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ABSTRACT

The scalability and privacy preserving nature of distributed
optimisation techniques makes them ideal for coordinating
many independently acting agents in a microgrid setting.
However, their practical applicability remains an open ques-
tion in this context, since AC power flows are inherently
non-convex and households make discrete decisions about
how to schedule their loads. In this paper, we show that one
such method, the alternating direction method of multipli-
ers (ADMM), can be adapted to remain practical in this
challenging microgrid setting. We formulate and solve a
multi-period optimal power flow (OPF) problem featuring
independent households with shiftable loads, and study the
results obtained with a range of power flow models and ap-
proaches to managing discrete decisions. Our experiments
on a suburb-sized microgrid show that the AC power flows
and a simple two-stage approach to handling discrete deci-
sions do not appear to cause convergence issues, and provide
near optimal results in a time that is practical for receding
horizon control. This work brings distributed control for
microgrids several steps closer to reality.

Categories and Subject Descriptors
1.2.11 [Computing Methodologies|: Artificial Intelligence
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1. INTRODUCTION

The distinction between generators and loads is fading as
households adopt distributed generation, storage and smart
devices. We envisage a future where network operators pro-
vide a competitive electricity market that anyone can par-
ticipate in, and where this distinction between generators
and loads is removed. This will be of particular importance
for the operation of microgrids, which require more finesse
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to ensure that demand and supply are balanced and that
the network is in a safe operating state in each instance.

A different approach is needed from the traditional cen-
tralised markets as they were never designed to operate
where every customer is an active participant, or to handle
their unique time-coupled behaviours. In this new regime
demand response (DR) techniques will play a central role in
providing incentives, coordination and network support.

The goal of the network operator is to serve power at the
lowest cost. Several works [22] [16] [24] have adopted dis-
tributed solving techniques in order to solve this problem
for many participants. These distributed algorithms greatly
parallelise the problem and help to preserve the privacy of
participants. As a by-product, they provide a natural mar-
ket mechanism for fairly allocating payments between con-
sumers and producers. Theoretically, these algorithms re-
quire the problem to be convex in order to guarantee conver-
gence to a globally optimal solution. However, the behaviour
of many loads within households are discrete in nature |28,
and the equations that govern how power physically flows
on the network are non-convex.

In this paper, we show that these theoretical problems can
in practice be dealt with in the context of microgrids. We
show that for a distributed DR algorithm in a microgrid, ex-
act non-convex power flow models perform well compared to
inexact convex models, which makes them a valuable candi-
date in practice. Secondly, we identify that the non-convex
nature of discrete household loads is a non-issue, and that in
practice simple approaches to handling these discrete loads
are effective at the microgrid level. By solving these prob-
lems, we show that the use of distributed algorithms for
managing the balance of power on a microgrid is in practice
not only possible, but also highly effective.

We formulate the problem as a multi-period optimal power
flow (OPF) problem to account for multiple time steps over a
day, which can be used as part of a day-ahead pricing scheme
or, as we propose, a receding horizon control algorithm. We
solve the multi-period OPF problems in a distributed man-
ner by adapting the alternating direction method of multi-
pliers (ADMM) approach presented in [22]. We experiment
with a range of power flow models of varying degrees of accu-
racy, to compare their relative behaviour in a distributed al-
gorithm. We then introduce and compare several approaches
layered on top of ADMM which manage the introduction of
discrete variables into the problem. Technically, our contri-
butions can be summarised as:



e A comprehensive experimental comparison of the con-
vergence of five commonly used power flow models
when used for distributed OPF in a microgrid context.

e The identification that the exact non-convex power
flow model in practice not only converges in this con-
text, but also finds near-optimal solutions in a timely
fashion relative to other models.

e The introduction and comparison of three simple but
effective approaches to managing the discrete shiftable
loads that are typically found within households.

Combined, these results show that distributed DR using
ADMM can achieve near optimal solutions in a time frame
that is practical for receding horizon control in this chal-
lenging microgrid setting, regardless of the theoretical limi-
tations. This work brings distributed DR closer to the point
where it can be deployed in a real microgrid.

In the next section we discuss the related work and how
our contribution is unique. In Sections we formulate
the problem and present the distributed algorithm we use
to solve it. The test microgrid is introduced in Section [f]
before presenting our results in Sections [7H8| on power flows
and discrete decisions.

2. RELATED WORK

Much of the existing work on demand response (DR) has
focused on using real-time pricing (RTP) as a control signal
12811251 |7, 130L 132} [15]. In these methods, participants receive
a RTP signal and individually optimise their own behaviour,
so as to minimise a combination of monetary and discomfort
costs. Other approaches have utilised non-pricing control
signals, which are simpler to implement, but are limited in
the types of loads that they can model [33] [31].

These approaches implement a form of open loop con-
trol, because the agent that sets the control signal (RTP
or otherwise) at best can only estimate how consumers will
respond to it. In order to reduce the amount of guesswork
and improve solutions, a closed loop approach to RTP was
presented by Gatsis et al. [16]. In this scheme, the prices are
iteratively updated by a central agent, with consumers com-
municating their best responses to the price prior to acting.
Mohsenian-Rad et al. [24] introduce an alternative iterative
procedure not based on RTP, where consumers cooperate to
reduce total generation costs in a distributed manner.

The approaches discussed so far do not model the electric-
ity network, so cannot account for real power losses, reactive
power, voltage limits or line thermal limits. Without these
considerations, we cannot be sure that the DR outcome is
efficient, safe or even possible. Many of the works on dis-
tributed algorithms which explicitly model the network have
used ADMM as a solving technique, due to its ease in de-
composition, and its convergence guarantees on a wide range
of problems [6]. However, most of these works have focused
on more traditional OPF problems rather than demand re-
sponse in a microgrid context.

One of the first authors to apply ADMM to power net-
works was Kim et al. [21], who decomposed a convex approx-
imation of the OPF problem into regions, and compared the
results to two other approaches. They found it to have a
significant speed improvement over a centralised approach,
and that it preserved privacy between regions. Erseghe [12]
also performed region-based decomposition of the network

and found exact local solutions to the OPF problem. In-
stead of decomposing on the network structure, Phan et al.
|27] decomposed across scenarios in a security-constrained
OPF. The recent work by Magnusson et al. [23] decomposes
the network to a greater extent than these other methods,
and they solve the underlying non-convex OPF by taking se-
quential convex approximations. One thing all these works
have in common is that they are focused on the more tra-
ditional OPF problem, whereas in our work we consider a
microgrid where distributed participants act independently.

Region-based decomposition was also used by Dall’ Anese
et al. [9] to control distributed generation on radial feeders.
They used ADMM to solve an unbalanced OPF problem us-
ing a semidefinite programming (SDP) relaxation. In our
work we consider each customer to be independent, for pri-
vacy reasons, and we also allow for meshed microgrid topolo-
gies. Sulc et al. [34] use the relaxed DF (SOCP) equations
to perform reactive power control on radial networks. For
a similar problem, Peng et al. |[26] provide closed-form so-
lutions for ADMM subproblems, greatly reducing the com-
putational requirements. Again these works focus on radial
networks.

The work that is closest to ours is that presented by
Kraning et al. [22], and indeed we build on their approach.
They decompose all network components for a multi-period
OPF problem using a quadratic power flow approximation.
This procedure is effectively a principled method for settling
RTPs for each bus, also known as locational marginal prices.
Their experiments showed that very large problems could be
solved efficiently in a parallel environment.

All these works have taken different approaches to mod-
elling the power flows on the network. There is no com-
parison of the relative performance between these different
power flow models in a distributed algorithm for microgrids,
which is what we achieve in this paper for five different mod-
els. Our results in this area indicate that exact local meth-
ods can produce close to optimal solutions in a competitive
number of iterations relative to other models. In addition,
to the best of our knowledge, we are the first to incorporate
discrete decisions into a distributed demand response mech-
anism that models the network. Our work brings ADMM
to the point where it can be considered a practical approach
for efficiently balancing power in a microgrid setting.

3. PROBLEM FORMULATION

The overall objective of the demand response problem is
to minimise the average long-term cost of supplying elec-
tricity. We formulate this as a series of multi-period OPF
problems embedded within a receding horizon control pro-
cess, which enables time-coupled components to be accu-
rately controlled in an uncertain environment. A multi-
period OPF is first solved over a horizon of n € N time
steps, the decision in the first step is acted on, and then the
process repeats with the window shifted forward by one. In
this paper we focus on solving the multi-period OPF within
a single horizon, and the actions that agents take to imple-
ment the first decision.

Note that the formulation that we use breaks away from
the standard in power systems in order to decompose the
network and distribute the problem. Fig. [I] highlights the
difference between a standard line diagram and our formula-
tion. In our model, a network N consists of a set of compo-
nents C, terminals 7" and connections L. Each component
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Figure 1: Conversion from a standard line diagram to the
component orientated representation.

c € C (e.g., bus, line, generator, load) has a set of terminals
T. C T which can be connected to the terminals of other
components, where the T, sets partition 7. Each connec-
tion | € L is a pair of terminals, i.e. LC T x T.

3.1 Connections

Connections exist between the terminals of two different
components. We use the quantities of real power, reactive
power, voltage and voltage phase angle (p,q,v,0 € R" re-
spectively) to model the flow of power into a component
through a terminal. These are vectors in order to capture
each time step in the horizon. For convenience, we use a
parent vector y; € R*" to represent all variables for a termi-
nal i € T, where y; := (pi, @, vi,0:)". When two terminals
are connected together, (i,5) € L, we pose the following
constraints:

pit+p;=0, ¢+q¢=0, wvi-v;=0, 0;—0;=0

The first two constraints ensure that for a connected pair
of terminals, at each time step, any power that leaves one
terminal must enter the other. The second two constraints
ensure that the connected terminals have the same voltage
and phase angle. This duplication of variables is necessary
in order to decompose the problem for our distributed al-
gorithm. To avoid confusion, recall that connections and
terminals are different from lines and buses (see Fig. [1)).
We rewrite these constraints as y; + Ay; = 0 for y, where
A is the appropriate 4n x 4n diagonal matrix. Further, we
define the connection function A : R*™ x R*" — R*" as the
LHS of this constraint for convenience: h(y;,y;) := y; + Ay;.

3.2 Components

At a high level, each component ¢ € C has a variable
vector x. € R, an objective function f. : R* +— R, and
a constraint function g. : R* +— R, where ge(ze) < 0.
For a component ¢ € C, the vector z. includes all terminal
variables for that component: y;, Vi € Tt.

The objective function is used to model any costs or pref-
erences that a component may have other than the direct
payments they make to the market for their consumption.
For a generator this can be the fuel costs, for a house this
might be temperature comfort preferences, and other com-
ponents like a line will not have any costs.

In the following sections we describe at a lower level the
models used for the components in our experiments. When
necessary, we use t € {0,...,n} to index vectors by time,
otherwise we imply standard vector operations. The index
where t = 0 is used to represent the value of the variable
at the beginning of the current horizon, which we assume is
known.

3.2.1 Bus

A bus has a variable number of terminals which depends
on how many other components connect to it. For exam-
ple, a bus might be connected to a generator, a load and 3
lines for a total of 5 terminals. Regardless of the number of
terminals, the constraints take the form:

Dopi=0 > ¢=0

1€Te i€Te
Vi,j €Te:v; =vy5, 0; =0

The first two constraints are an expression of Kirchhoff’s
current law (KCL) in terms of power flows. The remain-
ing constraints ensure that all terminal voltages and phase
angles are the same.

3.2.2 Line

A line is a two terminal component which transports power
from one location to another, typically from bus to bus. We
model a line as having a constant conductance g € R4, sus-
ceptance b € R and maximum apparent power s € R;. The
AC power flow equations are derived from Ohm’s law, where
Vi, j € Te,i # j:

pi = gui — guivj cos(0; — 0;) — bvjv; sin(6; — ;) (1)
qi = —b’l)i2 + bUﬂ]j COS(ai — GJ) — guiv; sin(@i — GJ) (2)
s>pl+q, v<vi<v, 6;—0;<60 (3)

These constraints are identical for each time step, so we have
left out the indexing by time to improve clarity. These equa-
tions are non-convex, so they are often either approximated
or relaxed, as we will discuss further in Section m

3.2.3 Generator

A generator is a single terminal component which pro-
duces real and reactive power. In our formulation the gen-
erator has a floating phase angle and voltage. A generator
has lower and upper real and reactive power limits such that
pit € [p,P] and qi+ € [q, 7], a ramping rate p” € Ry and a
quadratic cost function f for generation costs:

f@) =pi¥pi — 4" p;
Ve {l,...,n}:—p" <pit—pit-1 <p"

where ¥ € R}*" is a diagonal matrix and ¢ € R}. More
advanced generator models with non-convex start up costs
and minimum outputs can be modelled in this framework
but are not considered here. They will be investigated in fu-
ture work to see how they impact the distributed algorithm.

3.2.4 Shiftable Load

A shiftable load is a single terminal component used to
model electrical loads like dish washers and clothes dryers.
A household has some flexibility on when these loads can
run, and will schedule them to minimise the costs they pay
for the electricity. These loads must start running between
an earliest and a latest start time: ¢°, ¢ € N. To model this
we introduce binary variables v € {0,1}" for the horizon. A
value of 1 indicates that the component starts at the given
time. A component runs for a duration of d € N consecutive
time steps, during which it consumes a load of p"°™ € R.

t

tl
Dit = pnom Z Uyt Z up =1

t'=t—d+1 t=te
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A convex relaxation of this component can be obtained by
relaxing the integrality requirement: u € [0,1]". Shiftable
loads with more complex time-varying power consumptions
can be modelled as in [30]. We expect the results presented
here will carry over to this more complicated model, but
leave a thorough check to future work.

3.2.5 Other Components

A whole range of other components can easily be modelled
within this framework, for example, batteries, inverters, so-
lar PV, electric vehicles, HVACs and voltage regulators (see
[30] for additional models). Indeed we have experimented
with batteries and solar PV in our implementated algorithm,
but in this paper we focus on the more difficult to handle
shiftable loads.

3.3 Optimisation Problem

Now that we have the component models and the relations
between them, we can write down the multi-period OPF
problem for one horizon. The objective is to minimise the
sum of all component cost functions, subject to component
and terminal connection constraints. This is a utilitarian
view of the problem.

mzinz fc(étc) (4)

ceC
st. Vee C : ge(ze) <0 (5)
V(i,7) € L: h(yi,y;) =0 (6)

4. DISTRIBUTED ALGORITHM

The next step is to show how this multi-period optimisa-
tion problem can be solved in a distributed manner. The
end result is an iterative algorithm where each component
(household, generator and network device) selfishly opti-
mises its own consumption/production profile for the cur-
rently standing prices. These profiles are then communi-
cated amongst connected components and the prices are
modified in order to encourage agreement and consistency.

In order to distribute and solve the problem in this way we
use the alternating direction method of multipliers (ADMM)
algorithm. ADMM is a variation of the standard augmented
Lagrangian method that enables problem decomposition |6,
11} 14]. The augmented Lagrangian relaxation applied to
the connection constraints @ is:

‘C(Lv Y, z, )‘7 P) = Z fc(xc)
ceC
P 2 T
+ 32 [Blihty, 2)IE + LAy, 2)]
(i,5)€L
where p € (0,00) is a penalty parameter and \; ; € R*™ are
the dual variables for the connection constraints.

These dual variables represent the locational marginal prices

in our problem, or put another way, connection dependent
RTPs. These prices are used to charge (or pay) components
for the power that they exchange through their terminals.
For example, a component with a terminal ¢ (connected to
terminal j) will pay, or be paid an amount equal to:

AbjpPi + Ml + M v + A 00 (7)

Where we have split up the dual variables so that it is
clear how they associate with each physical power quantity.
These prices are based on not just the cost of generation,
but also account for line losses and adjust to prevent con-
gestion. They provide a natural market mechanism for the
fair distribution of payments from consumers to producers.

4.1 Algorithm

A single iteration of the ADMM algorithm consists of two
phases followed by a dual variable update. Components are
each allocated to one of the two phases. The component sets
C1 and (2, and the variable vectors ;1 and xs represent this
allocation.

The connections are split into three parts: Li, L2 and
Ly. The intra-phase connections Li (L2) are those that
are between components in C1 (C2). The inter-phase con-
nections Li 2 are those where one component is in C and
the other is in C2. The augmented Lagrangian relaxation is
only applied to the inter-phase connections.

The superscript £ € N is used to indicate the k-th iter-
ation. At the start of the algorithm all terminal and dual
variables are initialised to some values yl@) and )\E?j). For the
k-th iteration ADMM proceeds as follows:

1. Optimise for x1, holding x2 constant at its k — 1 value
2. Optimise for z2, holding z; constant at its k value
3. Update the dual variables A

For our optimisation problem this becomes:

e® = argmin £(L12,y,y% ", A7 ph) (8)

z1
st. Ve € Cr: ge(ze) <0
V(i,7) € L h(yi,y;) =0
w;k) = arg min ﬁ(Ll,Q,y(k),y,)\(k_l),pk) 9)

e
s.t. Ve € Ca i ge(ze) <0
V(i,j) € L2 : h(yi,y;) =0
¥(i,5) € Liz : AL =AY 4 p®h™ ) (10)

In the simple case when p is constant, f. and g. are convex,
and h is affine, ADMM converges to a global optimum [6].

If a component has no intra-phase connections, then it can
be separated from the optimisation problem for its phase,
and can therefore be solved independently. We adopt the
partitioning scheme where C contains all buses and C the
rest of the network. This allows us to fully separate all
components within phases, since buses will never connect to
other buses (Lo = @) and non-bus components will never
connect to other non-bus components (L = 0). In this way
each component acts as an independent agent and commu-
nicates only to other directly connected agents. As an ad-
ditional benefit, some components are simple enough when
separated that they have closed-form solutions that can be
calculated at each iteration, instead of invoking an optimi-
sation routine [26]. We adopt such closed-form solutions for
buses as proposed in [22].

4.2 Residuals and Stopping Criteria

As in [22|, we use primal and dual residuals to define the
stopping criteria for our algorithm. The primal residuals
represent the constraint violations at the current solution.



We combine the residuals of all connections into a single
vector 7. By indexing into the inter-phase connections
Ly = {(i1,j1), (i2, j2), . . .}, the primal residuals are:

k k) (k k) (k T
i = ()l )
The dual residuals give the violation of the KKT stationar-
ity constraint at the current solution. We collect the dual
residuals for each connection into the vector r4. For ADMM,
the dual residuals are (see [6] for derivation):
k k k—1 k k—1
ri? = p(AyY — Ayl AySe — Ayl )T

J1 J2

These residuals approach zero as the algorithm converges to
a KKT point. We consider that the algorithm has converged
when the scaled 12-n01(f}£r)15 of these 1resid(}cl)als are smaller than
a tolerance e: \/—MHTP Iz < e, \/—Mﬂrd 2 < e. Here M is
the total number of inter-phase terminal constraints 4n|L1 2|
minus the number of terminal constraints that are trivially
satisfied (e.g., floating voltages and phase angles for gen-
erators). It is used to keep the tolerance independent of
problem size.

S. IMPLEMENTATION

We developed an experimental implementation of the above
approach in C++ using Gurobi [17] and Ipopt |35, [19] as
backend solvers for subproblems. Gurobi is used for mixed-
integer linear or quadratically constrained problems, and
Ipopt for more general nonlinear problems. CasADi |1] was
used as a modelling and automatic differentiation front end
to Ipopt. This implementation was designed with flexibil-
ity in mind, so that a wide range of experiments could be
conducted.

In a fully distributed real-world implementation every house,

generator, bus, line, and other component could have its own
collocated computational node. However, from a practical
point of view it might make more sense to have the compu-
tational parts of the network located separately from their
components and even grouped together. For example, all
the buses and lines of a single feeder could be managed by a
single node, which communicates to downstream houses and
the upstream substation. A whole range of practical factors
such as speed, communications, costs, robustness and main-
tenance would need to be considered before a decision could
be made on the right architecture.

Our experimental setup is a sequential implementation of
the ADMM algorithm, however we timed the slowest com-
ponent at each iteration to get an idea of how long a fully
distributed implementation would take.

The experiments were run on machines with 2 AMD 6-
Core Opteron 4184, 2.8GHz, 3M L2/6M L3 Cache CPUs
and 64GB of memory.

6. TEST MICROGRID

Our experiments are based around a modified 70 bus 11kV
benchmark distribution network [10] (shown in Fig. [2), which
was chosen because it has a comparable size to that of a sub-
urb. We close all tie lines in the network in order to change
it from a radial to a meshed configuration. We expect mi-
crogrids to take on more of a meshed network structure to
improve reliability and efficiency, and to better utilise dis-
tributed generation.

The benchmark comes with a static PQ load at each bus,
which we replace with a number of houses (around 50 on

Figure 2: 70 bus network showing buses, lines and the gen-
erators/substations in grey.

average) that depends on the size of the load. The houses
are connected directly to the 11kV buses as we have no data
on the low voltage part of the network. We assume that the
power bounds we place on each household will be sufficient
to prevent any capacity violation of the low voltage network.

A house is an independent agent that manages subcompo-
nents. For our experiments these include an uncontrollable
background power draw and two shiftable loads. A house
has a single terminal through which it can exchange real and
reactive power with the rest of the network. Each house has
an apparent power limit of s = 10kVA.

We develop a typical house load profile I; by modifying
an aggregate Autumn load profile for the ACT region in
Australia (data from [2]). We assume that households con-
sume on average 20kWh per day. This provides the basis
for all uncontrollable household background loads. For the
purposes of these experiments, we assume that the static
PQ loads in the benchmark were recorded when loads were
at 75% of their peak. We divide the benchmark static real
power at each bus by how much power a typical house con-
sumes at 75% of its peak power (1.45kW). Rounding down
this number gives us an estimate of the number of houses
which would be located at a given bus. This approach pro-
duces a total of h = 3674 houses for the network, about the
size of an Australian suburb.

We place two generators in the network where the distri-
bution system connects to upstream substations. These can
be thought of as either dispatchable microgenerators or as
representing the cost of importing power into the microgrid.

We randomise some of the generator and household load
parameters to produce different problem instances, as can be
seen in Table The time horizon spans 24 hours with 15
minute time steps, which produces a problem instance with
over 2 million variables per horizon. The experiments were
run with a primal and dual stopping tolerance of e = 10™*
and a fixed penalty parameter of p = 0.5. To improve nu-
merical stability, we scale the system to a per-unit represen-
tation with base values at 11kV and 100kVA. This means
that a real power residual of 10~ translates to 10W for a
connection, or about 1% of the average household load.

The starting values for the distributed algorithm are the
same for all terminals and all time steps. All are zero ex-
cept for the voltage magnitudes v+ = 1 and the real power
constraint dual variables A7 = 5, which translates to a price
of 200 $/MWh. This is a naive (or cold) starting point as it
uses no information about the particular network instance.



Table 1: Component parameters.

Comp | Param Value Units
Gen e max (4, ~ N'(40, 8%)) $/MWh
Gen U, max(1,~ N(10,22)) | $/MWhMW
Gen p,p —sx h/2,0 kW
Gen é, q 0.2p, —0.2p kvar

House Dt ~ N (11, (0.21:)) kW

House qt O.3pt kvar

Shift 1 d | max(15, ~ N/(90, 18 )) min

Shift 1 p"°™ | max(0.3, ~ N (3,0.67 )) kW

Shift 2 d | max(15, ~ N (60,122 )) min

Shift 2 p™°™ | max(0.1,~ N(1,0.22)) kW
Shift e, ¢ 0,n—d

In addition to the 70 bus microgrid, we also ran a series
of experiments on randomly generated networks similar to
those described in [22]. These randomly generated networks
ranged in size from 20 to 2000 buses, and were designed
to be highly congested. We will occasionally mention some
of the results from these random networks when they differ
from those of our 70 bus microgrid.

7. IMPACT OF POWER FLOW MODELS

In this section we investigate how the ADMM method per-
forms with different power flow models. We assess 5 different
models, of varying degrees of accuracy and complexity, in or-
der to establish the relative trade-offs when used as part of
a distributed algorithm.

7.1 Power Flow Models

Due to their non-convex nature, the AC power flow equa-
tions (1H3) are often either relaxed or approximated. Con-
vex relaxations include a quadratic constraint (QC) model
[18], a semi-definite program (SDP) [3], the dist-flow (DF)
relaxation [13| |4] and an equivalent SOCP relaxation |20}
5. Approximations include the linear DC (DC) model that
uses p and 6 |29, the LPAC model [8] and the quadratic
formulation (K) proposed by Kraning et al. [22].

The relaxations provide a lower bound on the globally op-
timal solution while the approximations can produce results
with an objective higher or lower than the global optimal.
Both the relaxations and approximations often produce so-
lutions that are not feasible for the exact model. These al-
ternative models, however, are often much simpler to com-
pute and their solutions can be used as a heuristic or the
bounds can be used for calculating optimality gaps. This
is why they are often used with difficult network optimisa-
tion problems, for example, OPF, OPF with line switching,
capacitor placement and expansion planing.

As shown in the related work section, some of these mod-
els have been used with the ADMM algorithm. What is
lacking is a comparison of the relative strengths and weak-
nesses between the different models when used in this con-
text. In this section we compare how the distributed ADMM
algorithm performs when using the AC, QC, DF, DC, and
K line models. We compare the differences in the solution
quality, feasibility, processing time and number of iterations
for our test network. What we find is that even though the
AC equations are non-convex, in practice they converge and
perform well compared to the other approaches. We also

Table 2: Iterations and parallel solve time for line models.

Iterations (std.) | Time in sec (std.)

AC 1945 (17) 148 (12)
QC 1951 (14) 546 (33)
DF 1933 (26) 110 (8)
DC 4140 (50) 244 (8)
K 1027 (52) 15 (1)

find that there is the potential to obtain faster convergence
using the K model, but at the expense of accuracy.

We generate 60 random instances of our test microgrid
with the binary variables for the shiftable devices relaxed.
These are then solved using the distributed algorithm de-
scribed in Section [d] for each of the 5 different power flow
models. In the first part of this section we discuss the con-
vergence, and in the second part we discuss the quality and
accuracy of the solutions.

7.2 Convergence

For all 60 instances and all 5 power flow models the al-
gorithm converged. This was expected for all the convex
models, but we had no guarantee for the non-convex AC
model. This gives us confidence that the exact AC model,
even though non-convex, can in practice be used within dis-
tributed algorithms.

Table 2] provides the number of iterations and time taken
to converge in the form of means and standard deviations.
The parallel solve time is the amount of time required to
solve the problem in a fully distributed implementation.
This was measured by summing together the time of the
slowest component at each iteration. In absolute terms, the
parallel solve time is relatively small despite the fact that
our implementation was designed with flexibility in mind,
not performance. That said the K model is significantly
faster relative to the other models. It converges in half the
number of iterations required by the next fastest model, but
as we will see in the next section, it gives us an inaccurate
result.

The congested random networks produce similar results.
One difference is that for a number of instances the K model
was infeasible (would not converge) due to its tendency to
exaggerate line losses, where we had a valid AC solution. It
is expected that the DC model, and the relaxations to some
degree, will exhibit the reverse effect: returning a solution
when there is no feasible solution for the exact model. How-
ever, we did not come across such a scenario in our experi-
ments with the microgrid and congested random networks.

Fig. [B] shows an example of the primal residual conver-
gence for different line models (the dual residuals are simi-
lar). The AC, QC and DF models overlap. One unintuitive
result is the fact that the DC model converges poorly when
it is in fact a very simple linear model. Large oscillations
build up during the solution process which slows the rate of
convergence. We performed a series of experiments in order
to get a better understanding of this effect. The explanation
appears to be that the DC model behaves like an undamped
system, as it has no line losses and only linear constraints.
The DC model will have a stronger response for a given
change in its terminal dual variables. The net effect is that
oscillations build up across the network during the solving
process. On the other hand the K model overestimates line
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losses, which means it is much less sensitive and no oscilla-
tions form. The AC, QC and DF models are somewhere in
between these two extremes.

7.2.1 Warm Starting

It is important to point out that we are giving the algo-
rithm a naive starting point for both the primal and dual
variables, as described in Section [f] In practice, the reced-
ing horizon control scheme will provide an excellent warm
starting point, because the values from the previous horizon
can be used for all but one time step. As a sanity check,
we performed warm starting experiments for the AC model.
Similar to what was done in [22], we duplicate a problem
instance and then randomly resample the household back-
ground power and shiftable device power parameters accord-
ing to the rule: p ~ pN(1,06%). We used the solution of
the original instance as a starting point for the modified in-
stance. For o = 0.2 the warm started run only needed 11%
of the original iterations on average. In a second experi-
ment we fully correlated the resampling step, which could
represent a correlated change in solar panel output for many
households. With o = 0.2, only 29% of the original itera-
tions were required on average.

7.2.2 Communication

In reality, communication delay will play a major part in
the total solve time for the algorithm. The communications
could be done over existing internet infrastructure, or ded-
icated wired or wireless communications could be built for
the system to enable more direct communications. Regard-
less of what technology is used, for each iteration messages
need to be communicated from the first phase components
to the second phase components and then back again. If we
assume each of these hops takes 60ms, then 1000 iterations
would require up to 2 minutes of communication time. For
this reason, in certain circumstances it may be beneficial to
cut down the total number of iterations, even if it requires
more processing time per iteration.

We expect the mechanism can be designed to be quite ro-
bust to intermittent drops in communication. For example,
if a component fails to receive a message from another con-
nected component, then they can continue working by using
the last received message. If a connection is dropped for
an extended period, then the system could fall back to load

predictions based on historical data and some conservative
pricing scheme could come into place.

7.3 Solution Quality

Next we show the solution qualities for the different line
models. For each model we calculate the percentage dif-
ference in objective value relative to the best known AC
solution: 100 - (f — foest)/fvest- The means and standard
deviations of the 60 instances are:

QC  -0.031% (0.008%) | DF  0.039% (0.018%)
DC  -3.541% (0.072%) | K 4.726% (0.090%)

Because the AC equations are non-convex, we don’t have a
guarantee that the solutions they produce are globally opti-
mal. However, they provide a feasible upper bound on the
global optimal. On the other hand, the QC and DF models
are convex relaxations of the AC equations, so they provide
a lower bound on the global optimal. Therefore the global
optimal solution resides somewhere between the values of
the AC solution and the QC and DF solutions.

With this in mind, we find that the AC, QC and DF mod-
els all produce solutions which are very close to each other.
The difference is within the margin of error of the objective
function afforded by our stopping criteria, which we estimate
to be 1% (see Section [6). This indicates that the AC, QC
and DF models produce solutions that are within 1% of the
global optimal. They may in fact be closer than this, but we
would need to run the experiments with tighter tolerances
in order to check. On a limited number of instances we did
just this, and found the gap between the objective of the
AC model and its convex relaxations to further shrink into
insignificance.

These results give us confidence that the non-convex AC
model, which is the only one that guarantees Ohm’s law is
satisfied, produces solutions that are very close to optimal.
The QC and DF models produce results with an objective
that is very close to the AC model, but even with this small
difference, there is the risk that the solutions violate con-
straints in the exact AC model. Other work has come to
a similar conclusion, but in a more traditional OPF setting
|18} 127, [12].

There is quite a different story for the approximate mod-
els. The DC model underestimates the optimal value by
around 3.5% while the K model overestimates it by around
4.7%. Part of the reason for this is that the DC model com-
pletely ignores line losses while the K model overestimates
them. Even though the K model has fast convergence, it
is unlikely to useful on its own in a realistic setting due to
its poor accuracy. However, it might be useful in hybrid
approaches where line models are swapped, e.g., from K to
AC, part way through the solution process in order to speed
up convergence.

These results show the feasibility of using the non-convex
AC power flow equations for solving a distributed OPF prob-
lem in a microgrid context. The K model adopted in [22]
converges much faster, but it is unlikely to be usable in a
realistic setting, as it ignores voltages and reactive power,
and produces overly high costs.

8. DISCRETE DECISIONS

We now want to solve the multi-period OPF for the test
microgrid where the binary variables in the shiftable loads
are no longer relaxed. In order to do this we extend the



algorithm so that it can manage discrete decisions. The fo-
cus here is on the scheduling of shiftable loads within house-
holds, but discrete decisions can also occur in some generator
models and for network switching events.

We identify 3 different approaches to managing discrete
decisions. Although they are quite simple, they are nonethe-
less very effective at managing the shiftable loads within
households.

8.1 Methods

We investigate 3 tractable methods for dealing with in-
teger variables which have no global optimality guarantees.
Just as we did for the AC equations, we will compare our
result to a lower bound in order to get an understanding of
the optimality gap. We categorise these methods as:

e Relax and price (RP)
e Relax and decide (RD)
e Unrelaxed (UR)

The RP and RD approaches are broken up into 2 and 3
stages respectively. The first stage, called the negotiation
stage, is common to both methods. All integer variables
are relaxed and the distributed algorithm is run until con-
vergence, just like what was done for the power flow ex-
periments. At this point the integer variables may take on
fractional values, and this solution gives a lower bound on
the global optimal solution. In the second stage each com-
ponent makes a local decision in order to force any fractional
values to integers. Recall from Section that shiftable
devices have a binary variable u; for each time step, only
one of which can take on the value 1 to indicate the starting
time.

8.1.1 Relax and Price

In the second stage of the RP method, each house per-
forms a local optimisation to determine how to enforce inte-
ger feasibility of u;. We designed a range of cost functions
which penalise a component if it changes its terminal values
from those that were negotiated in the first stage. For a
given cost function each house solves a Mixed-Integer Pro-
gram (MIP) to obtain an integer-feasible solution. The two
most effective cost functions that we identified are:

foly, 5, A) = Ay + ah(y,9) " h(y, ) (11)
f3(y. 9, N) = ATAG + ah(y,§) " Ah(y, §) (12)

where, for a given house to bus connection, § is the negoti-
ated terminal values for the bus and X\ the negotiated dual
variables. We use A to represent the diagonal matrix where
A := |\ and « is a penalty parameter.

The first function charges households at the negotiated
price for what they actually consume, but they are also
charged a quadratic penalty for operating away from the
negotiated consumption. The second function requires the
household to pay for all power that was negotiated in the
first stage. As with the first function, a penalty is charged for
operating away from the negotiated operating point, how-
ever the penalty is scaled by the dual variables, which can
vary with time.

After this local optimisation step, we check that the solu-
tion is feasible and what the overall cost is. In order to do
this we need to put some degrees of freedom back into the

problem. In power networks the dispatch of generators are
established in advance, in response to an estimated demand.
This forecast is never perfect, so a certain number of gen-
erators are paid to perform frequency regulation in order to
balance demand in real time. In our experiments we employ
both our generators for this use by allowing them to adjust
their output. For these experiments we assume the same
cost function and prices for both dispatch and frequency
regulation.

8.1.2 Relax and Decide

In the second stage of the RD method, the largest u; value
of each shiftable component is chosen to be fixed at 1 and
the rest set to 0. In the third stage the distributed algorithm
is restarted in order to converge to a new solution that is
integer feasible.

8.1.3 Unrelaxed

The final approach, UR, consists of a single stage where
it attempts to enforce integrality satisfaction at each itera-
tion of the distributed algorithm. We have already foregone
theoretical convergence guarantees by our adoption of the
non-convex AC equations. Here we push the ADMM algo-
rithm even further by allowing discrete variables into the
algorithm (B}{I0), where Gurobi solves MIPs for houses, and
Ipopt NLPs for lines.

We ran experiments on 60 random instances of our test
microgrid for each of the three approaches. We use the AC
line model for each experiment and a penalty of a = 10 for
the RP approach. In the following sections we discuss the
convergence of the methods and the quality of the solutions.

8.2 Convergence

None of the approaches are guaranteed to find an integer
feasible solution if one exists, however, in practice they all
converged to feasible solutions for all experiments on our
test microgrid.

The RP method only marginally increases the solve time
above the results in Section m The RD method requires a
small amount of extra time as it performs a warm restart of
the distributed algorithm. The UR method takes 1.7 times
longer on average, which is a result of the fact that it solves
MIPs during each iteration.

8.3 Solution Quality

In order to assess the solution quality for each method,
we compare the change in objective value relative to the
relaxed version of the problem. The results are shown in
Fig. @, where we have separated the objective into terms for
the cost of generation and the charge to households. The
charge is the sum of household objective functions, which
represents the amount of money they pay for their electricity.
For the RP methods this is given by the cost functions in the
previous section. For the RD and UR methods the charge
is simply the final ATy for each house.

For the relaxed problem itself, the true cost of generation
can be different from the amount households are charged,
as we are dealing with marginal prices. In addition to this,
network congestion typically generates additional revenue
above the cost of generation itself. An increase in cost for
the integer feasible solution relative to the relaxed problem
is an indication of the additional cost to the generators for
balancing supply. When household charge increases rela-
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Figure 4: Change in generator cost and household charge
relative to relaxed solution.

tive to the relaxed solution, this indicates that households
were forced to change their consumption from the negotiated
amount to ensure integer feasibility of the shiftable loads.

All methods produce costs that are within 1% of the re-
laxed problem, and hence also the global optimum. There is
no significant difference between the methods as they reside
within our estimated margin of error based on our stopping
tolerance. What these results suggest is that we have a tight
relaxation of the integer problem. A contributing factor is
that each shiftable load only contributes a tiny amount to
the overall power demand.

By artificially increasing the size of the shiftable loads by
more than an order of magnitude, and heavily congesting the
network, we do find instances where there is a significant gap
between the relaxed solution and the candidate. However,
for the realistically sized residential shiftable loads as utilised
in our test microgrid, the relaxation was tight.

The charges to households are significantly higher for the
RP method without gaining any benefit in terms of reduced
costs. We ran the same experiments with a much smaller
«, which all but eliminated charges without any increase
to costs. When battery storage is introduced, we expect
households will have even more flexibility in how they reach
their negotiated consumptions, therefore further reducing
incurred charges. This suggests that for the sole purpose of
managing shiftable loads, there is no need to have a strong
penalty. However, the penalty may serve a purpose for man-
aging the effects of uncertainty in the network, and to pre-
vent agents from lying during the negotiation stage.

All of the methods we have presented provide an efficient
means for dealing with the discrete decisions in a household.
Other factors such as the way they can handle uncertainty
and the need for a penalty for agents gaming the system will
affect the choice between these methods.

9. CONCLUSION AND FUTURE WORK

We have presented a distributed demand response mech-
anism for operating a microgrid. It can coordinate a whole
range of distributed agents with time-coupled behaviours,
whilst preserving network constraints. It also provides a
natural way of pricing power in the network.

Using this mechanism we have successfully compared the
performance of a range of power flow models in a meshed

microgrid, and introduced simple but effective approaches to
handling the shiftable loads within households. We devel-
oped a suburb-sized test microgrid, and found that the full
non-convex AC equations produce close to optimal solutions
in short solve times. All three of our methods for handling
household shiftable loads produce close to optimal solutions
with only a moderate increase in solve times.

Our work has shown that in practice distributed algo-
rithms are not only feasible, but also highly effective at per-
forming demand response within a microgrid context.

In future research we will investigate alternative distributed
solving techniques with the aim of further improving the rate
of convergence. There are opportunities for finding closed-
form solutions for the exact AC equations, and to further
parallelise the problem by decomposing certain components
across time. It might also be possible to build a frequency
regulation market into the distributed algorithm.

We need further experiments to investigate if our results
carry over to larger discrete decisions, for example, those
related to large industrial plant, generator start-up costs,
and line switching. We also plan to answer the important
question of how susceptible this mechanism is to gaming in
practice, and if this is a problem, what can be done about
it.
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