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Abstract

Contemporary Al shows a healthy trend away from artificial problems towards real-
world applications. Less healthy, however, is the fashionable disparagement of “toy”
domains: when properly approached, these domains can at the very least support
meaningful systematic experiments, and allow features relevant to many kinds of
reasoning to be abstracted and studied. A major reason why they have fallen into
disrepute is that superficial understanding of them has resulted in poor experimen-
tal methodology and consequent failure to extract useful information. This paper
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ning problem, and provides the level of understanding required for its effective use
as a benchmark. Our results include methods for generating random problems for
systematic experimentation, the best domain-specific planning algorithms against
which AI planners can be compared, and observations establishing the average plan
quality of near-optimal methods. We also study the distribution of hard/easy in-
stances, and identify the structure that Al planners must be able to exploit in order
to approach Blocks World successfully.
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Fig. 1. BW planning problem and optimal plan

1 Introduction

1.1 Blocks World

The Blocks World (BW) consists of a finite number of blocks stacked into
towers on a table large enough to hold them all. The positioning of the towers
on the table is irrelevant. The BW planning problem is to turn an initial state
of the blocks into a goal state, by moving one block at a time from the top
of a tower onto another tower or to the table (see Figure 1). The optimal BW
planning problem is to do so in a minimal number of moves.

BW planning turns out to be tractable and optimal BW planning NP-hard
[6,13,14]. Further, optimal BW planning is Max-SNP hard, meaning that there
exists some fixed performance ratio under which it cannot be approximated
tractably [26]. Near-optimal planning within a ratio of 2 is tractable [14],
but the question of whether a better ratio is achievable in polynomial time
remains open [26]. For a number of extensions of the basic BW above (table
with a limited capacity, blocks with identical names, ...) similar complexity
results can be shown [14], except for approximation within a constant ratio,
which is not always tractable [26].

1.2 Motivations Behind this Paper

Artificial domains such as the Blocks World, the Traveling Salesman and the
Queens, are in themselves of little practical interest. Despite this, they have
remained staples of the Al literature over 30 years, because they are hard for
general purpose Al systems and, at least in principle, can support meaningful,
systematic and affordable experiments. More recently, BW seems to have fallen
into disrepute. In part, this is due to the efforts of the Al planning community
to address domains of more practical relevance. More importantly however, it



is due to superficial understanding of the domain, leading to poor experimental
methodology and consequent failure to extract useful results from it.

Three major gaps in existing knowledge of BW prevent it from being effectively
used as a benchmark. The first is the lack of knowledge about how to con-
struct problem instances that are suitable for systematic experimentation: for
example hard instances, or uniformly distributed random ones. This seriously
lowers the value of experiments. Results are commonly obtained on isolated
BW instances, often unspecified except for the number of blocks involved, and
presumably hand-crafted to show off the good points of a particular system
(here we refrain from pointing the finger at any particular example in the
literature). Matters have started to improve with attempts to create some
benchmarks for planning.?® In particular Kautz and Selman have introduced
a series of four BW problems called ‘bw_large.a’ to ‘bw_large.d’, which have now
attained that status [17,18]. This is good at least in that everyone’s system is
solving the same problem, but as we shall show, these problems are atypical
in several respects, not least in that they have abnormally short plans, and
are easy to solve optimally. The alternative to experimenting on particular in-
stances is to use random problems, but when this has been done, it has usually
been done poorly. BW optimisation problems of a given size vary so much in
difficulty that “five random problems” are hardly a statistically adequate base
for strong conclusions. Moreover, no attention has been paid to the distribu-
tion of the random instances, although it greatly affects the results. Even in
the ATPS 2000 competition, perhaps the most carefully constructed testbed
for planners, the largest BW problems are again atypical and easy to solve op-
timally. We believe that problem selection will improve only when the features
making instances hard, easy or average are identified, and when software for
generating random instances with meaningful distributions is used.

The second important gap lies in the lack of knowledge about the performance
in time and solution quality of BW-specific planning methods. It was not until
the 1990s that the worst case complexity of optimal BW planning was studied
by Chenoweth [6], Gupta and Nau [13,14] and Selman [26], and much remains
to be done. Very little is known about the average time complexity of optimal
BW planning. No results are available about average performance ratios for
near-optimal planning. Also, the exact time complexity of near-optimal BW
planning has not been carefully analysed, [14] and [1,6] reporting respectively
cubic-time and quadratic-time upper bounds in the number of blocks. As a
consequence, no proper BW “gold standard” exists, and this makes it hard
to assess the effectiveness of approaches to planning on the basis of results
reported in the literature. For instance, [1,2,7,18] show how specific methods

% The AIPS planning competition (http://www.cs.yale.edu/~mcdermott.html
and http://www.cs.toronto.edu/aips2000) is a symptom of the perceived need
for standards.



for near-optimal BW planning can be fruitfully encoded in a general system,
while [17] exhibits domain-independent techniques that dramatically improve
performance for BW planning. These facts should not be interpreted as show-
ing that these systems are really effective for domains like BW unless they
match the best domain-specific ones, both in time complexity and in solution
quality. As long as little is known about the behaviour of BW-specific methods,
misinterpretation is easy.

Only recently have planning systems been able to deal with more than a few
blocks—a fact which has hardly enhanced the reputation of the field within
the wider research community. This was largely due to a third gap: ignorance
of BW-specific features that general systems should be able to exploit if they
are to do well with the domain. The papers by Bacchus and Kabanza [1,2]
clearly show that attempting to bridge this gap greatly improves not only
planner performance but also the ability to interpret the experimental results.
Indeed, without a precise understanding of which information is relevant for a
domain and which is not, the reasons why a given general technique performs
well on this domain cannot be adequately analysed, nor is it possible to know
whether the domain is a suitable testbed for analysing the merits of that
technique. Recent improvements notwithstanding, the performance of general
planners, especially on optimal BW problems, remains far from comparable
with domain-specific ones. This indicates that a more detailed examination
of the structure of BW problems is likely to reveal features which will further
improve planner performance and experimental methodology.

1.8 Contributions of the Paper

In this paper we undertake a sustained investigation of BW, with a view to
filling all three gaps. Much of the material presented is compiled from a series of
conference papers [31,32] and technical reports [27-30] written over a number
of years.

In Section 2 we look at BW itself, giving expressions for the number of BW
states as a function of the number of blocks and showing how to use this
function to generate random states with uniform distribution. A supply of such
states is essential to experiments on average case behaviour, yet the problem
of generating them is not trivial and has not previously been addressed.

In Section 3 we consider algorithms both for optimal and for near-optimal BW
planning. We detail several methods for finding near-optimal plans in linear
time, thus closing the complexity question for this problem. We also outline
an optimal solver capable of dealing with arbitrary problems of up to 150
blocks. The resulting programs are offered as a reference point for assessing
the effectiveness of planning systems on this domain.



In Section 4 we first examine the average performance of the algorithms in
terms of speed and, more importantly, of solution quality. Having linear time
implementations means that we can find near-optimal BW plans for problems
on the order of a million blocks in a matter of seconds, enabling us to consider
much larger problems than was previously possible. We present evidence that
the average performance ratios of these algorithms are everywhere much better
than the worst case of 2, and may even approach 1 in the limit. Since the
difference between plans produced by the crudest algorithm and optimal plans
is so small, claims that a system produces suboptimal plans of “high quality”
must be interpreted carefully.

Using our optimal algorithm, we then turn to discovering which optimisation
problems are hard and which are easy. It emerges that the hard problems are
those in a critically constrained range for which the number of towers in the
initial and goal states is a reasonably good predictor. We conclude Section 4
by reconsidering the structure of BW planning problems in the light of these
experiments, with a view to determining how they should be approached by
domain-independent planning systems.

Finally, we discuss the future of BW as a testbed for comparing planners and
as an object of study of relevance to general-purpose planning. Naturally,
it would not do to study only artificial domains such as the blocks, but we
present this paper as evidence that there is still much to learn from them.

2 The States of Blocks World

2.1 Definitions

We shall first enter some definitions. We assume a finite set B of blocks,
with TABLE as a special member of B which is not on anything. Our favourite
presentation of BW takes as primitive not the binary relation ON but the unary
“support” function S which picks out, for block z, the block which z is on.
Thus S is a partial function from B\ {TABLE} to B, injective except possibly
at TABLE and such that its transitive closure is irreflexive. We refer to the
pair (B, S) as a part-state, and identify a state of BW with such a part-state
in which S is a total function. Clearly, in the latter case, a specification of the
support function completely determines the disposition of the blocks.

For a part-state o = (B,S) and for any a and b in B, we define: ON,(a, b)
iff S(a) = b, CLEAR,(a) iff either ¢ = TABLE or —3b(ON,(b,a)), ABOVE,
as the transitive closure of ON,, and finally POSITION,(a) as the sequence
{(a :: POSITION,(S(a))) if S(a) exists and (a) otherwise. That is, the position



of a block is the sequence of blocks at or below it. We refer to the position of
a clear block as a tower. A tower is grounded iff it ends with the table. Note
that in a state (as opposed to a mere part-state) every tower is grounded.

2.2 Number of Blocks World States

One of our first questions on encountering BW was how many different states it
has, as a function of the number of blocks. Answering this question turns out
to be more useful than it may appear at first glance. For instance, Schoppers
uses an estimate of the number of states to argue about the compactness of
universal BW plans [25]. As another example, we shall see later how such a
derivation provides important insight into the generation of random BW states.
At least to judge by the number of people who have asked us for our magic
formula, there does not seem to be any analytical definition published in the
literature. To our knowledge, only algorithmic descriptions of the computation
of the number of states as well as exact or approximate figures for small number
of blocks have been reported, see e.g., [18,25].

Instead of merely counting the number of BW states of a given size, we shall
in fact consider a slightly more general problem. We will count the number
of states that extend a part-state in which there are k& grounded towers and
n ungrounded ones. Let this be ¢g(n, k). As a special case, the number of BW
states of size n is f(n) = g(n,0). We will give two definitions of ¢: a recursive
one, and an iterative one, each of which has its uses.

The recursive definition of ¢ is quite simple and gives insight into the gener-
ation of random states. First ¢(0,k) = 1 for all k, since if n = 0 then every
tower is already grounded and the part-state is already a state. Now consider
g(n + 1, k). To extend the part-state, the first ungrounded tower must go on
something: either on the table or on one of the n+ k other towers. It it goes on
the table, that gives a part-state with n ungrounded towers and k+1 grounded
ones, which has then g(n, k+1) possible extensions. Otherwise, there are n+k
ways of placing it on one of the n 4+ k other towers, each of which leaves a
part-state with n ungrounded towers and k grounded ones, which has then
g(n, k) possible extensions. In sum:

g(0,k) =1
g(n+ 17k) = g(n,k+ 1) + (n + k)g(n,k)

Table 1 gives the value of g(n, k) for small n and k. Since the value of ¢g(n, k)
is produced by the values of the g(z,y) for (z,y) in the triangle bounded
by the vertical column above (n, k) and by the diagonal going up and right
from (n, k), Table 1 is reminiscent of Pascal’s triangle, but with multiplication
thrown in. It is worth noting that these numbers rapidly become big. For

instance f(30) = 197987401295571718915006598239796851.



Table 1
The function g and the triangle for ¢(3,1)

k 0 1 2 3 4 5
n
0 1 1 1 1 1
1 1 2 3 4 6
2 3 7 13 21 31 43
3 13 136 229 358
4 73 209 501 1045 1961 3393
5 501 1546 4051 9276 19081 36046
6 4051 13327 37633 93289 207775 424051
7 37633 130922 394353 1047376 2501801 5470158
8 394353 1441729 4596553 12975561 32989969 76751233
9 4596553 17572114 58941091 175721140 472630861 1163391958

The iterative definition of ¢ is less intuitive, but forms a better basis from
which to derive average-case figures for BW states. Let us decide that we are
going to extend the part-state by putting ¢ of the n ungrounded towers on
the table and the remaining n — ¢ on other towers. There are (7;“) ways of
choosing the ¢ towers. For the first of the remaining n — ¢ towers, there are
n+ k — 1 ways of choosing the tower it is going to be on. For the second, there
are n + k — 2 ways, and for the last one, ¢ + k£ ways. So altogether, there are
(n+k—1)!/(i+ k —1)! ways of placing the n — ¢ towers on others. Summing
for all 7 yields:
" In (n + k- 1)!
gln. k) =2, (z) ((+k—1)
Naturally, the two definitions of ¢ can be proven equivalent (see [28, pp. 5-
6]). The proof resembles the derivation of the combinatorial interpretation of
binomial coefficients from the binomial addition formula. In fact, it is legiti-
mate to ask whether the values of ¢ correspond to any well-known sequences
of numbers, such as binomial coefficients, Stirling numbers, and the like. The

answer is that they nearly do. There exists a simple expression of ¢ in terms
of a Laguerre polynomial: *

gln, k) = nlZE(~1)

the advantage being that we can help ourselves to the known mathematics
of these polynomials. In [29, pp. 23-26] we do so to show that the average
number of towers in a BW state of size n tends to \/n.

4 For an overview of these polynomials, see [21, pp. 76-97]. The Laguerre polynomial

. " (n) (n+k)! ;
LE(z) is defined as ; (z) m(—x) .



The iterative version of ¢ is also well suited to derive a simple expression for
the number of states with exactly ¢ towers, or more generally for the number
of states with exactly ¢t towers extending a part state with k& grounded towers
and n ungrounded ones. Let us call this h(n,k,t). If k& towers are already
grounded, we must put exactly ¢ = ¢t — k towers on the table, and the rest onto
other towers. So it suffices to omit the sum from the iterative definition of ¢,
and to replace ¢ with ¢ — k:

n (n+k—1)!
h(n,k,t) = (t B k) 7(75 — 1)

We are indebted to an anonymous reviewer of this paper for yet another
definition of the number of states f, which does not require a generalisation
to the binary function ¢, and which lends itself to more efficient algorithms
for generating states. Let ¢(n) be the number of states of n blocks in which a
given block (say, the n-th) is clear. Obviously ¢(1) = 1. Now for the recursive
definition, suppose we know f(n) and ¢(n) and consider adding one more
block. The states of n + 1 blocks comprise those in which the extra block is
under one of the blocks in a state of n blocks (n.f(n) of those), those in which
the extra block is clear and on the table (f(n) of those) and those in which
the extra block is placed on a clear block in a state of n blocks. In the last
case, note that there are n blocks on which the extra one could be, and each
is clear in ¢(n) states. The extra block is clear in all states except for the first

Fn+1) = f(n) + n.c(n) + n.f(n)
c(n+1) = f(n)+ n.c(n)

if £ > k and 0 otherwise

n.f(n). In sum:

Again 1t is not difficult to generalise the definition from that of all states to
that of states with exactly ¢ towers, providing an alternative to h, but we
refrain from going into details here because that generalisation will not be
used in what follows.

2.8 Random Blocks World States

Armed with the ¢ function, or with f and ¢, we can now generate uniformly
distributed random BW states and problems (pairs of random states), and
with h we can generate random states with a given number of towers. The
latter is particularly useful, because as we shall see in Section 4, the difficulty
of optimal BW planning varies with the number of towers.

Surprisingly few papers mention experiments on random BW problems, and
in those which do, the underlying distribution is left obscure (see e.g., [22, p.
180] [1,9,23,15]). Perhaps the reason is that generating uniformly distributed
random BW problems is not as trivial as it may appear. Naively incorporating
a random number generator into an algorithm for producing the states will
not work: typically, it makes some states more probable than others by a



factor exponential in the number of blocks. As a result, the sample is skewed
and experiments on the average case may be biased. We invite the skeptical
reader to try by hand the case n = 2 with a view of generating the three
possible states with a probability of 1/3. Most methods, including the random
BW states generator included in the distribution of UCPOP,® give probabilities
1/2,1/4 and 1/4.

The UCPOP generator, for instance, uses the following method to produce a
BW state of size n: (1) start with an empty table and n blocks to be placed,
(2) repeat until all n blocks have been placed: (2a) select with probability 1/¢
one of the ¢ blocks that have not yet been placed, (2b) select with probability
1/(m + 1) the table or one of the 7 towers being grounded at this stage, and
place the selected block on it. So with two blocks for example, the probability
of both blocks being in a single tower in ascending order is 1/4, and that of
both blocks being on the table is 1/2. With n blocks, the probability of all
blocks being on the table is 1/n!, while that of all blocks being in one tower in
ascending order is 1/(2(*=Yn!), that is, exponentially smaller. It can be shown
that the average number of towers in a state generated this way tends to v2n
and not y/n. So since the number of towers affects the difficulty of problems,
average-case experiments on the performance of algorithms will be biased.

The skew in the above method comes from the fact that placement on the table
should not have the same probability as placement on another block. That is,
among the states extending a given part-state, the proportion in which the
selected block is on the table is not the same as the proportion in which it
is on a given block. Therefore, the key to getting the probabilities right is
to use the ¢ function for counting the possible extensions of the part-state.
We build a BW state of size n as follows: (1) start with an empty table and n
ungrounded towers each consisting of a single block, (2) repeat until all towers
are grounded: (2a) arbitrarily select one of the ¢ yet ungrounded towers, (2b)
select the table with probability g(¢ — 1,7 + 1)/g(¢,7) or one of the other
towers (grounded or not) each with probability ¢(¢ — 1,7)/g(¢,7), and place
the selected ungrounded tower onto it.

In fact, it is hard to work with ¢ directly, as the numbers rapidly become too
large. It is better to work with the ratio R(¢,7) = g(¢ — 1,7+ 1) /g(¢ — 1,7)
between the probabilities of the two types of placements. This is always a fairly
small real number lying roughly in the range [1,+/4].¢ Elementary calculation
shows that R(1,7) =1 for all 7 and that:

R(¢,7)(¢+7 + R(p,7+1))
é6—1+7+ R(¢,7)

so no value of ¢ need ever be computed.

R(¢+1,7) =

> http://www.cs.washington.edu/research/projects/ai/www/ucpop.html.
6 In the limit, as ¢ becomes much larger than 7 it converges to v/@. On the other
hand, where 7 is much larger than ¢ the limiting value is 1 [29, pp. 23-25].



This method is implemented in the BWSTATES program ’ [27]. BWSTATES
first calculates in quadratic time all the values of R relevant to the size of the
problems being generated and stores them using quadratic space. Once this is
done, generating a random state is a linear-time problem. However, the space
requirements impose a limit of the order of 10000 blocks. The alternative, i.e.,
generating states without precomputing and storing R values, would be even
more limiting since it would require a time cubic in the number of blocks.

The same principles may be applied to generate uniformly distributed states
with exactly ¢ towers, except that the A function should be used in place of g¢.
So step (2b) reads: select the table with probability h(¢—1,7+1,t)/h(¢, 7,1) or
one of the other towers each with probability h(¢—1,7,t)/h(¢, 7,1), and place
the selected ungrounded tower onto it. Here calculations are made much easier,
because the probability of a placement on the table simplifies to (¢t — 7)/¢,
and that of the other placements to (¢ + 7 —t)/(¢(¢ + 7 — 1)). So these may
be computed directly, without going through the ratio R, and the generation
of a state takes linear time in the number of blocks.

Although the ¢g function makes it easy to explain the skew in other random
generators such as that in UCPOP and although it is used in the 1995 release
of BWSTATES, it is not the most efficient basis for producing random states
with uniform distribution. For certain of the experiments reported below, we
required a supply of uniformly distributed states with up to a million blocks,
which are beyond what can be done using ¢g. Fortunately, the ¢ and f functions
lead naturally to a linear time algorithm as shown in Figure 2.

As in the case of the algorithm based on the g function, it pays to pre-compute
and store the ratios required, in this case P(¢) = ¢(¢)/f(¢), for all ¢ < n. In
fact, P(@) is close to 1/4/¢, so again these are convenient-sized real numbers
and it is much easier to work with them than with f and ¢ directly. The
recursive calculation of P is very easy: P(1) =1 and

¢P(¢) +1
p(P(g)+1)+1

Plop+1)=

What makes this algorithm more efficient than that based on ¢ is just that
computing and storing P takes linear resources instead of the quadratic ones
required for R.

We now leave the topic of random BW states. We shall return to it in Section 4
when making empirical observations on the average-case behaviour of planning
algorithms, but for now we shall focus on BW planning itself.

7 BWSTATES is available from http://arp.anu.edu.au/~jks/bustates.html.
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Begin with n ungrounded blocks (i.e. ¢ = n) and an empty table
Repeat until all towers are grounded
Arbitrarily select an ungrounded tower
With probability ¢(¢)/f(¢) do:
/* the tower constitutes the top of a grounded tower */
Repeat until the given tower is grounded:
Select the table with probability f(¢)/(f(¢)+ ¢c(¢))
or one of the other ungrounded towers each with equal
probability, and put the given tower on it.

Decrement ¢
else (that is, with probability 1 — ¢(¢)/f(¢)) do:
/* the tower goes below another tower */

Select one of the other ungrounded towers, each with
equal probability, and put it on the given tower.

Decrement ¢

Fig. 2. Algorithm to generate random states using the ¢ and f functions

3 Blocks World Planning

3.1 Definitions

We first define the classical notions of problems,® moves, and plans. A BW

planning problem over B is a pair of states ((B,S1),(B,S2)). In problem
(I,G), I is the initial state and G is the goal state. Here we consider only
problems with completely specified goal states. A move in state o = (B, S)
is a pair of blocks m = (a,b) with « € B\{TABLE} and b € B\ {a}, such
that CLEAR,(a), CLEAR,(b) and —ON,(a, b). The result of m in o is the state
RES(m,0) = (B, 5’) where 5'(a) = b and S'(z) = S(«) for + € B\{TABLE, a}.
A plan for BW problem (I, (7) is a finite sequence (mq,...,m,) of moves such
that either I = G and p = 0 or else my is a move in I and (ma,...,my)
is a plan for (RES(my,I),G) in virtue of this definition. A plan for a given
problem is optimal iff there is no shorter plan for that problem.

In order to discuss particular BW planning algorithms in the remainder of this
paper we need a few further notions. We say that a block whose position in
I (as defined earlier) is different from its position in G is misplaced in (I, ),
and that one which is not misplaced is in position. Only misplaced blocks
have to be moved in order to solve a problem. Next, we say that a move (a, b)

8 We follow [14] in using the expression problem for what some authors call a
problem instance. This should not cause any confusion.

11



is constructive in (I,G) iff a is in position in (RES({a,b), 1), ). That is, iff
a 1s put into position by being moved to b. Once a block has been moved
constructively, it need not move again in the course of solving the problem.

If no constructive move is possible in a given problem we say that the problem
is deadlocked. In that case, for any misplaced block b; there is some block by
which must be moved before a constructive move with b, is possible. Since
the number of blocks is finite the sequence (b1, b, ...) must eventually loop.
The concept of a deadlock, adapted from that given in [14], makes this idea
precise. A deadlock for BW problem (I, &) over B is a nonempty subset of B
that can be ordered (dy,...,dy) in such a way that:

{for all i, 1 <i<k, Nygldidi1)
and also N1 gy(dy, dy)
where
Ni1,6y(a, b) = POSITION(a) # POSITIONG(a) A
POSITION(b) # POSITION¢(b) A
Ja # TABLE (ABOVE(b, ) A ABOVEg(a, z))

Note that it is possible for a single block to constitute a deadlock. For instance,
the problem in Figure 1 is deadlocked, the deadlocks being {a} and {a,d}. To
see this, note that N s)(a,d) taking the third block in the definition to be
r = e, that Nijy(d,a) taking x = c, and that N g (a,a) taking z = b.

It is easy to see that if Ni;g)(a,b) then in any plan for (I, ), the first time b
is moved must precede the last time a is moved.? A deadlock being a loop of
the N(;cy relation, at least one block in each deadlock must be moved twice.
The first move of this block should be to the table, so as to break deadlocks
without risking introducing new ones. This already sets constraints on the
sort of plans we need to consider. They will consist of exactly one constructive
move and at most one non-constructive move to the table per misplaced block.
There must be enough of the latter type to break all the deadlocks. In other
terms, the set of blocks moved this way must be a hitting set for the deadlocks
(i.e., intersect all the deadlocks).'® In order to produce an optimal plan, this
hitting set must be of minimal size, and as it turns out, finding a minimal-size
hitting set is notoriously NP-hard [10, p. 222]. This is the sub-problem which
makes optimal BW planning difficult [14].

9 The case in which a = b is trivial. If @ # b, then in the state immediately following
its last move, a is clear and at the top of a tower containing z. If b has not yet moved,
since it was above x initially, it is still above # and hence below «, so ¢ must be
moved again in order to clear b, contradicting the supposition that it had made its
last move.

10 For our problem example in Figure 1, all blocks except g are misplaced and have
to be moved constructively. In addition, the two deadlocks {a,d} and {a} have to
be broken, which is achieved by moving a to the table.

12



3.2 Strategies for Near-Optimal BW Planning

On the other hand, merely finding some plan or other is easy. Unless we start
moving blocks that are already in position or choose deliberately to introduce
new deadlocks, we can even easily produce plans that are at most twice as
long as the optimal. Various strategies for near-optimal BW planning within
a factor of 2 have been described in the literature, for which we shall take
the papers by Gupta and Nau as sources [13,14]. However, we find that these
methods need to be clarified, and that their time complexity has not carefully
been analysed. We shall therefore reformulate some of them and show that
they can all be implemented to run in time linear in the number of blocks.

US The first and simplest strategy we shall consider is one we have dubbed
US (Unstack-Stack) [13, p. 630]. It amounts to putting all misplaced blocks on
the table (the ‘unstack’ phase) and then building the goal state by constructive
moves (the ‘stack’ phase). No block is moved by US unless it is misplaced, and
no block is moved more than twice. Every misplaced block must be moved at
least once even in an optimal plan. Hence the total number of moves in a US
plan is at worst twice the optimal.

GN1 Another algorithm which is usually better in terms of plan length than
US (and never worse) is given on pages 229-30 of [14]. We call it GN1 for Gupta
and Nau. It amounts to a loop, executed until broken by entering case (1):

(1) If all blocks are in position, stop.

(2) Else if a constructive move (a,b) exists, move a to b.

(3) Else arbitrarily choose a misplaced clear block not yet on the table and
mowve it to the table.

Compared to US, GN1 never (non-constructively) moves a block to the table if
it can be moved constructively. This avoids moving twice when once is enough.

GN2 Some of the remarks in [13,14] suggest yet another reading, though
with no details of how it may be achieved. This one uses the concept of the
deadlock. We call it GN2 and it is the same as GN1 except that the misplaced
clear block to be moved to the table is chosen not completely arbitrarily but
in such a way as to break at least one deadlock. That is, clause (3) reads:

(3) Else arbitrarily choose a clear block which is in a deadlock and move it
to the table.

Gupta and Nau [14, p. 229, step 7 of their algorithm| say that in a deadlocked
problem every misplaced clear block is in at least one deadlock. If this were
true, GN1 and GN2 would be identical. It is false, however, as may be seen
from the example in Figure 1. Block f is not in any deadlock, and so can
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be chosen for a move to the table by GN1 but not by GN2. It is possible for
GN1 to produce a shorter plan than GN2 (indeed to produce an optimal plan)
in any given case, though on average GN2 performs better because it never
completely wastes a non-constructive move by failing to break a deadlock.

In order for GN2 to be complete, in every deadlocked problem there must be at
least one clear block which is in a deadlock. In fact, we can prove the stronger
result that in every deadlocked problem there exists a deadlock consisting
entirely of clear blocks. We now sketch the proof, since it makes use of the
notion of a A sequence which will be needed in implementing GN2.

Let o = (B, S) be a state that occurs during the attempt to solve a prob-
lem with goal state G = (B, Sg) and suppose the problem © = (o, () is
deadlocked. Let b be misplaced and clear in o. Consider POSITIONg(b), the
sequence of blocks which in G will lead from b down to the table. Let ¢ be the
first (highest) block in this sequence which is already in position in o (¢ may
be the table, or Sg(b), or somewhere in between). In the goal state, either b
or some block below b will be on ¢. Let us call this block d. What we need to
do, in order to advance towards a constructive move with b, is to put d on c.
This is not immediately possible because there is no constructive move in o,
so either ¢ is not clear or else d is not clear. If ¢ is not clear, we must move the
blocks above it, starting with the one at the top of the tower which contains
cin o. If ¢ is clear, we should next move the clear block above d in ¢. This is
how the function 6, is defined: é6,(b) = « such that

ABOVE,(z,d) if CLEAR,(c)

CLEAR,(2) and {ABOVEa(J?aC) if ~CLEAR,(c)

If b is in position or not clear or if S¢(b) is in position and clear, let 6,(b) be
undefined. Now let A, (b) be the sequence of blocks obtained from b by chasing
the function é,:

(b:: Ar(6:(b))) if 6,(b) exists
An(b) = { (b) otherwise

The point of the construction is that if 6,(b) exists, then CLEAR,(6,(b)) and
Nz(b,6,(b)). To see why the latter holds, note that either ¢ or d is below 6,(b)
in o and below b in the goal. Now for any misplaced clear b, if A,(b) is finite
then there is a constructive move in o using the last block in A,(b), while if
it is infinite then it loops and the loop is a deadlock consisting of clear blocks.
This loop need not contain b of course: again Figure 1 shows an example,

where A;(d) is (d,a,a,...).
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Our suggestion for a way of implementing GN2, therefore, is to replace the
original clause (3) with:

(3) Else arbitrarily choose a misplaced clear block not on the table; compute
its A sequence until this loops; detect the loop when for some x in A,
or(x) occurs earlier in A.; move x to the table.

It is worth noting that our GN2 is not quite the same as the pure GN2 given
above, because we always break a A sequence deadlock rather than an arbi-
trary deadlock. So there may be deadlocked blocks (e.g. d in Figure 1) which
cannot be chosen for a move to the table because they are not part of a loop
in any A sequence. This appears to improve the average case behaviour, but
we have not investigated the matter in detail.

We now show how to implement all of US, GN1 and GN2 to run in time linear
in the number n of blocks. This improves on the known complexity of these
algorithms. The original [14] did not mention any bound better than O(n?) for
near-optimal BW planning though O(n?) implementations have been described
by other authors [1,6].

3.3  Linear-Time Algorithm for US

The key to making US a linear time algorithm is to find a way to compute which
blocks are in position in O(n), and to execute this computation only once in
the course of the problem solution. We do this by means of a combination
of recursion and iteration, as shown in Figure 3. The algorithm makes use of
several variables associated with each block b:

Clear, True iff b is clear in the current state.
InPosition,  True iff b is already in position.
Examined; True iff InPosition, has been determined.
Sip Block currently below b.

Sgs Block below b in the goal.

During initialization, INPOS can be called at most twice with any particular
block b as parameter: once as part of the iteration through the blocks and at
most once recursively from a call with the block above b. Hence the number
of calls to INPOS is bounded above by 2n. Similar considerations apply to
the recursive STACK and UNSTACK procedures. The stored information is
updated in constant time by MOVE.
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procedure US () function INPOS (b : block) : boolean

INIT() if b = TABLE then
for each b € B\{TaBLE} do return true
if Cleary, then if not Examined; then
UNSTACK(bd) Examined; « true
for each b € B\{TABLE} do if Siy # Sgp then
STACK(b) InPosition; « false

else InPosition, — INPOS(Siy)

return InPositiony

procedure INIT ()

Plan « ()
for each b € B\{TaBLE} do procedure MOVE ({a,b) : move)
Cleary, « true Plan « ({a,b) :: Plan)
Examined; « false if Sig # TABLE then
for each b € B\{TABLE} do Clearg; « true
INPOS(b) if b # TABLE then
if Si; # TABLE then Clear, « false
CIearSib «— false InPosition, «— (Sga = b) and InPositiony
else InPosition, «— (Sgs = TABLE)
procedure UNSTACK (b : block) Sig — b
if (not InPosition,) and
(Sip # TABLE) then procedure STACK (b : block)
(local) ¢ « S if not InPosition; then
MOVE((b, TABLE)) STACK(Sgs)
UNSTACK(c) MOVE((b, Sg))

Fig. 3. The us Algorithm
3.4 Linear-Time Algorithm for GN1

For GN1, we need to recognise constructive moves from tower to tower as
well as those from the table. To achieve this, we add further structure to the
problem representation. At any given time, each block has a status. It may

be:

(1) ready to move constructively. That is, it is misplaced but clear and its
target is in position and clear.

(2) stuck on a tower. That is, it is misplaced, clear and not on the table, but
unable to move constructively because its target is either misplaced or
not clear.

(3) neither of the above.

More variables are now associated with each block b: Status; records the status
(READY, STUCK, or OTHER) of this block, while Pi, and Pg, denote the blocks
(if any) which are on this one currently and in the goal. Evidently, initialising,
setting and updating these will not upset the O(n) running time. To make
it possible to select moves in constant time, the blocks of status READY and
STUCK are organised into doubly linked lists, ReadyList and StuckList, one such
list containing the blocks of each status. Inserting a block in a list and deleting
it from a list are constant time operations as is familiar. The next block to
move is that at the head of ReadyList unless that list is empty, in which case
it is the block at the head of StuckList. If both lists are empty, the goal is
Warhed, block ¢ moves, it changes its status as well as its position. Certain
other blocks may also change status as a result of the move. When they exist,
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procedure GN1 ()
INIT()
while not (EMPTY(ReadyList) and . .
EMPTY (StuckList)) do pro;:aeiu;iaStI;QTOEb : block, = : status)
if not EMPTY (ReadyList) then ATy - EELETE(b ReadyList)
(local) b — HEAD(ReadyList) sTUCK : DELETE(b, StuckList)
MOVE((b, Sgy)) OTHER : ’
else (local) b «— HEAD(StuckList) case z of
MOVE({b, TaBLE)) READY : INSERT(b,ReadyList)
procedure INIT () sTUCK : INSERT(b,StuckList)
Plan — ( ) OTHER :
EMPTYLIST(ReadyList) Status, « =z
EMPTYLIST(StuckList)
for each b € B\{TaBLE} do procedure MOVE ({a,b) : move)
Clear;, « true Plan « {{a,b) :: Plan)
Examined; « false (local) c1 « Sig
Status, < OTHER (local) 2 «— Pgq
Piy «— sKy if Siy # TABLE then
Pgy < sky (local) c3 < Pgg;
for each b € B\{TABLE} do else (local) ¢3 — TABLE
|NP_OS(5) if Sig # TABLE then
if Sip # TABLE then Clearg; « true
C!earSib «— false PiSia < sky
Pigj, < b if b # TABLE then
if Sg;, # TABLE then Clear, « false
PgSgb — b Pip < a
for each b € B\{TABLE} do InPositigr?a — (Sga = b) and InPosition,
STATUS(b) else InPosition, «— (Sga = TABLE)
Sig «— b
procedure STATUS (b : block) STATUS(a)
if (not InPosition;) and Clear, then if ¢c1 # TABLE then
if Sg; = TABLE then STATUS(c1)
STAT(b,READY) if c2 # sKY then
else if InPositionSgb and Clearsgb then STATUS(c2)
STAT(b,READY) if ¢3 # TABLE then
else if Si, = TABLE then STATUS(c3)
STAT(b,0THER)
else STAT(b,STUCK)
else STAT (b,0THER)

Fig. 4. The an1 Algorithm

these are: the block currently below a (Si,) if any, the block that will be on
a in the goal (Pg,) if any, and the block which in the goal will be on the
block currently below a (Pgs;,) if any. Those, however, are all of the possible
changes: a constant number (4) for each move. Therefore the number of delete-
insert list operations on blocks is at worst linear in the number of moves in
the plan, Nothing else stands in the way of the linear-time implementation of
GN1 shown in Figure 4.1!

3.5 Linear-Time Algorithm for GN2

GN2, however, is a different matter. To implement GN2 via A sequences, it
is necessary to compute 6,(b) for various blocks b, and to achieve linear time
there must be both a way to do this in constant time and a way to limit

' The function INPOS is the same as in the US implementation and is therefore not
repeated in Figure 4.
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Fig. 5. Asking the concierge ‘Who lives at the top of the tower?’

the number of ¢ calculations to a constant number per block. On the face
of it, neither of these is easy. To find 6,(b) it is necessary to know which is
the highest block in position in the goal tower of b and to know which is the
clear block above a given one. These items of information change as moves
are made, and each time such an item changes for one block it changes for
all the O(n) blocks in a tower, so how can those changes be propagated in
constant time? Moreover, when a deadlock is to be broken, a new A sequence
has to be computed, as many blocks may have moved since the last one was
computed, thus changing 6. Computing a A sequence appears to be irreducibly
an O(n) problem, and since O(n) such sequences may be needed, this appears
to require GN2 to be of O(n?) even if §,(b) can somehow be found in constant
time.

The first trick that begins to address these difficulties is to note that whatever
changes in a tower of blocks, one thing does not change: the block on the table
at the bottom of the tower. If that block moves, the tower no longer exists. We
call the bottom block in a tower the concierge for that tower. Now if we want to
know who lives at the top of the tower, we can ask the concierge. When a block
comes or goes at the top of the tower, only the concierge need be informed (in
constant time) and then since every block knows which is its concierge, there
is a constant time route from any given block to the information as to which
block above it is clear (see Figure 5). Not only the towers in the initial (or
current) state have concierges, but so do the towers in the goal state. These
keep track of which block in their tower is the highest already in position.
Additional variables associated with each block b denote its initial and goal
concierges, Ci, and Cgp. In case b is a concierge, there are more variables
denoting the clear block Topy above it, and the highest block Hin, already
in position in its goal tower. Through the concierges, there is a a constant
time route from b to the ¢ and d required to define 6,(b). The procedure for
initialising the additional variables is closely analogous to that for determining
which blocks are in position and can be executed in linear time for the same
reason. Updating them when a move is made takes constant time.
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Fig. 6. How [not] to break a deadlock

Next, the key to managing the A sequences is that although 6 may change the
N relation is indestructible except by moving the blocks involved. That is, if
Nio,cy(z,y) then that relationship persists in the sense that in all future states
0, Noay(z,y) unless  or y has moved in getting from o to 6. Moreover, as
noted above, if N,(z,y) then 2 cannot move constructively until y has moved
at least once. Now, let 5 = (by,...,br) be a non-looping sequence of clear
blocks which are stuck on towers, each except the last linked to its successor
by the relation N,. At some point, by may cease to be stuck and become ready
to move, but no other block in # can change its status until b5, actually moves.
Thus the 8 sequence may dwindle, and even become null, as moves are made,
but it always remains a single sequence—it never falls into two pieces as would
happen if a block from the middle of it changed status—and because N is
indestructible 3 remains linked by N,. For the algorithm, then, we maintain
such a sequence 3, constructed from parts of A sequences as follows. Initially,
B is null. If the problem becomes deadlocked, first if 3 is null then it is set to
consist just of the block at the head of the StuckList, and then it is extended
by adding 6,(bx) to the end of it. This is done repeatedly until the sequence
threatens to loop because 6, of the last block b,, is already in 3. At that
point by, is chosen to break the deadlock. It is important not to choose 6,(b,)
for this purpose, since that could result in breaking 3 into two pieces (see
Figure 6). Each addition to 3 takes only constant time, and any given block
can be added to the sequence at most once. Therefore maintenance of the
B sequence requires only linear time. This completes the description of the
principles underlying the algorithm, which is shown in Figure 7.12

12 The functions INPOS, STATUS and STAT are the same as in the implementation
of GN1, and are not repeated in Figure 7. The § sequence is implemented as a stack.

19



procedure GN2 ()
INIT()
while not (EMPTY(ReadyList) and
EMPTY/(StuckList)) do
if not EMPTY (ReadyList) then
(local) b «— HEAD(ReadyList)
MOVE((b, Sg,))
else (local) b «— BETA()
MOVE((b, TABLE))

procedure INIT ()
Plan — ()
EMPTYLIST(ReadyList)
EMPTYLIST(StuckList)
EMPTYSTACK(Beta)
for each b € B\{TABLE} do
Cleary, « true
Examined; « false
Statusy < OTHER
Piy « SKY
Pgy «— Sky
Hiny «— TABLE
for each b € B\{TABLE} do
INPOS(b)
if Siy # TABLE then
CIearSib «— false
PiSib — b
if Sg # TABLE then
Pgsgb — b
for each b € B\{TABLE} do
STATUS(b)
for each b € B\{TABLE} do
Examined; « false
for each b € B\{TaBLE} do
CONCIERGE()
for each b € B\{TABLE} do
Examined; « false
for each b € B\{TABLE} do
GCONCIERGE(b)
for each b € B\{TABLE} do
Examined; « false

function CONCIERGE (b : block) : block
if not Examined; then
Examined; «— true
if Siy # TABLE then
Cip, «— CONCIERGE(Sij)
else Cip «— b
T°pCib — b

return Cig

function GCONCIERGE (b : block) : block
if not Examined; then
Examined; « true
if Sgp # TABLE then
Cgp — CONCIERGE(Sgy)
else Cg, — b
if InPosition; then
Hincgb — b
return Cgp

function BETA () : block

(local) f « false
while not (EMPTY(Beta) or f) do
(local) b «+ TOP(Beta)
if Status, # STUCK then
POP(Beta)
else f « true
if EMPTY (Beta) then
(local) b «+ HEAD(StuckList)
Examined; « true
(local) f « false
while not f do
(local) b «+— DELTA(TOP(Beta))
if Examined then
(local) f « true
else Examined; « true
PUSH(b,Beta)
return TOP(Beta)

function DELTA (b : block) : block

if Status, # stuck then
return undefined
(local) ¢ «— Hngb
if ¢ # TABLE then
(local) d «— Pgc
else (local) d — Cgy
if ¢ = TABLE then
return TOpCid
if Clear. then
return Topcid
return TopciC

procedure MOVE ((a,b) : move)

Plan « ({a,b) :: Plan)

(local) c1 «+ Siq

(local) c2 «— Pgq

if Sig # TABLE then
(local) 3 « Pgg;

else (local) ¢3 «— TABLE

if Siq # TABLE then
CIearSia «— true
PiSia — SKY
TOpCia — Sia

if b # TABLE then
Clear « false
Pib — a
Cig «— Cip
InPositiong «— (Sga = b) and InPosition,

else Cig «— a

InPositiong, < (Sgq = TABLE)

TOpCia — a

if InPosition, then
Hincga —a

Sig «— b

STATUS(a)

if ¢c1 # TABLE then
STATUS(c1)

if ¢2 # SKY then
STATUS(c2)

if ¢3 # TABLE then
STATUS(c3)

Fig. 7. The aN2 Algorithm




3.6 Algorithm for Optimal Blocks-World Planning

Some of the experiments in Section 4 below require the ability to generate
optimal BW plans. For instance, in order to gather experimental results con-
cerning the average performance ratios of the various near-optimal algorithms,
we need to know the optimal plan lengths. A good BW-specific optimal plan-
ning method is also needed to determine how hard optimal BW planning really
is, and get an idea of the size of (average) BW problems that should be re-
garded as truly challenging. Moreover, it is a prerequisite to the study of the
distribution of hard and easy instances among problems of a given size, to the
identification of a pattern in this distribution, and to the investigation of the
relationship between hard problems and average ones.

Unfortunately, the literature seems to lack any algorithm suitable for these
purposes. The non-deterministic algorithm given in [14] is useful for com-
plexity analyses but not as a practical method, while most papers reporting
experiments on BW use a domain-independent planner for generating opti-
mal plans and drastically limit the size of the problems considered. We shall
therefore describe the method we used.

Recall from Subsection 3.1 above that the key to optimal BW planning is
finding a hitting set of minimal cardinality for the set of deadlocks in the
problem. At the heart of our algorithm, therefore, is a backtracking search for
such a hitting set. One complication is that we do not know at the outset which
sets of blocks constitute deadlocks; nor do we know of an efficient method of
enumerating the deadlocks; nor in fact do we ever know that we have hit them
all until we can finally produce a plan.

Our algorithm PERFECT overcomes this problem as follows. It constructs a
set K of known deadlocks. Initially, only the singleton deadlocks are known;
other deadlocks are computed as needed. At each iteration it finds a minimal
size hitting set H for the deadlocks currently in K and tests this to discover
whether it hits all deadlocks in the problem. If it does, it constitutes a solution
and the algorithm halts. If not, a deadlock disjoint from H is found and added
to K:

/* initialisation */
K « {{b}: {b} is a deadlock}
/* main loop */
Repeat until plan returned:
Generate H a minimal size hitting set for K
TEST(H)
if H solves the problem then
return PLAN(H)
else find a deadlock D such that DN H =0
K« Ku{D}
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This requires five procedures to solve sub-problems:

(1) The set of singleton deadlocks must be found to initialise K.

(2) A minimal size hitting set H for K must be generated.

(3) H must be tested to see whether it hits all deadlocks in the problem.
(4) A deadlock D disjoint from H must be found.

()

5) H must be used to produce a plan.

Of these, (2) is the NP-complete sub-problem which will not be detailed fur-
ther here except to note that it is solved by a backtracking search, requiring
exponential time in the worst case. It may be speeded up somewhat by incor-
porating various search heuristics which, however, are not especially germane
to the present paper. The other four sub-problems are all tractable and the
corresponding procedures all make use of our linear-time implementation of
the near-optimal BW planner GN1.

It is easy to modify GN1 by giving it a set H of blocks as a parameter and
requiring (in clause (3) of the GN1 algorithm) that only blocks in H be used to
break deadlocks. This results in a plan if H is a hitting set for the deadlocks
in the problem, and in failure to find a plan otherwise. That is, it yields a
(linear-time) decision procedure for whether H is a hitting set or not. We call
GN1 thus modified GN1H. Evidently, GN1H suffices for both (3) and (5) above.

GN1H may also be used to achieve (1). It is clear that GN1H(B\ {b}) results in
a plan if and only if {b} is not a (singleton) deadlock. Therefore, by running
GN1H(B \ {b}) for each block b € B in turn, we obtain in quadratic time the
set of all singleton deadlocks.'?

A similar technique suffices for (4). Suppose that H is not a hitting set for all
deadlocks in the problem. Then proceed as follows:

for each b € B \ TABLE do
TEST(H U {b})
if H U {b} is not a hitting set then
H «— HU{b}

Obviously, at the end of this (quadratic time) procedure, H is a non-hitting
set and is maximal in the sense that every proper superset of it is a hitting
set. Let D be its complement with respect to B\ {TABLE}. D is a deadlock: it
contains a deadlock, since otherwise H would be a hitting set, and it contains
nothing else, since otherwise H would not be maximal.

13 This is not the most efficient way of detecting singleton deadlocks — the exper-
iments on singleton deadlocks reported in appendix A below use a better one —
but for small problems such as those for which optimal planning is feasible, it is
adequate.
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Our linear-time implementation of GN1 therefore serves both as a decision
procedure for potential hitting sets and as a plan generator once a hitting set
has been found. It enables our optimal procedure to cope with well over 100
blocks in reasonable time, as may be seen in Figure 9 below.

4 Experimental Observations

Using our random BW problem generator and the above algorithms, we are
able to make a number of interesting observations on the structure of large
BW problems and on the performance in time and average solution quality of
BW-specific planning methods.

Unsurprisingly, our near-optimal planners are fast. They all solve problems of a
million blocks in a matter of seconds. More interestingly, we find that the plans
they produce are closer to the optimal than we had expected. On the basis of
the experimental results, it may be conjectured that their average performance
ratios tend in the limit to 1, in which case, despite the NP-hardness of optimal
planning, it is possible in linear time to find plans in which, on average, the
proportion of unnecessary moves is vanishingly small.

By close examination of random BW problems, we identify the structural fea-
tures which planning systems should use if they are to do well with the domain.
Proving the optimality of plans, of course, is more complicated. Our experi-
ments show a clear easy-hard-easy distribution of optimisation problems, using
the numbers of towers in the initial and goal states as the order parameter.
This is related to a tradeofl between the number of deadlocks and their size.

In the interest of readability, details of the data used for these experiments
have been relegated to appendix A.

4.1 Time Performances

We start with the average runtimes of the near-optimal algorithms as a func-
tion of the number n of blocks. As will be clear from the experiments in
Subsection 4.2 below, there is no significant difference between the average
and worst cases runtimes for these algorithms. As shown in Figure 8, the
time for all three programs is linear in the number of blocks. There is very
little difference between GN1 and US. Since some aspects of the computation
are closely related to the plan length, GN1 sometimes even outperforms US
because it produces shorter plans. Naturally, since nobody really wants to
convert one BW state into another, the program speeds are not important
in themselves. The point of this experiment was just to confirm empirically
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Fig. 9. Median runtime (in secs) as a function of n for the optimal algorithm

the theoretical claims that linear execution time may be attained, and that
domain-independent planners are orders of magnitude away from BW-specific
methods. 1

In Figure 9, we also measured the runtime of our optimal algorithm. As will
become apparent from the experiments in Subsection 4.3.2, the average case
is again similar to the worst-case, namely here exponential in n. The main
purpose of the experiment was to decide what number of blocks we could
expect to use for other experiments if these were to be completed within the
time available without sacrificing the information which can be gleaned from
relatively large examples. We find that it is reasonable to go up to n = 150,
at which size the average problem is several orders of magnitude harder than
those that have been considered in the domain-independent setting. 1®

14T the best of our knowledge, the current state of the art is represented by
TALPLANNER [7,19], a variant of the TLPLAN system [2] which solves BW problems
near-optimally in quadratic time. 500 blocks problems take about a second.

15 Neither TLPLAN [2] nor SATPLAN [18] copes with random optimisation problems
of more than 20 blocks.
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4.2 Plan Length and Solution Quality

After the performance in time of the algorithms, we look at their performance
in solution quality. The length of the plan produced by all near-optimal al-
gorithms, as well as the optimal plan length is 2n — 2 in the worst case. As
can be seen from Figure 10, it is possible for every block but one on the table
to constitute a singleton deadlock and to have to move twice. The average
length of the plan produced by the near-optimal algorithms approaches this
worst case quite closely, as may be observed from the graph in Figure 11. As
expected, US gives the longest plans on average and GN2 the shortest, but
for large numbers of blocks it makes little difference which algorithm is used.
In particular, it is evident from the graphs that the algorithms will give very
close average plan lengths in the limit.
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The immediate questions raised by the present results are whether all of the
algorithms converge to the same average plan length (as a proportion of n)
and if so whether this limiting figure is 2n. Positive answers to both questions
are strongly suggested by the data—indeed, they seem obvious—but obvious-
ness is not proof. The theoretical investigation does not appear easy: even to
prove that the average length of the plans produced by the ‘baby’ algorithm
converges to 2(n — \/n) we needed nontrivial mathematics involving complex
analysis and the theory of Laguerre polynomials [29, pp. 23-26]. This algo-
rithm, which is not near-optimal, simply puts all blocks (misplaced or not) on
the table before building the goal position.

The absolute performance ratio of the near-optimal algorithms is 2 in the
limit. The worst-case problem is shown in Figure 12. The deadlocks are the
pairs {a,c;} for 1 <7 < k, so the optimal plan, of length & + 2, consists in
breaking all the deadlocks by moving a to the table and then moving the ¢;
and a constructively. Us will first move all of the ¢; (and a) to the table. In the
worst case, GN1 and GN2 may also move all of the c; to the table before moving
a constructively, giving a plan of length 2k 4+ 1 and therefore a performance
ratio of QkkT';l which tends quickly to 2.

Figure 13 shows the average performance ratios. This graph contains a real
surprise: the average performance of US does not degrade monotonically but
turns around at about n = 50 and begins to improve thereafter. The expla-
nation is the plan lengths for US quickly approach the ceiling of 2n, at which
point the optimal plan lengths are increasing more quickly than the US ones
because the latter are nearly as bad as they can get. It is clear from this figure
and Figure 11 that the other near-optimal algorithms would exhibit similar
curves if it were possible to observe the length of optimal plans for high enough
values of n.

One result readily available from the graphs is an upper bound around 1.23

for average performance ratios. However, Figures 11 and 13 together suggest
that the limiting value will be well below this rough upper bound. Our open
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question following this experiment is whether the optimal plans tend to a
length of 2n in the limit. If they do, then not only the near-optimal algorithms
but even the ‘baby’ algorithm have the perfect average performance ratio of
1 in the limit. A positive answer would be implied if the number of singleton
deadlocks tended to n, but on investigating this figure experimentally we found
that it appears to be only around 0.4n (see experiments in Subsection 4.3.1).

4.3 The Structure of Blocks World Planning Problems

According to the above experiments, the gap in time performance between
domain-specific and domain-independent methods is huge, in both the opti-
mal and near-optimal cases. Moreover, in the latter, domain-specific methods
achieve higher solution quality. Why is this? What structural properties of the
domain are the specific solvers using which the generic planners are missing?

4.3.1 Composition of the Average BW Problem

As a preliminary step, we examine the composition of the average BW problem.
Some of the blocks are misplaced and have to move, and some do not. Then, of
the misplaced blocks, some occur in deadlocks, and some do not. Finally, of the
deadlocked blocks, some constitute singleton deadlocks and so must obviously
move twice, while others do not. We call the blocks in the last category live
blocks. The non-trivial part of a BW planning problem is to decide which of
the live blocks should move twice. This is demonstrated in Figure 14, which
represents the average hardness of optimal BW planning problems of n = 100
blocks as a function of the number of live blocks in these problems. The positive
correlation is obvious.
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Quantitatively, what is the proportion of blocks in each category? The first
observation is that almost all of the n blocks are misplaced. Figure 15 shows
the distribution of problems with a given number of misplaced blocks. This
has been obtained with random problems of n = 1000 blocks, but we find
that the distribution does not vary significantly with n and similar results are
obtained with as few as 20 blocks. In particular the probability that all blocks
are misplaced seems to converge quickly to e™1.16 Instances with more than
about 5 blocks in position are extremely rare, even for problems with 10000
blocks. Except in pathological cases, this already imposes a lower bound of
roughly n on the plan length.

Clearly any block which starts or finishes on the table cannot be involved in
any deadlock. As already noted, \/n blocks are on the table in the average
state, so there should be at least 2y/n deadlock-free blocks on average. This

gives us an upper bound around 2(n — y/n) on the average plan length. Ex-

16 An analytical expression for this probability as a function of n is given in [28].
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Fig. 17. Proportion of blocks constituting singleton deadlocks as a function of n

perimentally (see Figure 16) we find that the blocks on the table are almost
the only deadlock-free ones: on average less than 2 others are deadlock-free. It
follows that the upper bound cannot be significantly improved by reasoning
about which blocks are in deadlocks, and that there is no need for a planner
to spend a lot of time in such reasoning.

On the other hand, reasoning about special kinds of deadlocks may be valuable
(for instance GN2 gains by concentrating on A sequence deadlocks). Most
importantly, we observe in Figure 17 that on average nearly 40% of the blocks
are singleton deadlocks. This limiting figure is approached quite closely for
problems around n = 100 blocks. In sum, the optimal plan length is almost
always between 1.4n and 2(n — y/n), and so on average less than 30% of the
moves are non-trivial.
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4.3.2  Hard and Fasy BW Problems

The next question is under what conditions is it difficult to plan these non-
trivial moves in an optimal way — that is, when is it hard to find a minimal
size hitting set for the deadlocks? Well, it is easy if there are few deadlocks,
and it is easy if all the deadlocks are small. Unfortunately, these two conditions
tend to work against each other. For few deadlocks to exist, the N relation
should be sparse, which typically occurs where there are many short towers.
Small deadlocks occur where the N relation loops very easily, which happens
when most of the blocks are found in a very few tall towers. The hard problems
are therefore squeezed between the “under-constrained” area in which there
are many towers and the “over-constrained” area in which there are few.

This analysis is confirmed by Figure 18, which represents the median hardness
(as the number of times PERFECT bactracks) of random problems of 100 blocks
against the parameters of the number of towers initially and in the goal. It can
be seen that optimal planning is easy for a wide range of these parameters:
for problems of this size the hard region is confined between 8 and 18 towers.
However, it is important to note that most random problems fall in the hard
region: random problems of this size cluster strongly around /100 = 10 tow-
ers. So on average, BW problems are reasonably hard. Random problems are
however not the hardest. For instance, problems of this size produced by the
UCPOP generator cluster around /200 = 14 towers and are harder.
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4.3.3 What are the Relevant Fealures?

In the light of the above, we may begin to answer the questions at the head
of this section. At least we may observe:

(1) As noted for example in [1], it is crucial that planners classify blocks
as in position or misplaced rather than attempting to carry out long
chains of reasoning purely in terms of ON and CLEAR. Being able to
recognise constructive moves and make them whenever the opportunity
exists already suffices for more than half of the average plan.

(2) More than half of the remainder are moves which break singleton dead-
locks. Being able to recognise and make these moves is therefore sufficient
to allow a planner to come close to completing plans without any search
or backtracking.

(3) The fact that all non-constructive moves may be to the table is easily
coded (as noted e.g. by Kautz and Selman in [18]) and greatly reduces
the set of possible plans and therefore the search. In Kautz and Selman’s
terminology, it is a safe simplifying assumption based on a completeness
theorem which could in principle be found automatically.

Once the constructive moves have been identified, and the blocks in singleton
deadlocks removed from consideration, there remains only the problem of find-
ing a hitting set for the remaining deadlocks. For near-optimal BW planning,
no more reasoning is required: any choice whatever, even the worst, yields a
plan very close to the optimal on average. For optimal BW planning, it is nec-
essary to generate a minimal size hitting set, but this problem is not specific
to the field of planning and is best approached using techniques available off
the shelf. In either case, therefore, the above features constitute the structure
which we expect domain-independent planners to exploit if they are to deal
adequately with the domain.

4.3.4 FEzisting bechmark instances

Another question that can be addressed following the above observations
is that of the representativity of existing benchmark instances, such as the
‘bw_large.a’ to ‘bw_large.d” commonly used in discussing the effectiveness of

SAT-based planners (see e.g. [8,11,12,16-18]).

As can be seen from Figure 19, the first obvious feature of these four problems
is that the larger ones are built up from the smallest by progressively adding
blocks. In bw_large.a there are no deadlocks at all, so even GN1 solves it
optimally. In the others, there are two deadlocks (the same two in every case)
and it is obvious that putting block 11 on the table is sufficient to break them
both, after which again constructive moves suffice. Hence the reasoning in all
three cases is essentially the same and is hardly challenging. A less obvious
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Fig. 19. Problems bw_large.a ...bwlarge.d from [17]

but important feature is that they are quite unlike the average problem of
their size in that they have many non-deadlocked blocks and no singleton
deadlocks at all. This gives them all unusually short plans: the average plan
length for 19-block problems is 24.5, yet bw_large.d requires only 18 moves.
Comparisons based on these problems tend to favour planners which prefer
short plans, SAT-based planners for instance. This feature is therefore highly
relevant to their use as a benchmark.

Another benchmark set calling for comment is that from the planning com-
petition of AIPS-2000, and in particular the “additional” problems from the
“hand tailored systems track” (see Figure 20). These have from 100 to 500
blocks. For their size, they all have very small numbers of towers in both ini-
tial and goal states, leading to abnormally large proportions of self-deadlocked
blocks (over 90% in some cases). As a consequence, their optimal plans are
long but extremely easy to find. PERFECT, which finds random problems of
160 blocks challenging, solves them almost instantly, as shown in the last col-
umn of Figure 20. Problem 300.0 is even solved without backtracking. In the
ATPS competition, optimality was not required, so the extreme skew in the
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blocks in | number of | singleton optimal time to solve

problem | position towers deadlocks | planlength | optimally (sec)
100.0 1 3+5 79 182 0.04
100.1 1 245 79 182 0.05
200.0 1 10+ 9 129 348 2.92
200.1 2 9+6 135 346 0.59
300.0 1 542 278 57T 0.21
300.1 2 5>+ 6 264 567 0.47
400.0 1 444 368 773 0.94
400.1 2 8+5 325 740 5.21
500.0 1 5+ 6 462 963 0.83
500.1 1 445 461 969 1.84

Fig. 20. Problems probblocks-100 ...probblocks-500 from ATPS-2000

sample does not invalidate the results. However, it should be noted that be-
cause they are so easy to solve optimally and because their optimal plans are
so long, these problems reveal little or nothing about the quality of solutions
produced by competing suboptimal planners.

5 Conclusion: What Future for Blocks World?

BW has traditionally been the “Hello World” of planning: often, a trivial in-
stance of it is used to illustrate what an action is, how some notation rep-
resents postconditions, how execution failures can be handled or whatever.
To this practice we have no objection, save that the example becomes boring
eventually. However, as we have been at pains to point out, the use of it as
an benchmark has been less satisfactory. We believe that its future can be a
great improvement on its past. Following the investigations reported in this
paper, we conclude with our expectations as to what this future might be and
a few last recommendations about how it should be achieved.

5.1 Comparing Planners

It seems clear that planning systems worth comparing on the domain will soon
all achieve quadratic time performance — some have already done so [1,7] — or
even linear time, after which all that can be compared on the basis of speed
is the efficiency of the coding. So we do not think that comparing time per-
formances in solving BW problems near-optimally will be found particularly
useful. This is probably why, according to reports of the ATPS 2000 compe-
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tition, “one comment that was heard at the conference ...was that now the
Blocks World is no longer an interesting problem even as a benchmark.” 1"

We expect that much more worthwhile comparisons will be made on the basis
of plan length, and for anytime planners, on the basis of their rate of improve-
ment. It will be important to bear in mind that the difference between poor
plans such as those produced by US and reasonably good ones such as those of
GN2 is not a large proportion of the moves, so apparently small improvements
in solution quality may represent significant advances in planning technology.
Hence, while we agree that (non-optimal) BW planning is becoming a less in-
teresting benchmark as regards solution time, we strongly disagree with the
view that it is no longer a worthwhile benchmark at all.

We believe that another important facet of planning for which BW will prove a
suitable testbed is the ease with which formalisms and systems allow domain-
specific control knowledge to be specified or automatically learned. For ex-
ample, the effect of TLPLAN’s goal control rule 3 [2, p.11] is to disallow any
plan that is not at least as good as a US plan (i.e., the moves produced are a
subset of US moves). This together with the “trigger” rule noted in [1, p.165]
yields an implementation of GN1. The obvious next step is to see how easily
more restrictive conditions could be encoded, for instance to disallow non-GN2
moves and recognise singleton deadlocks.

5.2 Using the Right Problem Instances

In making comparisons, care will have to be taken over the choice of problem
instances used. For experiments in which optimal plans are sought, it is best
to use instances likely to be hard on average, from the region around the peak
in Figure 18 for example. However, it is important to be careful as to what is
being tested. The difficulty of the hardest instances is dominated by that of
finding minimal cardinality hitting sets, and a planner’s ability to do this may
well not be seen as the most important thing to assess. Hence, for example, if
100-block problems are used to compare optimal planners, it may be valuable
to concentrate on moderately hard instances whose initial and goal states have
10 towers, or 20, rather than on the hardest ones which have 14. This will give
more weight to other aspects of reasoning.

For experiments in which optimality is not an issue, it is clearly good to use
uniformly distributed random instances in order to obtain meaningful results
on average behaviour. In any case, there is no point in seeking especially hard
instances for that purpose, since there is no significant difference in difficulty
or plan length between the average problems and the hardest.

17 http://www.ida.liu.sc/ext/witas/achiev/aipscom/page.html
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5.3  Beyond Fzxperiments

BW’s place as an experimentation benchmark need not exhaust its future con-
tribution. Like the Traveling Salesman [20], it may constitute a basis for in-
vestigating other problems of more practical interest. The abstract problem of
which BW is a instance is the following: sets of actions producing the goal con-
ditions (constructive actions) cannot be consistently ordered so as to meet all
of their preconditions (that is, deadlocks occur). To resolve each deadlock, a
number of additional actions have to be introduced (non-constructive actions).
Since deadlocks are not independent, there is a need to reason about how to
resolve them all using as few additional actions as possible. This core problem
is present in other more realistic situations. For instance, moving blocks is
not very different from moving more exciting objects such as packages, trucks
and planes. Again, the version of BW in which the table has a limited capac-
ity captures the essence of the container loading problem, a problem that is
crucial to efficiency of freight operations [24,33]. '® Therefore, finding the right
generalisations of strategies that are effective for BW appears promising as an
approach to more sophisticated problems.

There is more. Existing classes of tractable planning problems do not seem to
capture the properties of domains like BW. In SAst-Us [4] or the restriction
of STRIPS to ground literals and operators with positive preconditions and
one postcondition [5], planning is tractable while optimal planning and even
near-optimal planning are not [26].'? Yet, near-optimal planning is tractable
for certain domains like BW which are too sophisticated to be encoded within
such classes. ?° The fact that the identification of tractable subclasses of sAs*
planning originated in the careful examination of a toy problem in sequential
control [3, p. 29] suggests that BW is a good candidate for identifying in a
similar way a new class of planning problems for which near-optimal planning
is tractable.

18 At the minimum, the “classical” version considered in this paper, in which the
table capacity is unlimited, is a useful relaxation of the limited-capacity version. An
optimal plan for the former yields an underestimate of the plan length for the latter
and thus an admissible heuristic.

19 The intractability of near-optimal planning for sast-us follows directly from the
corresponding intractability result for the mentioned subclass of STRIPS [26] and
from the inclusion of this latter subclass in sast-us.

20 Bw planning is approximable within a constant because (1) a constant number
of non-constructive actions suffices to resolve all the deadlocks involving a given
constructive action, and (2) the non-constructive actions can be introduced in such
a way as not to create new deadlocks.

35



5.4 Summary

We take the present paper to have cleared the way to the effective use of
BW as a benchmark. Firstly, our methods for generating random instances
with meaningful distributions enable systematic experiments to be performed.
Secondly, by presenting linear-time algorithms for near-optimal BW planning
within a factor of 2, we have closed the question of its time complexity. These
algorithms and our optimal solver provide a reference point for future exper-
iments. Thirdly, we have empirically established the average plan quality of
near-optimal solution methods, thus setting the parameters for evaluation of
suboptimal BW planners. Finally, by careful experimentation, we have identi-
fied the distribution of hard and easy instances, and isolated the features most
relevant to efficient planning for the domain.

While most of our observations and results are aimed at enhancing the under-
standing of BW needed for assessment purposes, the same understanding is a
prerequisite for the larger project of extending insights gained from BW to a
wider class of domains. We expect that our investigations will contribute to
that project too, and hope that this paper will not be seen merely as a report
on how to stack blocks fast.
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A Experimental Data

This appendix details the setup for each of the experiments in Section 4. Note
that the 2-dimensional graphs in that section are series of lines joining all the
data points.
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Time Performances (Figures 8 and 9). The programs were written in C and
compiled with gcc using optimisation to level O2. Times were obtained using
the C library function times (). The experiments were run on a Sun Enterprise
450 under Solaris. The system has four processors and 2Gb of memory. For
the near-optimal algorithms, 100 random problems were generated for each
size n a multiple of 10000, up to n = 1 million. For the optimal algorithm,
100 random problems were used for each size n a multiple of 5 up to n = 150.
In the optimal case, the median rather than the mean is plotted, because the
distribution of times is expected to be heavy-tailed, so that the observed mean
depends on the sample size.

Plan Length and Plan Quality (Figures 11 and 13). For the experiments
on plan length, between 100 and 10000 random BW problems were used for
each of the 55 sizes we considered, up to n = 1 million blocks, forming a test
set of some 250000 problems. More specifically, we generated 10000 problems
for each size up to n = 10 and each size a multiple of 10 up to n = 100, 5000
problems for each size n a multiple of 100 from n = 200 to n = 1000, 1000
problems for each size n a multiple of 1000 from n = 2000 to » = 10000, 500
problems for each size n a multiple of 10000 from n = 20000 to » = 100000,
and 100 problems for each size n a multiple of 100000 from n = 200000 to
n = 1000000. For the experiments on plan quality, we used 10000 problems
for each size up to n = 50 and 3000 problems for each size n a multiple of 10
from n = 60 to n = 140.

Hardness and Live Blocks (Figure 14) The Figure has been produced by
solving optimally 50000 random problems of n = 100 blocks, and recording
for each of them the number of times PERFECT backtracks, as well as the
number of live blocks. The curve shows the median of the hardness cases for
each number of live blocks. The live blocks are those which are involved in
deadlocks but not as singletons. A block z is involved in a deadlock iff N*(z, z),
where N* is the transitive closure of the V relation. So the set of deadlocked
blocks can be computed in O(n?) at worst, which is the time taken to calculate
both N and its transitive closure. The singleton deadlocks are computed in
O(n?) using the procedure described in Subsection 3.6, and are removed from
the set.

Misplaced Blocks (Figure 15). The Figure has been produced by analysing
10000 random problems of size n = 1000 blocks. We also conducted the same
experiment on 1000 problems of sizes n =20, 100 and 10000, respectively, and
obtained similar figures.

Deadlock-Free Blocks (Figure 16). The Figure has been produced using
10000 random problems for each size up to n = 50. We also conducted the
same experiment on 100 problems for each size n a multiple of 50 from n = 50
up to n = 400. This confirmed that the average number of deadlock-free
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blocks not on the table does not exceed 2 and even tends to decrease slowly
with n (1.87 for n = 400). The deadlock-free blocks are computed in O(r?) as
indicated above (see live blocks).

Singleton Deadlocks (Figure 17). The data set for this experiment consisted
of 1000 random problems with n blocks for each n < 10 and for each of the
following values of n: 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500,
4000, 5000, 6000, 7000, 8000, 9000, 10000, 15000, 20000, 25000, 30000, 35000,
40000, 50000, 60000, 70000, 80000, 90000, 100000. For each problem in the
set, if n < 2000, all blocks were selected, otherwise 1000 blocks were selected
at random. Each selected block was tested to see whether any block below it
initially was also below it in the goal. For each block selected, this computation
takes time linear in the number of blocks below it initially, so we could only
afford to consider problems of size up to n = 10° blocks instead of n = 10° as
in the above experiment on plan length.

Hardness and Towers (Figure 18). For each configuration (number of tow-
ers initially and in the goal from 1 to 50), 1000 random problems of n = 100
blocks were used. Since the graph is symmetric about the diagonal, only half
of the cases needed to be considered. Even so, altogether more than a mil-
lion problems with 100 blocks were solved optimally using PERFECT, and the
number of backtracks recorded. Experiments for smaller n showed the same
easy-hard-easy pattern, the location of the peak increasing with n (see [30]).
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