I-dual: Solving Constrained SSPs via Heuristic Search in the Dual Space

Felipe Trevizan Sylvie Thiébaux
Data61, CSIRO

Pedro Santana Brian Williams
MERS Group

Research School of Computer Science, ANU Computer Science and Al Laboratory, MIT

first.Jast@anu.edu.au

Abstract

We consider the problem of generating opti-
mal stochastic policies for Constrained Stochas-
tic Shortest Path problems, which are a natural
model for planning under uncertainty for resource-
bounded agents with multiple competing objec-
tives. While unconstrained SSPs enjoy a multitude
of efficient heuristic search solution methods with
the ability to focus on promising areas reachable
from the initial state, the state of the art for con-
strained SSPs revolves around linear and dynamic
programming algorithms which explore the entire
state space. In this paper, we present i-dual, the first
heuristic search algorithm for constrained SSPs. To
concisely represent constraints and efficiently de-
cide their violation, i-dual operates in the space
of dual variables describing the policy occupation
measures. It does so while retaining the ability to
use standard value function heuristics computed by
well-known methods. Our experiments show that
these features enable i-dual to achieve up to two
orders of magnitude improvement in run-time and
memory over linear programming algorithms.

1 Introduction

Stochastic Shortest Paths problems (SSPs) are widely used
models for planning under uncertainty. Given an initial state,
a set of goal states, actions with probabilistic outcomes,
and an action cost function, the objective is to find a pol-
icy that minimises the expected cost of reaching the goal
from the initial state. For SSPs, the optimal policies are de-
terministic mappings from states to actions and can be effi-
ciently computed using heuristic search algorithms [Mausam
and Kolobov, 2012]. These algorithms focus the search on
promising regions of the state space by using the guidance of
an admissible heuristic. This focused search sets these algo-
rithms apart from linear programming formulations and dy-
namic programming algorithms, such as Value and Policy It-
eration, which explore the entire state space.

In many application domains, SSPs have limited value, as
multiple competing performance criteria need to be consid-
ered and are difficult to encapsulate in a single scalar cost
function [Undurti and How, 2010]. For example, in a UAV

{psantana,williams } @mit.edu

search and rescue mission, as many targets as possible need
to be found as fast as possible, whilst minimising battery us-
age and the probability of reaching dangerous areas. A natural
approach to deal with such situations is to optimise a primary
cost function, and constrain the others [Altman, 1999]. This
leads to constrained SSPs which augment SSPs with upper
bounds on the expected value of the secondary costs.

In this paper, we present i-dual, the first heuristic algorithm
for constrained SSPs. Similarly to unconstrained planning al-
gorithms, i-dual incrementally builds the search space reach-
able from the initial state by repeatedly expanding the fringe
states reachable under the current best policy, and updating
that policy using linear programming. By using the dual LP
formulation [D’Epenoux, 1963], i-dual can easily represent
the secondary cost constraints and ensures that the result-
ing policy satisfies them. Our empirical evaluation shows that
i-dual successfully leverages the heuristics over the primary
and secondary cost functions to prune suboptimal and infea-
sible solutions, and is able to solve problems up to two orders
of magnitude larger than the regular dual LP approach. More-
over, we show how non-admissible heuristics can be used
by i-dual to trade-off optimality with scalability and quickly
compute policies that still respect the constraints, an option
not offered by the dual LP approach.

The paper is organised as follows: Section 2 presents the
background on SSPs and constrained SSPs; i-dual, our novel
algorithm, is introduced in Section 3; the empirical evaluation
of i-dual is presented in Section 4; and we conclude in Sec-
tion 5. Further details can be found in [Trevizan et al., 2016].

2 Background

A Stochastic Shortest Path problem (SSP) [Bertsekas and
Tsitsiklis, 1991] is a tuple (S, so, G, A, P,C) in which: S is
the set of states; s is the initial state; G C S is the set of goal
states; A is the set of actions; P(s’|s, a) is the probability that
s’ is reached after applying action a in state s; and C(s,a) €
R? is the cost of applying action a in state s. We represent
by A(s) the actions applicable in state s and we assume that
a goal state is reachable from every state s.

A solution to an SSP is a policy m, i.e., a mapping from
states to actions. If a policy 7 can be executed from sy to a
goal state for any probabilistic outcome of the actions (i.e., no
replanning is needed) then 7 is a closed policy. A policy can
also be deterministic or stochastic. The former maps a state

s to one action @ € A(s) and the latter maps a state s to a
probability distribution over A(s). We denote by 7 (s, a) the
probability of executing a in s.

The optimal solution for an SSP is a closed policy 7*
that minimises the total expected cost of reaching the goal
from sg. For SSPs, 7* might not be unique and there always
exists at least one optimal policy that is deterministic. The
optimal solution of an SSP can be uniquely described by the
optimal value function V*, i.e., a function from S to R rep-
resenting the minimum total expected cost to reach the goal
from each state s [Bertsekas and Tsitsiklis, 1996]. V* can be
computed iteratively, using linear programming, and through
heuristic search [Mausam and Kolobov, 2012]. We refer to
these algorithms that explicitly compute V* as primal-space
algorithms. An admissible heuristic H for primal-space algo-
rithms is any lower bound on V'*.

An alternative to primal-space algorithms is to solve the
linear program over the dual space [D’Epenoux, 1963] pre-
sented in (LP 1) in which: the optimisation variables z; ,,
known as occupation measure, represent the expected num-
ber of times action a € A(s) is executed in s; in(s) =

ZS’ES,(LEA(S’) Is/7aP(S|S/, a); and OUt(S) = ZaeA(s) Ts,a-

min Y #,,C(s,a) st (CH-(C4H (AP
$€S,a€A(s)

Tgq >0 Vs €S,a € A(s) (Ch

out(s) —in(s) =0 Vs e S\ (GU{so}) (C2)

out(sg) —in(sg) =1 (C3)

>s,ccin(sg) =1 (C4)

This dual formulation can be interpreted as a flow problem,
where: in(s) and out(s) define the expected flow entering
and leaving the state s, respectively; (C2) is the flow conser-
vation principle; and (C3) and (C4) define, respectively, the
source (s¢) and the sinks (goal states). The objective function
of (LP 1) captures the minimisation of the total expected cost
to reach the goal from sg. Once we have the solution z* of
(LP 1), the optimal policy is 7*(s,a) = z} ,/out(s) and is
guaranteed to be deterministic, i.e., x;‘,a > (for exactly one
action a € A(s) for all s such that out(s) > 0.

A constrained SSP (C-SSP) is an SSP with k+1 cost func-
tions in which one cost function is optimised while the re-
maining k costs are constrained by an upper bound. Formally,

a C-SSP is the tuple (S, s9, G, A, P,C,é) where S, 50, G, A,
and P are defined as in the SSPs and C' = [Cy, ..., Cj] is the

cost functions vector and ¢ = [¢1,...,¢k] is the cost upper
bound vector (¢; > 0, Vj). We refer to Cy as primary cost
and all other cost functions as secondary costs.

The constraints on costs C, for j € {1,...,k}, are on ex-
pectation, i.e., given a policy 7, the expected value of C'; over
all executions of 7 from s to the goal must be less or equal
to ¢;. Even though an upper bound on the maximum incurred
cost (as opposed to its expectation) might be desired, such
bounds make most SSPs infeasible because they require that
none of the possible executions of 7 violate the constraints.

The optimal solution to a C-SSP is defined as the solution
of (LP 1) subject to the additional constraint C5 and replacing

C by the primary cost function Cj in the objective function.

D 204C5(s,a) < ¢ vie{l,... k} (C5)
s€S,acA(s)

In contrast to SSPs, there is no guarantee that the optimal pol-
icy for C-SSPs is deterministic. Nevertheless, the complexity
of finding the (potentially stochastic) optimal policy for C-
SSPs is polynomial in the number of reachable states as in
the case of SSPs [Altman, 1999].

The occupation measure space is interesting for C-SSPs
because, the total expected j-th cost of following x from sg
to a goal can be easily computed by >, z5.Cj(s,a). In
contrast, primal-space algorithms have to represent and com-
pute the fixed-point solution for each value function V; as-
sociated with C; (j € {0, ..., k}). Moreover, the set of costs
computed need to be those for a single policy, and imposing
this constraint in the primal-space is non-trivial.

Although the dual approach is tractable, a significant com-
putational cost required is that all the reachable states from
so must be encoded in the LP, even if only a fraction of them
are needed to compute 7*. Furthermore, deriving a non-zero
lower bound for the occupation measure x is not trivial be-
cause x5, > 0 if and only if 7*(s,a) > 0 for at least one
optimal policy 7*. In fact, the authors are not aware of any
domain-independent bounds for x; 4.

3 i-dual

To overcome the lack of lower bounds for z,,, we use

a heuristic vector over costs H = [Hy, ..., Hy], where
H;:S — Ry forall j € {0,...,k} is a heuristic for the ex-
pected value of C; (i.e, a primal-space heuristic). A heuristic
Hj is admissible for C} if it is a lower bound for the j-th to-
tal expected cost and it can be easily derived by relaxing the
C-SSP into an unconstrained SSP as a range of heuristics ex-
ist for SSPs [Mausam and Kolobov, 2012]. Formally, given
a C-SSP (S, s0,G,A, P,C, 5) and j € {0,...,k}, let S; be
the SSP (S, 59, G, A, P,C}), then the optimal value function
V* for S; is an admissible heuristic for C;. Therefore, any
admissible heuristic H for S; is also admissible for C}.

Our novel approach consists in defining incrementally
larger partial problems starting from sg, using artificial
goals to represent non-explored areas of the occupation
measure space. Atrtificial goals are prioritised using their
heuristic values, incurred as a one-time terminal cost when
the artificial goal state is first reached. Each partial prob-
lem is thus represented as a C-SSP with terminal costs
(S, s0,G,A, P, c,e, ﬁ), where: (S, sg, G, A, P, C, 5) is areg-
ular C-SSP, S CS,G NS - G, A C A, and H is the heuristic
vector. The dual linear program for C-SSPs with such termi-
nal costs is presented in LP 2.

mTin sz,aCo(s,a) + Zin(sg)Ho(sg)
- seS,acA(s) ngC
st. (Cl)—(C4), (C6) (LP2)

Zx&aCj(s, a) + Zin(sg)Hj(sg) <é Vi (C6)

s€S,acA(s) 546G

I-DUAL(C-SSP (S, s0, G, A, P, c, g), and vector H)
begin

1
2

3 S« {so}; F< {so}; Fr+ {so}

4 while Fr # () do

5 N« {s' € S|3s € Fr,a € A(s), P(s'|s,a) > 0}
6 S« SUN

7 F+< (F\Fr)U(N\G)

8 G+ FU(GNY)

9 A+ {a|3seS\F,aecA(s)}

10 2 < SOLVE(LP 2 for (é, s0,G,A, P, C_", 57 ﬁ))

1 | Fr <+ {s€F|in(s) >0}

12 for (s,a) s.t. x5, > 0do 7(s,a) < xs,q/0ut(s)

13 | returnm

Algorithm 1: i-dual algorithm for solving C-SSPs using in-
crementally larger linear programs over the occupation mea-
sure (dual) space and heuristic search over the value function
(primal) space.

I-dual is depicted in Algorithm 1 and the key elements that
vary from one iteration of the algorithm to the next are: the

set S of states considered so far; the set F C S of fringe states

(i.e., the unexpanded states in S), the fringe states Fr C F
reachable from s(by following the policy encoded by z; and
the set G of artificial goals for the current partial problem.
At each iteration, i-dual computes the set N of all the new
states reachable from F p by applying one action (line 5), and
updates the set of states, the fringe, and the artificial goals
accordingly (lines 6-8). When Fp is empty, a closed policy
has been found, that is, all of the flow injected into the system
on sg is absorbed by goals of the original problem.

Since i-dual always enforces the cost constraints (C6), the
returned policy 7 (if any) is always feasible regardless of the
heuristic vector used and its admissibility. Moreover, if all the

heuristics in H are admissible, then 7 is optimal:

Theorem 1 ([Trevizan et al., 2016]). Given a C-SSP C =
(S, s0, G, A, P,C, ¢) and a vector of admissible heuristics H,
the policy m returned by i-dual is an optimal policy for C.

Similarly to primal-space heuristic search algorithms for
SSPs, i-dual is complete but suboptimal when the heuristics
Hy, ..., Hy for the secondary costs are admissible but the
heuristic H for the primary cost is not. When any secondary
heuristic is not admissible, i-dual is incomplete: it might not
find a solution even if one exists because the non-admissible
heuristic can incorrectly indicate that a feasible solution vio-
lates the constraints.

I-dual can be viewed through two different prisms: as a
heuristic search algorithm and as a column and row genera-
tion algorithm. In the former, an Artificial Intelligence point
of view, i-dual is analogous to A* where the cost g(n) to reach
an artificial goal (fringe) n from sg is computed using LP 2.
The LP handles the search in the cyclic space of occupation
measures to find a solution that minimises the expected value
of g(n) + Ho(s). As in A*, the selected fringe states (Fg in
Algorithm 1) are expanded and the search continues until a
solution is found.

Alternatively, from an Operations Research point of view,

i-dual is a column and row generation algorithm. That is, at
each iteration, new variables x, , are added (columns) as well
as new flow conservation constraints (rows) for the newly ex-
panded states, and their corresponding occupation measures.

The heuristics H prioritise the candidate columns and the
solution of LP 2 indicates what columns should be added,
namely, =, for all s € Fr and a € A(s). Columns are
added in batch because, if a is applied in s, then all states s’
s.t. P(s'|s,a) > 0 need to be considered in order to obtain a
closed policy.

The column and row generation point of view is not only
theoretically relevant, it also increases the performance of
i-dual. The overhead of building the LPs in line 12 (Algo-
rithm 1) is minimised by keeping only one LP in memory
and adding columns and rows to it. More importantly, this
approach can take advantage of “warm starts”, i.e., to solve
the new LP by reusing the solution of the previous one.

4 Empirical Evaluation

We empirically evaluated i-dual and the dual LP (LP 1 with
the additional constraint C5) in three different domains:

Search and rescue: an n x n grid navigation problem
where the goal is to find one survivor, board her on the ve-
hicle and bring her to a safe location as fast as possible. The
constraint is to keep the expected fuel consumption under a
certain threshold. The location of one survivor is known a pri-
ori; however, some other locations (selected at random) have
0.05, 0.1, or 0.2 probability of also having a survivor. Thus,
the planner has to trade off fuel, exploration of unknown sur-
vivors, and time to rescue. The parameters for the SAR prob-
lem generator is n, the distance to the known survivor (d), and
the density of potential survivors (7).

Elevators: a 20-storey building with e elevators in which w
persons are known to be waiting for an elevator and & per-
sons are expected to arrive and request an elevator. Each “hid-
den” person arrives at the elevator in the next time step with
probability 0.75. The origin and destination of all persons are
known a priori. In this domain, the planner has to minimize
the number of elevators movements (actions) while satisfying
the maximum waiting and travelling time of each person; and

Exploding blocks world: an extension of the domain with
same name from IPPC [Bryce and Buffet, 2008] in which the
expected number of blocks explosion is constrained through
an upper bound. This extension does not have unavoidable
dead ends due to the introduction of the action fix-fable that
restores the table to its original condition in case a block de-
stroyed it. For these problems, the primary objective is to min-
imise the action costs. The problem instances are those of the
IPPC augmented with the constraint and the fix-table action.

The heuristic vector H used by i-dual is denoted as (X, Y)
representing [X,Y,Y, ..., Y] where the heuristics for C; is
computed over the all-outcomes determinisation of the SSP
with C; as cost function (Section 3). We consider the follow-
ing domam -independent heuristics: always zero (hg), maxi-
mal (hpmay), additive (hqq), and Im-cut (hyye). The complete
empirical evaluation, description of the domains and method-
ology can be found in [Trevizan et al., 2016].

Problem Planner Ayg cpu Avg #of | Average % li_{ne computing

time (s) | vis. states | Enc. ‘ H x
dual-lp 622.6 102,928 | 7.2% - 92.4%
< | 4054 RimesPmax 220.2 4,129 1.6% 1.3% 96.3%
o RaddsPadd 142.4 3,693 1.9% | 0.4% 96.7%
s dual-Ip 128.4 53,075 | 21.3% - 77.9%
~15,0.25,4 | Rimc.Pomax 30.6 1459 | 3.1% | 7.4% 88.2%
5‘5 RaddsPadd 15.6 1263 | 3.7% | 2.5% 92.0%
@ 0.75.3 RimesPmax 4442 6,015 1.4% 1.8% 95.8%
99509 haddsPadd 200.8 4,604 1.9% | 0.7% 96.3%
dual-lp 1.7 5317 | 43.1% - 52.5%
5 RmaxsPrmax 11.2 1,478 | 5.4% | 47.4% 43.9%
< 1.2.2 Rime,Pmax 91.6 1,255 | 0.4% | 95.3% 3.7%
S 7 Rimeho 106.5 1,258 | 0.4% | 95.9% 3.1%
5 hada-ho 2.6 529 | 6.5% | 32.5% 55.2%
8 RaddsPadd 3.0 486 | 5.1% | 60.2% 30.1%
g dual-Ip 375.0 117,819 [6.2% - 93.5%
m 2,1,2 hadad,ho 18.7 1,034 | 54% | 4.1% 88.2%
RaddsPadd 8.6 957 | 8.3% | 15.4% 72.4%
dual-lp 849.2 342,650 | 2.5% - 97.2%
= p01 RimesPmax 9.7 3,466 | 10.5% | 4.0% 83.8%
/M RaddsPadd 9.0 3,388 | 10.8% 1.0% 86.4%
%D dual-Ip 1603.1 359,343 1.4% - 98.4%
E p02 Rime>Pmax 865.1 19,730 1.7% | 0.2% 97.5%
& Radd>Pada 665.3 17,302 1.9% | 0.0% 97.5%
H 04 RimesPmax 1446.1 30,689 1.7% | 0.3% 97.4%
P RaddsPadd 1153.1 28,576 1.8% | 0.1% 97.6%

Table 1: Cpu-time, number of states explored, and percentage
of the cpu-time spent encoding LP 2, computing the vector of

heuristics H , and solving LP 2 for increasingly harder prob-
lems. Only planners configurations that obtained 100% cov-
erage are shown. hx, hy represents i-dual(hx, hy). The di-

mension of H for the search and rescue (SAR) and exploding
blocks world is 2 for all problems and, for elevators problems,
itis 9 and 7, respectively.

Table 1 shows the average cpu-time, number of states ex-
plored and percentage of the cpu-time spent encoding LP 2,

computing the vector of heuristics H, and solving LP 2 for
selected problems of each domain. For SAR and elevators,
each problem number (second column) represents a different
parametrization of the generator and the planners were eval-
uated by solving 30 randomly generated problems for each
parametrization. For the augmented exploding blocks world,
each entry represents the problem number in IPPC’08 and
planners were evaluated by solving each problem 30 times us-
ing different random seeds. Only planners that obtained 100%
coverage (i.e., found a closed policy from s(for all the 30
runs in each entry) are shown in Table 1.

For SAR, the dual LP fails to scale up and is unable to solve
even trivial problems (e.g., forn = 4, d = 1 and r = 0.75)
due to the large reachable state space that needs to be explic-
itly constructed even if only a small fraction of it is needed
to compute the optimal policy. As shown in Table 1, i-dual is
able to explore at least one order of magnitude less states than
the dual LP, allowing it to scale up to larger problems. For the
elevator problems, the dual LP dominates all i-dual parametri-
sations when the reachable state space is small because, in
this case, it is feasible to encode the complete dual LP. The
admissible parametrisations of i-dual were also dominated by
the dual LP in the medium size instances because of the large
number of cost constraints (1 + 2(w + h) constraints) and

thus the dimension of H (see column 7 of Table 1). hy,y and

hime also provided weak guidance for this domain not pay-
ing off the overhead to compute them. In contrast, the non-
admissible h,qg Was able to offer good guidance and allowed
i-dual to solve problems overcoming the overhead of the large
number of heuristic calls per state. For the exploding blocks
world, the dual LP is unable to solve problems with more than
5 blocks while i-dual is able to solve problems with up to 8
blocks. Furthermore, i-dual is two orders of magnitude faster
than the dual LP for the problems that the latter can solve. As
shown in Table 1, i-dual obtains this performance by using
the heuristics to prune a large portion of the reachable state
space.

5 Conclusion, Related and Future Work

I-dual combines heuristic search and the dual LP formulation
of SSPs to optimally solve constrained SSPs resulting, to the
best of our knowledge, in the first heuristic search algorithm
for constrained SSPs (C-SSPs). I-dual is able to efficiently
encode and enforce secondary cost constraints, and to focus
the search on regions that are relevant to the optimal stochas-
tic policy, using (admissible) value function heuristics. This
results in up to two orders of magnitude improvements in
run-time and memory when compared to C-SSP algorithms
based on linear programming alone. Furthermore, i-dual is
able to trade-off optimality with scalability and quickly com-
pute policies that still respect the constraints, an option not
offered by the primal linear programming approach.

In terms of related work, Altman (1999) was one of the first
to research linear and dynamic programming algorithms for
a range of constrained Markov Decision Processes. Dolgov
and Durfee (2005) extend the work of Altman to the genera-
tion of deterministic policies for constrained MDPs. None of
these algorithms are capable of using a heuristic to guide their
search. Santana, Thiébaux, Williams (2016) propose RAO*,
an extension of AO* for finite-horizon POMDPs with chance
constraints (i.e., bounds on the probability of a constraint be-
ing violated) that uses heuristics to guide its search in the pri-
mal space. Note that, chance constraints can be encoded as
constraints over expectation if we assume that their their vi-
olation cause policy termination. Trevizan and Veloso (2012)
introduce an algorithm for unconstrained SSPs that shares
with i-dual the usage of subproblems with artificial goals but
performs search in the primal space. Our future work agenda
includes combining both algorithms to obtain a version of
i-dual for planning and execution that could offer guarantees
regarding constraint violation during execution.

Lastly, Teichteil, Sprauel, and Kolobov (2012, 2014) con-
sider the generation of optimal stochastic policies for dis-
counted MDPs with path constraints expressed in probabilis-
tic computational tree logic (pCTL). They describe iterative
linear and dynamic programming algorithms that improve on
algorithms used in the probabilistic model-checking commu-
nity [Kwiatkowska and Parker, 2013, Baier e al., 2004]. Hav-
ing an efficient algorithm for C-SSPs which could be used or
extended to deal with path constraints in probabilistic tempo-
ral logic is one of the motivation that lead to i-dual, and this
extension is an item on our future work agenda.

Acknowledgements

This research was funded by AFOSR grant FA2386-15-1-
4015. We would also like to thank Patrik Haslum for fruit-
ful discussions which helped to improve this paper, and the
anonymous reviewers for their constructive and helpful com-
ments.

References

[Altman, 1999] Eitan Altman. Constrained Markov Deci-
sion Processes, volume 7. CRC Press, 1999.

[Baier et al., 2004] Christel Baier, Marcus GroBer, Martin
Leucker, Benedikt Bollig, and Frank Ciesinski. Controller
synthesis for probabilistic systems. In Proc. Int. Conf. on
Theoretical Computer Science (TCS), 2004.

[Bertsekas and Tsitsiklis, 1991] D.P. Bertsekas and J.N.
Tsitsiklis. An Analysis of Stochastic Shortest Path Prob-
lems. Mathematics of Operations Research, 16(3):580—
595, 1991.

[Bertsekas and Tsitsiklis, 1996] D. Bertsekas and J. N. Tsit-
siklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

[Bryce and Buffet, 2008] D. Bryce and O. Buffet. 6th
International Planning Competition: Uncertainty Track.
In 3rd Int. Probabilistic Planning Competition (IPPC-
ICAPS’08), 2008.

[D’Epenoux, 1963] F. D’Epenoux. A probabilistic produc-
tion and inventory problem. Management Science, 10:98—
108, 1963.

[Dolgov and Durfee, 2005] Dmitri A. Dolgov and Ed-
mund H. Durfee. Stationary deterministic policies for con-
strained mdps with multiple rewards, costs, and discount
factors. In Proc. Int. Joint Conf. on Artificial Intelligence,
2005.

[Kwiatkowska and Parker, 2013] Marta Z. Kwiatkowska and
David Parker. Automated verification and strategy synthe-
sis for probabilistic systems. In Int. Symp. on Automated
Technology for Verification and Analysis, 2013.

[Mausam and Kolobov, 2012] Mausam and Andrey
Kolobov. Planning with Markov Decision Processes.
Morgan&Claypool, 2012.

[Santana er al., 2016] Pedro Santana, Sylvie Thiébaux, and
Brian Williams. RAO*: an algorithm for chance con-
strained POMDPs. In Proc. AAAI Conference on Artificial
Intelligence, 2016.

[Sprauel er al., 2014] Jonathan Sprauel, Andrey Kolobov,
and Florent Teichteil-Konigsbuch. Saturated path-
constrained MDP: planning under uncertainty and deter-
ministic model-checking constraints. In Proc. AAAI Conf.
on Artificial Intelligence, 2014.

[Teichteil-Konigsbuch, 2012] Florent Teichteil-Konigsbuch.
Path-Constrained Markov Decision Processes: bridg-
ing the gap between probabilistic model-checking and
decision-theoretic planning. In Proc. European Conf. on
Artificial Intelligence, 2012.

[Trevizan and Veloso, 2012] F. W. Trevizan and M. M.
Veloso. Short-sighted stochastic shortest path problems.
In Proc. Int. Conf. on Automated Planning and Schedul-
ing, 2012.

[Trevizan et al., 2016] F. W. Trevizan, S. Thiébaux, P. San-
tana, and B. Williams. Heuristic search in dual space for
constrained stochastic shortest path problems. In Proc. Int.
Conf. on Automated Planning and Scheduling (ICAPS),
2016.

[Undurti and How, 2010] Aditya Undurti and Jonathan P.
How. An online algorithm for constrained pomdps. In
Proc. IEEE Int. Conf. on Robotics and Automation, 2010.

