(| 30| 30| of 30[| 30| 30| o] 30
S5 10| 30| 30| o| 30| 23| 4| o| 1
= 1 o o of of 12 6| 0| 16
512 ol o] o]l off 24| 15| ol 26
15 ol o| o| ol 28| 12| of 23

i 3] 30] 30[ 30] 30]] 30| 30] 30] 30
& 4| 30| 30| 30| 30| 30| 30| 30| 30
Kt 5 30| 24| 0] 30 0 o of 4
= 6 0 o of 30 0 o of o

Table 1: Coverage for selected SSP problems. Best planner (i.e.,
fastest planner to obtain the best coverage) in bold. Dead-end variant
of the A" is used in the gray cells. Parameters: number of blocks for
blocks world; (has repair action,s,c) for parc printer; and IPPC’08
problem number for exploding blocks world and triangle tire world.

removes all jams and restores availability of all components
can be available.

Table 1 presents coverage results for a subset of our exper-
iments. The following is a summary of our findings from
the experiments and we refer the reader to Trevizan et al.
(2017b) for a comprehensive description of our methodology,
domains and results.

Does taking probability into account in the heuristic help?
Yes. Notice that the only difference between A" and h™ is
that h™° takes probability into account through the regrouping
constraints and planners using ~™° obtained a speed up w.r.t.
to h"™! between 2x-56x, 1.3x-10x, and 1.1x-14x for blocks
world, tire world and parc printer respectively. Moreover,
planners using h™° were able to scale up to larger problems
than when using A™": 10 blocks vs 8 blocks for blocks world,
5 vs 4 sheets for parc printer, and problem #5 vs #4 for tire
world. For exploding blocks world, there was no statistical
difference — unless we incorporate dead-end detection as re-
flected in the table and explained below.

How does h™¢ compare to the state-of-the-art? For
blocks world, planners using h™° are the only ones that scale
up to problems with 10 blocks and the best performance over-
all is obtained by iLAO* with h"™°. For parc printer, h'° out-
performs all other heuristics. The best performance in this
domain alternates between LRTDP with A™° and iLAO* with
h™¢. For tire world LRTDP with A™* is the best planner
closely followed by LRTDP with h™° as the problem size in-
creases up to problem #5. LRTDP with 2™ is the only plan-
ner that can handle problem #6. A similar trend happens for
iLAO* with A™* and h™°. Except in exploding blocks world,
we found that h™*° expands much fewer states, e.g., up to 48x



less than 2™ and 10x less than A" in parc printer, 5x times
less than h'™ in blocks world.

For exploding blocks world, planners using A" and h™°
perform poorly as they do not detect dead ends as early as
h™ and h'™. This advantage of A™* and A'™ is due to
two reasons: (i) a state s has zero probability of reaching the
goal iff it is a dead end in the all-outcomes determinisation,
thus A™* and h'™ are aware of dead ends even though they
ignore probabilities; and (ii) for this domain, the dead ends
are reached when a precondition of an action that potentially
leads to the goal becomes false, thus A™** and plme can easily
find the dead ends since they propagate the actions precondi-
tions. To illustrate these points, we augmented h™° with A™*
as a dead-end detector. Formally, h2°(s) equals the dead-end
penalty if h™** reports that s is a dead end and h™°(s) other-
wise. The results for hi* corroborate the above explanation
because of the large increase in performance when compared
against h'*°. Moreover, planners using ™ and hX° perform
similarly and the best heuristic for a given problem alternates
between them: h™* is better in 4 problems, hgY is better in 3
problems, and the difference is statistically insignificant for 2
problems.

Beyond SSPs and A"

C-SSPs. Constrained SSPs (C-SSPs) are a natural general-
ization of SSPs to model planning under uncertainty prob-
lems for resource-bounded agents with multiple competing
objectives [Altman, 1999, Dolgov and Durfee, 2005]. In a
C-SSP, actions are associated with multiple cost functions
(e.g., fuel, time, money), one of which is designated as the
primary, and the others as secondary costs, and one seeks a
policy that minimizes the expected primary cost subject to
cost constraints, i.e., constraints over the expected secondary
costs.

h™¢ for C-SSPs. Recently, the first heuristic search algo-
rithm for C-SSPs, i-dual, was introduced [Trevizan et al.,
2016]. Although it provided a large improvement over blind
search algorithms, its full potential was not realised due to
the lack of heuristics that could take cost constraints into ac-
count. We have shown how A" can be easily extended to in-
corporate such constraints resulting in A" [Trevizan et al.,
2017b], the first heuristic for C-SSPs that reasons about both
outcome probabilities of actions and cost constraints. The
empirical evaluation of i-dual using h"° against h°™° shows
that taking cost constraints into consideration improves both
the scalability and running time of i-dual, e.g., h™° success-
fully solved 16 problems from the constrained version of the
parc printer domain that 2™ could not solve.

Projection Occupation Measure Heuristic. Similarly to
hto, the projection occupation measure heuristic (h?°") [Tre-
vizan et al., 2017b] is a heuristic for SSPs that takes outcome
probabilities of actions into consideration. AP°™ is also de-
fined as an LP and is formulated using occupation measures,
which are the probabilistic counterpart of operator counts.
Formally, an occupation measure z; ., represents the expected
number of times action «a is executed in state s and the dual
LP representation of the Bellman equations is formulated us-
ing them [D’Epenoux, 1963].

Given a probabilistic SAS™ task, hP°™ works by projecting
the problem onto its variables and representing each projec-
tion as its own SSP using occupation measures. A benefit of
projections is that they are still probabilistic problems; there-
fore the outcome probabilities of actions is not lost. Nonethe-
less, treating the projections as independent problems yields a
lower bound on V* worse than the state-of-the-art heuristics
based on determinisation [Trevizan et al., 2017b]. Instead,
hP™ weakly ties all projections together to obtain a relaxed
problem that can still be solved efficiently while providing a
tighter lower bound on V*. This weak tying is implemented
as a set of linear constraints over the occupation measures en-
forcing that the total expected number of times a given action
is executed in each projection is the same. We proved that
hPe™ is admissible and that, for all s € S, h™¢(s) < hP™(s).
Our experiments show that iLAO* and LRTDP guided by h™¢
are more efficient then their counterparts using hP°™. This
stems from the fact that h™° requires substantially fewer LP
variables than hP°™. Similarly to h™¢, hP°™ can be generalized
to C-SSPs by adding cost constraints into its LP formulation.

Integrated i-dual. An advantage of occupation measure
heuristics such as hP°™ over operator counting ones such as
h'°°, is that they can be computed at once for multiple states
using the same set of linear constraints. Thus, their formula-
tion can directly be incorporated into the LP solved by i-dual
to update the current policy at each iteration. This yields
a new algorithm, integrated i-dual (i%-dual) [Trevizan et al.,
2017b], which represents a brand new type of heuristic search
method for C-SSPs where the heuristic computation is lazy,
reusable across multiple parts of the search space, and works
in unison with the policy update. In our experiments, i2-dual
outperforms i-dual in coverage, time and number of nodes
expanded, regardless of the heuristic used by the latter. For
instance, in the constrained version of the parc printer do-
mains, i%-dual obtained a coverage between 30% and 100%
in 13 problems for which all other planners’ coverage was 0%
and up to 34x speed up w.r.t. the second best planner in the
other problems.

Conclusion

In this paper, we have presented h™° and the first domain-
independent admissible heuristic specifically designed to ex-
ploit the interactions between probabilities and action costs
found in SSPs. We have shown that 2™ perform well across
a range of domains and search algorithms, and that handling
probabilities in heuristics often pays. Previous heuristics ex-
ploiting outcome probabilities have only considered MaxProb
type problems, and used the planning graph data structure
which can yield poor estimates when policies are cyclic [Lit-
tle and Thiébaux, 2006]. One area of future work is to im-
prove the accuracy of h™° by augmenting its formulation with
merges and disjunctive action landmarks (and other operator
counting constraints), as was done in the deterministic setting
by Bonet and van den Briel [2014].
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