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Abstract

Heuristic search is a powerful approach that has successfully
been applied to a broad class of planning problems, including
classical planning, multi-objective planning, and probabilistic
planning modelled as a stochastic shortest path (SSP) prob-
lem. Here, we extend the reach of heuristic search to a more
expressive class of problems, namely multi-objective stochas-
tic shortest paths (MOSSPs), which require computing a cov-
erage set of non-dominated policies. We design new heuristic
search algorithms MOLAO* and MOLRTDP, which extend
well-known SSP algorithms to the multi-objective case. We
further construct a spectrum of domain-independent heuris-
tic functions differing in their ability to take into account
the stochastic and multi-objective features of the problem to
guide the search. Our experiments demonstrate the benefits
of these algorithms and the relative merits of the heuristics.

1 Introduction
Stochastic shortest path problems (SSPs) are the de facto
model for planning under uncertainty. Solving an SSP in-
volves computing a policy which maps states to actions so
as to minimise the expected (scalar) cost to reach the goal
from a given initial state. Multi-objective stochastic short-
est path problems (MOSSPs) are a useful generalisation of
SSPs where multiple objectives (e.g. time, fuel, risk) need to
be optimised without the user being able to a priori weigh
these objectives against each other (Roijers and Whiteson
2017). In this more complex case, we now aim to compute
a set of non-dominated policies whose vector-valued costs
represent all the possible trade-offs between the objectives.

There exist two approaches to solving MOMDPs (Roi-
jers and Whiteson 2017), a special case of MOSSPs: inner
loop planning which consists in extending SSP solvers by
generalising single objective operators to the multi-objective
(MO) case, and outer loop planning which consists in solv-
ing a scalarised MOSSP multiple times with an SSP solver.
We focus on the former. The canonical inner loop method,
MO Value Iteration (MOVI) (White 1982) and its variants
(Wiering and de Jong 2007; Barrett and Narayanan 2008;
Roijers and Whiteson 2017), require enumerating the entire
state space of the problem and are unable to scale to the huge
state spaces typically found in automated planning.
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Therefore, this paper focuses on heuristic search meth-
ods which explore only a small fraction of the state space
when guided with informative heuristics. Heuristic search
has been successfully applied to a range of optimal plan-
ning settings, including single objective (SO) or constrained
SSPs (Hansen and Zilberstein 2001; Bonet and Geffner
2003; Trevizan et al. 2017), and MO deterministic plan-
ning (Mandow and Pérez-de-la-Cruz 2010; Khouadjia et al.
2013; Ulloa et al. 2020). Moreover, a technical report by
Bryce et al. (2007) advocated the need for heuristic search
and outlined an extension of LAO* (Hansen and Zilberstein
2001) for finite horizon problems involving multiple ob-
jectives and partial observability. Convex Hull Monte-Carlo
Tree-Search (Painter, Lacerda, and Hawes 2020) extends the
Trial-Based Heuristic Tree Search framework (Keller and
Helmert 2013) to the MO setting but applies only to finite-
horizon MOMDPs. Yet to the best of our knowledge there is
no investigation of heuristic search for MOSSPs.

This paper fills this gap in heuristic search for MOSSPs.
First, we characterise the necessary conditions for MOVI to
converge in the general case of MOSSPs. We then extend the
well-known SSP heuristic search algorithms LAO* (Hansen
and Zilberstein 2001) and LRTDP (Bonet and Geffner 2003)
to the multi-objective case, leading to two new MOSSP al-
gorithms, MOLAO* and MOLRTDP, which we describe
along with sufficient conditions for their convergence. We
also consider the problem of guiding the search of these al-
gorithms with domain-independent heuristics. A plethora of
domain-independent heuristics exist for classical planning,
but works on constructing heuristics for (single objective)
probabilistic or multi-objective (deterministic) planning are
much more recent (Trevizan, Thiébaux, and Haslum 2017;
Klößner and Hoffmann 2021; Geißer et al. 2022). Building
on these recent works, we investigate a spectrum of heuris-
tics for MOSSPs differing in their ability to account for the
probabilistic and multi-objective features of the problem.

Finally, we conduct an experimental comparison of these
algorithms and of the guidance obtained via these heuristics.
We observe the superiority of heuristic search over value it-
eration methods for MOSSPs, and of heuristics that are able
to account for the tradeoffs between competing objectives.



2 Background
A multi-objective stochastic shortest path problem (MOSSP)
is a tuple (S, s0, G,A, P, ~C) where: S is a finite set of states,
one of which is the initial state s0, G ⊆ S is a set of
goal states, A is a finite set of actions, P (s′ | s, a) is the
probability of reaching s′ after applying action a in s, and
~C(a) ∈ Rn≥0 is the n-dimensional vector representing the
cost of action a. Two special cases of MOSSPs are stochastic
shortest path problems (SSPs) and bi-objective SSPs which
are obtained when n equals 1 and 2, respectively.

A solution for an SSP is a deterministic policy π, i.e.,
a mapping from states to actions. A policy π is proper or
closed w.r.t. s0 if the probability of reachingG when follow-
ing π from s0 is 1; if this probability of reaching G is less
than 1, then π is an improper policy. We denote by Sπ ⊆ S
the set of states visited when following a policy π from s0.
The expected cost of reaching G when using a proper policy
π from a state s ∈ Sπ is given by the policy value function
defined as

V π(s) = C(π(s)) +
∑
s′∈S

P (s′|s, π(s))V π(s′) (1)

for s ∈ Sπ \G and V π(g) = 0 for g ∈ G. An optimal policy
for an SSP is any proper policy π∗ such that V π

∗
(s0) ≤

V π
′
(s0) for all proper policies π′. Although π∗ might not be

unique, the optimal value function V ∗ is unique and equals
V π
∗

for any π∗.
Stochastic policies are a generalisation of deterministic

policies which map states to probability distributions of ac-
tions. The definitions of proper, improper and policy value
function are trivially generalised to stochastic policies. A
key result for SSPs is that at least one of its optimal policies
is deterministic (Bertsekas and Tsitsiklis 1991); thus it suf-
fices to search for deterministic policies when solving SSPs.

Coverage Sets and Solutions for MOSSPs
In the context of MOSSPs, given a policy π, we denote by
~V π : S → Rn≥0 the vector value function for π. The function
~V π is computed by replacing V and C by ~V and ~C in (1),
respectively. In order to define the solution of an MOSSP, we
need to first define how to compare two different vectors: a
cost vector ~v dominates ~u, denoted as ~v � ~u, if ~vi ≤ ~ui for
i = 1, . . . , n. A coverage set for a set of vectors V, denoted
as CS(V), is any set satisfying ∀~v ∈ CS(V),@~u ∈ CS(V)
s.t. ~u � ~v and ~u 6= ~v.1 An example of a coverage set is
the Pareto coverage set (PCS) which is the largest possible
coverage set. For the remainder of the paper we focus on the
convex coverage set (CCS) (Barrett and Narayanan 2008;
Roijers and Whiteson 2017) which is defined as the convex
hull of the PCS. Details for computing the CCS of a set
V with a linear program (LP) can be found in (Roijers and
Whiteson 2017, Sec. 4.1.3). We say that a set of vectors U
dominates another set of vectors V, denoted by U � V, if
for all ~v ∈ V there exists ~u ∈ U such that ~u � ~v.

1We will denote sets of vectors or functions which map to sets
of vectors with bold face, e.g. V, and single vectors or functions
which map to single vectors with vector notation, e.g. ~V .
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Figure 1: A MOSSP with action costs given by ~C(a1) =

[1, 0] and ~C(a2) = [0, 1].

Given an MOSSP define the optimal value function V∗

by V∗(s) = CCS({~V π(s) | π is a proper policy}). Then
we define a solution to the MOSSP to be any set of proper
policies Π such that the function ϕ : Π → V∗(s0) with
ϕ(π) = ~V π(s0) is a bijection. By choosing CCS as our
coverage set operator, we may focus our attention to only
non-dominated deterministic policies, where non-dominated
stochastic policies are implicitly given by the points on the
surface of the polyhedron drawn out by the CCS. In this
way, we avoid having to explicitly compute infinitely many
non-dominated stochastic policies.

To illustrate this statement, consider the MOSSP in
Fig. 1 with actions a1 and a2 where P (s0|s0, a1) =
P (g1|s0, a1) = P (s0|s0, a2) = P (g2|s0, a2) = 0.5 and
~C(a1) = [1, 0] and ~C(a2) = [0, 1]. One solution con-
sists of only two deterministic policies π1(s0) = a1 and
π2(s0) = a2 with corresponding expected costs [2, 0] and
[0, 2]. Notice that there are uncountably many stochastic
policies obtained by the convex combinations of π1 and π2,
i.e., πt(a1|s0) = 1 − t, πt(a2|s0) = t for t ∈ [0, 1]. The
expected cost of each πt is [2 − 2t, 2t] and these stochastic
policies do not dominate each other. Therefore, if the PCS
is used instead of the CCS in the definition of optimal value
function, then V∗(s0) would be {[2− 2t, 2t] | t ∈ [0, 1]}
and the corresponding solution would be {πt | t ∈ [0, 1]}.
The CCS allows us to compactly represent the potentially
infinite PCS by storing only the deterministic policies: in
this example, the actual solution is {π1, π2} and the optimal
value function is V∗(s0) = {[2, 0], [0, 2]}.

Value Iteration for SSPs
We finish this section by reviewing how to compute the op-
timal value function V ∗ for SSPs and extend these results
to MOSSPs in the next section. The optimal (scalar) value
function V ∗ for an SSP can be computed using the Value
Iteration (VI) algorithm (Bertsekas and Tsitsiklis 1996):
given an initial value function V 0 it computes the sequence
V 1, . . . , V k where V t+1 is obtained by applying a Bellman
backup, that is V t+1(g) = 0 if g ∈ G and, for s ∈ S \G,

V t+1(s) = min
a∈A

Qt+1(s, a) (2)

Qt+1(s, a) = C(a) +
∑
s′∈S

P (s′|s, a)V t(s′).

VI guarantees that V k converges to V ∗ as k → ∞ under
the following conditions: (i) for all s ∈ S, there exists a
proper policy w.r.t. s; and (ii) all improper policies have
infinite cost for at least one state. The former condition is
known as the reachability assumption and it is equivalent



Algorithm 1: MOVI

Data: MOSSP problem P = (S, s0, G,A, P, ~C),
initial values V(s) for each state s (default to
V(s) = {~0}), and consistency threshold ε.

1 while maxs∈S res(s) < ε do
2 for s ∈ S do
3 if s ∈ G then Vnew(s)← {~0} ;
4 else Vnew(s)← BellmanBackup(s) ;
5 res(s)← D(V,Vnew)

6 V← Vnew

7 return V

to requiring that no dead ends exist, while the latter con-
dition can be seen as preventing cycles with 0 cost. Notice
that finite-horizon Markov Decision Processes (MDPs) and
infinite-horizon discounted MDPs are special cases of SSPs
in which all policies are guaranteed to be proper (Bertsekas
and Tsitsiklis 1996).

3 Value Iteration for MOSSPs
Value Iteration has been extended to the MO setting
in special cases of SSPs, e.g. infinite-horizon discounted
MDPs (White 1982). In this section, we present the MO ver-
sion of Value Iteration for the general MOSSP case. While
the changes in the algorithm are minimal, the key contribu-
tion of this section is the generalisation of the assumptions
needed for convergence. We start by generalising the Bell-
man backup operation from the SO, i.e. (2), to the MO case.
For s ∈ S \G we have

Vt+1(s) = CS
( ⋃
a∈A

Qt+1(s, a)
)

(3)

Qt+1(s, a) = {~C(a)} ⊕
(⊕
s′∈S

P (s′|s, a)Vt(s′)
)
,

and Vt+1(g) = {~0} for g ∈ G where ⊕ denotes the sum of
two sets of vectors V and U defined as {~u+~v | ~u ∈ U, ~v ∈
V}, and

⊕
is the generalised version of ⊕ to several sets.

Alg. 1 illustrates the MO version of Value Iteration
(MOVI) which is very similar to the single-objective VI al-
gorithm with the notable difference that the convergence cri-
terion is generalised to handle sets of vectors. The Hausdorff
distance between two sets of vectors U and V is given by
D(U,V) = max

{
max
~u∈U

min
~v∈V

d(~u,~v),max
~u∈V

min
~v∈U

d(~u,~v)
}

for some choice of metric d such as the Euclidean metric.
We use this distance to define residuals in line 5. As with
VI, MOVI converges to the optimal value function at the
limit (White 1982; Barrett and Narayanan 2008) under cer-
tain strong assumptions presented in the next section. We
can extract policies with the choice of a scalarising weight
~w from the value function (Barrett and Narayanan 2008).

Assumptions for the Convergence of MOVI
Similarly to the SO version of VI, MOVI requires that the
reachability assumption holds; however, the assumption that

Algorithm 2: MOVI under Assumption 1

Data: MOSSP problem P = (S, s0, G,A, P, ~C),
initial values V(s) for each state s (default to
V(s) = {~0}), consistency threshold ε and
upper bound~b.

1 while maxs∈S res(s) < ε do
2 for s ∈ S do
3 if s ∈ G then Vnew(s)← {~0} ;
4 else Vnew(s)← BellmanBackupB(s) ;
5 res(s)← D(V,Vnew)

6 V← Vnew

7 for s ∈ S do V(s) = V(s) \ {~b} ;
8 return V

improper policies have infinite cost needs to be generalised
to the MO case. One option is to require that all improper
policies cost ~∞ which we call the strong improper pol-
icy assumption and, if it holds with the reachability as-
sumption, then MOVI (Alg. 1) is sound and complete for
MOSSPs. The strong assumption is very restrictive because
it implies that any cycle in an MOSSP must have a cost
greater than zero in all dimensions; however, it is common
for MOSSPs to have zero-cost cycles in one or more dimen-
sions. For instance, in navigation domains where some ac-
tions such as wait, load and unload do not consume fuel and
can be used to generate zero-fuel-cost loops.

Another possible generalisation for the cost of improper
policies is that they cost infinity in at least one dimension.
This requirement is not enough as illustrated by the (deter-
ministic) MOSSP in Fig. 2. The only deterministic proper
policy is π(s0) = ag with cost [0, 1], and the other determin-
istic policy is π′(s0) = a1, π

′(s1) = a2 which is improper
and costs [∞, 0]. Since neither [0, 1] or [∞, 0] dominate each
other, two issues arise: MOVI tries to converge to infinity
and thus never terminates; and even if it did, the cost of an
improper policy would be wrongly added to the CCS.

These issues stem from VI and its generalisations not ex-
plicitly pruning improper policies. Instead they rely on the
assumption that improper policies have infinite cost to im-
plicitly prune them. This approach is enough in the SO case
because any proper policy dominates all improper policies
since domination is reduced to the ‘≤’ operator; however,
as shown in this example, the implicit pruning approach for
improper policies is not correct for the MO case.

We address these issues by providing a version of MOVI
that explicitly prunes improper policies and to do so we need
a new assumption:

s0s1 g
a2

a1 ag

Figure 2: An MOSSP with action costs given by ~C(a1) =

[1, 0], ~C(a2) = [1, 0], ~C(ag) = [0, 1].



Assumption 1 (Weak Improper Policy Assumption). There
exists a vector ~b ∈ Rn≥0 such that for every improper policy
π and s ∈ S, ~V π(s) 6� ~b, and for every proper policy π and
s ∈ S, ~V π(s) � ~b and ~V π(s) 6= ~b.

The weak assumption allows improper policies to have
finite cost in some but not all dimensions at the expense of
knowing an upper bound~b on the cost of all proper policies.
This upper bound ~b lets us infer that a policy π is improper
whenever ~V π(s) 6� ~b, i.e., that ~V π(s) is greater than ~b in at
least one dimension.

Alg. 2 outlines the new MOVI where the differences can
be found in lines 4 and 7. In line 4, we use a modified Bell-
man backup which detects vectors associated to improper
policies and assigns them the upper bound ~b given by the
weak improper policy assumption. The modified backup is
given by

Vt+1(s) = CSB

(⋃
a∈A

Qt+1
B (s, a)

)
(4)

Qt+1
B (s, a) = {~C(a)}⊕B

(⊕
s′∈S

BP (s′|s, a) ?BV
t(s′)

)
where ?B and ⊕B are generalisations to sets of vectors of

c ?B ~v=

{
~b if ~v 6� ~b
c~v else

~u⊕B ~v=

{
~b if ~u⊕ ~v 6� ~b
~u⊕ ~v else.

Also define CSB to be the modified coverage set oper-
ator which does not prune away ~b if it is in the input set.
The modified backup (4) enforces a cap on value functions
(i.e., Vt(s) � {~b}) through the operator ⊕B . This guaran-
tees that a finite fixed point exists for all ~V π(s) and, as a
result, that Alg. 2 terminates. Once the algorithm converges,
we need to explicitly prune the expected cost of improper
policies which is done in line 7. By Assumption 1, we have
that no proper policy costs ~b thus we can safely remove ~b
from the solution. Note that the overhead in applying this
modified backup and post-processing pruning is negligible.
Theorem 3.1 shows that MOVI converges to the correct so-
lution.
Theorem 3.1. Given an MOSSP in which the reachability
and weak improper policy assumptions hold for an upper
bound~b, and given a set of vectors V0 such that V0 � V∗,
the sequence V1, . . . ,Vk computed by MOVI converges to
the MOSSP solution V∗ as k →∞.

Proof sketch. By the assumption that V0 � V∗, we have
that MOVI will not prune away vectors associated with
proper policies which contribute to a solution. If V0 6� V∗,
e.g., V0(s) = {~b} for all s, then Alg. 2 is not guaranteed
to find the optimal value function since it will incorrectly
prune proper policies. Otherwise, we have that V1, . . . ,Vk

converges to V† = V∗ ∪ {~b} if the original MOVI in Alg.
1 does not converge, and V† = V∗ otherwise. For ex-
ample, V∗ = {[0, 1]} in the example seen in Fig. 2 but
V† = {[2, 2], [0, 1]} if we choose~b = [2, 2].

This convergence result follows by noticing that, by def-
inition of the modified backup in (4), every vector in Vt(s)

for all t dominates ~b. We may then apply the proof for the
convergence of MOVI with convex coverage sets by Bar-
rett and Narayanan (2008) which reduces to the convergence
of scalarised SSPs using VI in the limit, of which there are
finitely many since the number of deterministic policies is
finite. Here, we have for every ~w that ~w ·~b is an upper bound
for the problem scalarised by ~w. Finally, we have that line 7
removes~b from V† such that we correctly return V∗.

Note that the original proof for MOMDPs by Barrett and
Narayanan (2008) does not directly work for MOSSPs as
some of the scalarised SSPs have a solution of infinite ex-
pected cost such that VI never converges. The upper bound
~bwe introduce solves this issue as achieving this bound is the
same as detecting improper policies. The proof remains cor-
rect in the original setting applied to discounted MOMDPs
in which there are no improper policies.

Relaxing the Reachability Assumption
The reachability assumption can also be relaxed by
transforming an MOSSP with dead ends into a new
MOSSP without dead ends. Formally, given an MOSSP
(S, s0, G,A, P, ~C) with dead ends, let A′ = A∪ {give-up};
P (sg|give-up, s) = 1 for all s ∈ S and any sg ∈ G;
~C ′(a) = [ ~C(a) : 0] for all a ∈ A; and ~C ′(give-up) = [~0 : 1].

Then the MOSSP (S, s0, G,A
′, P, ~C ′) does not have dead

ends (i.e., the reachability assumption holds) since the give-
up action is applicable in all states s ∈ S. This transfor-
mation is similar to the finite-penalty transformation for
SSPs (Trevizan, Teichteil-Königsbuch, and Thiébaux 2017);
however it does not require a large penalty constant. Instead,
the MOSSP transformation uses an extra cost dimension to
encode the cost of giving up and the value of the n+1-th di-
mension of ~C ′(give-up) is irrelevant as long as it is greater
than 0. Since the give-up action can only be applied once,
defining the cost of give-up as 1 let us interpret the n+1-
th dimension of any ~V π(s) as the probability of giving up
when following π from s.

4 Heuristic Search
Value iteration gives us one method for solving MOSSPs
but is limited by the fact that it requires enumerating over the
whole state space. This is impractical for planning problems,
as their state space grows exponentially with the size of
the problem encoding. This motivates the need for heuristic
search algorithms in the vein of LAO∗ and LRTDP for SSPs
(Hansen and Zilberstein 2001; Bonet and Geffner 2003),
which perform backups on a promising subset of states at
each iteration. To guide the choice of the states to expand
and explore at each iteration, they use heuristic estimates of
state values initialised when the state is first encountered.
In this section, we extend the concept of heuristics to the
more general MOSSP setting, discuss a range of ways these
heuristics can be constructed, and provide multi-objective
versions of LAO∗ and LRTDP.



Heuristics
For the remainder of the paper, we will call a set of vectors
a value. Thus, a heuristic value for a state is a set of vectors
H(s) ⊂ Rn≥0. We implicitly assume that any heuristic value
H(s) has already been pruned with some coverage set oper-
ator. The definition of an admissible heuristic for MOSSPs
should be at most as strong as the definition for deterministic
MO search (Mandow and Pérez-de-la-Cruz 2010).

Definition 4.1. A heuristic H for an MOSSP is admissible
if ∀s ∈ S \G,H(s) � V∗(s) where V∗ is the optimal value
function, and ∀g ∈ G,H(g) = {~0}.

For example, if for some MOSSP we have V∗(s) =
{[0, 2]} for a state s, then H(s) = {[0, 1], [3, 0]} and
H(s′) = {~0} for all other s′ is an admissible heuristic. As in
the single-objective case, admissible heuristics ensure that
the algorithms below converge to near optimal value func-
tions for ε > 0 with finitely many iterations and to opti-
mal value functions with possibly infinitely many iterations
when ε = 0.

Definition 4.2. A heuristic H for an MOSSP is consistent
if we have for all s ∈ S, a ∈ A that H(s) � {~C(a)} ⊕
(
⊕

s′∈S P (s′|s, a)H(s′)).

The definition of consistent heuristic is derived and gen-
eralised from the definition of consistent heuristics for deter-
ministic search: h(s) ≤ c(s, a, s′) + h(s′). The main idea is
that assuming non-negative costs, state costs increase mono-
tonically which results in no re-expansions of nodes in A∗
search. Similarly, we desire monotonically increasing value
functions for faster convergence.

We now turn to the question of constructing domain-
independent heuristics satisfying these properties from the
encoding of a planning domain. This question has only re-
cently been addressed in the deterministic multi-objective
planning setting (Geißer et al. 2022): with the exception
of this latter work, MO heuristic search algorithms have
been evaluated using “ideal-point” heuristics, which apply
a single-objective heuristic hi to each objective in isolation,
resulting in a single vector Hideal(s) = {[h1(s), . . . hn(s)]}.
Moreover, informative domain-independent heuristics for
single objective SSPs are also relatively new (Trevizan,
Thiébaux, and Haslum 2017; Klößner and Hoffmann 2021):
a common practice was to resort to classical planning heuris-
tics obtained after determinisation of the SSP (Jimenez,
Coles, and Smith 2006).

We consider a spectrum of options when constructing
domain-independent heuristics for MOSSPs, which we in-
stantiate using the most promising families of heuristics
identified in (Geißer et al. 2022) for the deterministic case:
critical paths and abstraction heuristics. All heuristics are
consistent and admissible unless otherwise mentioned.

• The baseline option is to ignore both the MO and stochas-
tic aspects of the problem, and resort to an ideal-point
heuristic constructed from the determinised problem.
In our experiments below, we apply the classical hmax

heuristic (Bonet and Geffner 2001) to each objective and
call this Hmax

ideal.

• A more elaborate option is to consider only the stochas-
tic aspects of the problem, resulting in an ideal-point
SSP heuristic. In our experiments, we apply the recent
SSP canonical PDB abstraction heuristic by Klößner and
Hoffmann (2021) to each objective which we call Hpdb2

ideal

and Hpdb3
ideal for patterns of size 2 and 3, respectively.

• Alternatively, one might consider only the multi-
objective aspects, by applying some of the MO deter-
ministic heuristics (Geißer et al. 2022) to the deter-
minised SSP. The heuristics we consider in our experi-
ments are the MO extension of hmax and canonical PDBs:
Hcomax

mo , Hpdb2
mo , and Hpdb3

mo . These extend classical plan-
ning heuristics by using MO deterministic search to solve
subproblems and combining solutions by taking the max-
imum of two sets of vectors with the admissibility pre-
serving operator comax (Geißer et al. 2022).

• The best option is to combine the power of SSP and MO
heuristics. We do so with a novel heuristic Hpdb

mossp which
extends the SSP PDB abstraction heuristic (Klößner and
Hoffmann 2021) to the MO case by using an MO exten-
sion of topological VI (TVI) (Dai et al. 2014) to solve
each projection and the comax operator to combine the
results. Our experiments use Hpdb2

mossp and Hpdb3
mossp.

(i)MOLAO∗

Readers familiar with the LAO∗ heuristic search algorithm
and the multi-objective backup can convince themselves that
an extension of LAO∗ to the multi-objective case can be
obtained by replacing the backup operator with the multi-
objective version. This idea was first outlined by Bryce,
Cushing, and Kambhampati (2007) for finite-horizon MDPs
which is a special case of SSPs without improper policies. In
the same vein as (Hansen and Zilberstein 2001), we provide
MOLAO∗ alongside an ‘improved’ version, iMOLAO∗, in
Alg. 3 and 4 respectively.

MOLAO∗ begins in line 1 by lazily assigning an initial
value function V to each state with the heuristic function, as
opposed to explicitly initialising all initial values at once. Π
is a dictionary representing our partial solution which maps
states to sets of optimal actions corresponding to their cur-
rent value function. The main while loop of the algorithm
terminates once there are no nongoal states on the frontier
as described in line 2, at which point we have achieved a set
of closed policies.

The loop begins with lines 3-5 by removing a nongoal
state s from the frontier representing a state on the boundary
of the partial solution graph, and adding it to the interior set
I . The nodes of the partial solution graph are partial solution
states, and the edges are the probabilistic transitions under
all partial solution actions. Next in line 6 we add the set of
yet unexplored successors of s to the frontier: any state s′ ∈
S \ I such that ∃a ∈ A,P (s′|s, a) > 0. Then we extract
the set Z of all ancestor states of s in the partial solution Π
using graph search in line 7. We run MOVI to ε-consistency
on the MOSSP problem restricted to the set of states Z and
update the value functions for the corresponding states in
line 8. The partial solution is updated in line 9 by extracting



Algorithm 3: MOLAO∗

Data: MOSSP problem P = (S, s0, G,A, P, ~C),
heuristic H, and consistency threshold ε

1 V← H; Π← ∅; F ← {s0} ; I ← ∅; N ← {s0}
2 while (F ∩N) \G 6= ∅ do
3 s← any element from (F ∩N) \G
4 F ← F \ {s}
5 I ← I ∪ {s}
6 F ← F ∪ (successors(s) \ I)
7 Z ← ancestorStates(s,Π)
8 V|Z ← MOVI(P |Z ,V|Z , ε)
9 for s ∈ Z do Π(s)← getActions(s,V) ;

10 N ← solutionGraph(sI ,Π)

11 return V

Algorithm 4: IMOLAO∗

Data: MOSSP problem P = (S, s0, G,A, P, ~C),
heuristic H, and consistency threshold ε

1 V← H; Π← ∅; F ← {s0} ; I ← ∅; N ← {s0}
2 while ((F ∩N) \G 6= ∅) ∧ (maxs∈N res(s) < ε) do
3 F = ∅
4 N ← postorderTraversalDFS(sI ,Π)
5 for s ∈ N in the computed order do
6 V(s)← BellmanBackup(s)
7 Π(s) = getActions(s,V)
8 if s /∈ I then F = F ∪ {s} ;
9 I = I ∪ {s}

10 return V

the actions corresponding to the value function with

getActions(s,V) = {a ∈ A | Q(s, a) ∩V(s) 6= ∅} .
This function can be seen as a generalisation of arg min to
the MO case where here we select the actions whose Q value
at s contribute to the current value V(s). Next, we extract
the set of statesN corresponding to all states reachable from
s0 by the partial solution Π in line 10.

The completeness and correctness of MOLAO∗ follows
from the same reasoning as LAO∗ extended to the MO case.
Specifically, we have that given an admissible heuristic the
algorithm achieves ε-consistency upon termination.

One potential issue with MOLAO∗ is that we may waste a
lot of backups while running MOVI to convergence several
times on partial solution graphs which do not end up con-
tributing to the final solution. The original authors of LAO∗
proposed the iLAO∗ algorithm to deal with this. We provide
the MO extension, namely iMOLAO∗. The main idea with
iMOLAO∗ is that we only run one set of backups every time
we (re-)expand a state instead of running VI to convergence
in the loop in lines 5 to 9. Backups are also performed asyn-
chronously using DFS postorder traversal of the states in the
partial solution graph computed in line 4, allowing for faster
convergence times.

To summarise, the two main changes required to extend

Algorithm 5: MOLRTDP

Data: MOSSP problem P = (S, s0, G,A, P, ~C),
heuristic H, and consistency threshold ε

procedure MOLRTDP(P, ε,H)
1 V← H
2 while ¬s0.solved do
3 visited← ∅
4 s← s0
5 while ¬s.solved do
6 visited.push(s)
7 if s ∈ G then break ;
8 V(s)← BellmanBackup(s)
9 a← sampleUnsolvedGreedyAction(s)

10 s← sampleUnsolvedNextState(s, a)

11 while ¬visited.empty() do
12 s← visited.pop()
13 if ¬checkSolved(s) then break ;

14 return V

routine checkSolved(s)
1 rv ← true; open ← ∅; closed ← ∅
2 if ¬s.solved then open.push(s) ;
3 while ¬open.empty() do
4 s← open.pop()
5 if res(s) > ε then
6 rv ← false
7 continue
8 for a ∈ getActions(s,V) do
9 for s′ ∈ successors(s, a) do

10 if ¬s′.solved ∧ s′ /∈ open ∪ closed
then open.push(s′) ;

11 if rv then for s ∈ closed do s.solved = true ;
12 else
13 while closed 6= ∅ do
14 s← closed .pop()
15 V(s)← BellmanBackup(s)

16 return rv

(i)LAO∗ to the MO case are (1) replacing the backup opera-
tor with the MO version, and (2) storing possibly more than
one greedy action at each state corresponding to incompa-
rable vector Q-values, resulting in a larger set of successors
associated to each state. These ideas can be applied to other
asynchronous VI methods such as Prioritised VI (Wingate
and Seppi 2005) and Topological VI (Dai et al. 2014).

MOLRTDP
LRTDP (Bonet and Geffner 2003) is another heuristic search
algorithm for solving SSPs. The idea of LRTDP is to per-
form random trials using greedy actions based on the current
value function or heuristic for performing backups, and la-
belling states as solved when the consistency threshold has
been reached in order to gradually narrow down the search
space and achieve a convergence criterion. A multi-objective



extension of LRTDP is not as straightforward as extending
the backup operator given that each state has possibly more
than one greedy action to account for. The two main changes
from the original LRTDP are (1) the sampling of a random
greedy action before sampling successor states in the main
loop, and (2) defining the descendants of a state by consider-
ing successors of all greedy actions (as opposed to just one
in LRDTP). Alg. 5 outlines the MO extension of LRTDP.

MOLRTDP consists of repeatedly trialing paths through
the state space and performing backups until the initial state
is marked as solved. Trials are run by randomly sampling a
greedy action a from getActions(s,V) at each state s fol-
lowed by a next state sampled from the probability distribu-
tion of a until a goal state is reached as in the first inner loop
from lines 5 to 10. The second inner loop from lines 11 to
13 calls the checkSolved routine in the reverse trial order to
label states as solved by checking whether the residual of all
its descendant states under greedy actions are less than the
convergence criterion.

The checkSolved routine begins with inserting s into the
open set if it has not been solved, and returns true other-
wise due to line 2. The main loop in lines 3 to 10 collects
the descendent states under all greedy actions (lines 8-10)
and checks whether the residual of all the descendent states
are small (lines 5-7). If true, all descendents are labelled as
solved as in line 11. Otherwise, backups are performed in
the reverse order of explored states as in lines 12 to 15.

The completeness and correctness of MOLRTDP follows
similarly from its single objective ancestor. We note specif-
ically that the labelling feature works similarly in the sense
that whenever a state is marked as solved, it is known for
certain that all its descendents’ values are ε-consistent and
remain unchanged when backups are performed elsewhere.

5 Experiments
In this section we empirically evaluate the different algo-
rithms and heuristics for MOSSPs in several domains. Since
no benchmark domains for MOSSPs exist, we adapt do-
mains from a variety of sources to capture challenging fea-
tures of both SSPs and MO deterministic planning. Our
benchmark set is introduced in the next section and it is fol-
lowed by our experiments setup and analysis of the results.

Benchmarks
k-d Exploding Blocksworld Exploding Blocksworld
(ExBw) was first introduced by Younes et al. (2005) and
later slightly modified for the IPPC’08 (Bryce and Buffet
2008). In ExBw, a robot has to pick up and stack blocks on
top of each other to get a target tower configuration. Blocks
have a chance of detonating and destroying blocks under-
neath or the table. We consider a version with no dead ends
using an action to repair the table (Trevizan et al. 2017).
We extend ExBw to contain multi-objective costs. ExBw-2d
has two objectives: the number of actions required to stack
the blocks and number of times we need to repair the table.
ExBw-3d has an additional action to repair blocks with an
objective to minimise the number of block repairs.

MO Search and Rescue Search and Rescue (SAR-n) was
first introduced by Trevizan et al. (2017) as a Constrained
SSP. The goal is to find, board and escort to a safe loca-
tion any one survivor in an n × n grid as quickly as possi-
ble, constrained by a fuel limit. Probabilities are introduced
when modelling fuel consumption and partial observability
of whether a survivor exists in a given location. The location
of only one survivor is known for certain. We extend the
problem by making fuel consumption as an additional ob-
jective instead of a constraint. A solution for a SAR MOSSP
is a set of policies with different trade-offs between fuel and
time.

MO Triangle Tireworld Triangle Tireworld, introduced
by Little and Thiébaux (2007) as a probabilistically interest-
ing problem, consists of a triangular grid of locations. The
goal is to travel from an initial to a target location where
each location has a probability of getting a flat tire. Some
locations contain a spare tire which the agent can load into
the car for future use. These problems have dead ends and
they occur when a tire is flat and no spare is available. We
apply the give-up transformation from Section 3 resulting in
an MOSSP with two objectives: total number of actions and
probability of using the give-up action.

Probabilistic VisitAll The deterministic MO Visi-
tAll (Geißer et al. 2022) is a TSP problem on a grid, where
the agents must collectively visit all locations, and each
agent’s objective is to minimise its own number of moves.
This problem is considered MO interesting because any
admissible ideal-point heuristic returns the zero vector
for all states since it is possible for a single agent to visit
all locations while no actions are performed by the other
agents. We extend this domain by adding a probabilistic
action move-risky which has probability 0.5 of acting as the
regular move action and 0.5 of teleporting the agent back to
its initial location. The cost of the original move action was
changed to 2 while the cost of the move-risky action is 1.

VisitAllTire This domain combines features of both the
probabilistic Tireworld and the deterministic MO VisitAll
domains into one that is probabilistically and MO interest-
ing. The underlying structure and dynamics is the same as
the deterministic MO VisitAll except that the move action
now can result in a flat tire with probability 0.5. We also
added the actions for loading and changing tires for each
of the agents. Similarly to Triangle Tireworld, the problems
in this domain can have dead ends when a flat tire occurs
and no spare tire is available. Applying the give-up transfor-
mation from Section 3 to this domain results in k + 1 cost
functions where k is the number of agents.

Setup
We implemented the MO versions of the VI, TVI, (i)LAO∗
and LRTDP algorithms and the MO version of the PDB
abstraction heuristics (Hpdb

mossp) in C++.2 PDB heuristics are
computed using TVI, ε = 0.001 and ~b = ~100. We include
in our experiments the following heuristics for deterministic

2Code at https://github.com/DillonZChen/cpp-mossp-planner
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Figure 3: Boxplot of CCS size of instances across domains
which have been solved at least once. Number of solved and
total instances for each domain is indicated in parentheses.

MO planning from (Geißer et al. 2022): the ideal-point ver-
sion of hmax (Hmax

ideal); the MO extension of hmax (Hcomax
mo );

and the MO canonical PDBs of size 2 and 3 (Hpdb2
mo and

Hpdb3
mo ). The SO PDB heuristics for SSPs from (Klößner and

Hoffmann 2021) of size 2 and 3 (Hpdb2
ideal and Hpdb3

ideal) are also
included in our experiments. All problem configurations are
run with a timeout of 1800 seconds, memory limit of 4GB,
and a single CPU core. The experiments are run on a cluster
with Intel Xeon 3.2 GHz CPUs. We used CPLEX version
22.1 as the LP solver for computing CCS. The consistency
threshold is set to ε = 0.001 and we set ~b = ~100. Each
experimental configuration is run 6 times and averages are
taken to reduce variance in the data.

We also modify the inequality constraint in Alg. 4.3
from Roijers and Whiteson 2017 for computing CCS to
~w · (~v − ~v′) + x ≤ −λ,∀~v′ ∈ V with λ = 0.01 to deal
with inevitable numerical precision errors when solving the
LP. If the λ term is not added, the function may fail to prune
unnecessary points such as those corresponding to stochastic
policies in the CCS, resulting in slower convergence. How-
ever, an overly large λ may return incorrect results by dis-
carding important points in the CCS. One may alternatively
consider the term as an MO parameter for trading off solu-
tion accuracy and search time, similarly to the ε parameter.

Fig. 3 shows the distribution of CCS sizes for different
domains. Recall that the CCS implicitly represents a poten-
tially infinite set of stochastic policies and their value func-
tions. As a result, a small CCS is sufficient to dominate a
large number of solutions, for instance, in Triangle Tire-
world, a CCS of size 3 to 4 is enough to dominate all other
policies even though the number of deterministic policies for
this domain is double exponential in its parameter n.

Results
Fig. 4 summarises our results by showing the cumulative
coverage of different planners and heuristics across all con-
sidered problems. The following is a summary of our find-
ings (we omit the MO in the planner names for simplicity):

What is the best planner and heuristic combination?
Referring to the overall cumulative coverage plot in Fig. 4a
and coverage tables in Tab. 1, we notice that LRTDP+Hpdb2

mossp

performs best followed by LRDTP+Hpdb2
mo , LRTDP+Hpdb3

mo
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Figure 4: Cumulative coverage of: (a) planners and heuris-
tics combinations (low-performing planners omitted); (b)
planners only, i.e., summation across different heuristics;
(c) heuristics only, i.e. summation across different planners;
(d) PDB approaches considered, i.e., summation across the
ideal-point, MO, and MOSSP approaches. Notice that the x-
axis is the same for all plots but the y-axis is different and
might not start at 0.

and iLAO∗+Hpdb3
mossp. The ranking of the top 3 planners re-

main the same if we normalise the coverage by domain.
We note that the considered Exbw3 problems had several

improper policies resulting in slow convergence of TVI for
solving PDBs of size 3. This is due to Assumption 1 and the



planner + heuristic coverage heuristic coverage

LRTDP Hpdb2
mossp 307.6± 2.7 Hpdb3

mossp 893.5± 1.9

LRTDP Hpdb2
mo 302.8± 2.1 Hpdb2

mossp 893.3± 3.2
LRTDP Hpdb3

mo 291.2± 1.3 Hpdb3
mo 871.2± 1.8

iLAO∗ Hpdb3
mossp 276.7± 0.7 Hpdb2

mo 851.8± 2.1

iLAO∗ Hpdb3
mo 272.0± 0.0 Hpdb3

ideal 768.7± 0.7

LRTDP Hpdb3
mossp 271.2± 1.7 Hmax

ideal 755.2± 0.7

LRTDP Hmax
ideal 263.2± 0.7 Hpdb2

ideal 737.2± 1.2
iLAO∗ Hpdb2

mo 262.0± 0.0 blind 572.9± 1.4

planner coverage PDB coverage

LRTDP 2297.3±3.0 Hpdb
mossp 1786.8±1.6

iLAO∗ 2111.7±0.7 Hpdb
mo 1723.0±2.0

LAO∗ 1529.0±1.2 Hpdb
ideal 1505.8±1.9

TVI 460.0± 0.5
VI 450.3± 0.7

Table 1: Average marginalised cumulative coverages with
95% confidence intervals. Higher values are better.

chosen~b = ~100 for our experiments which that requires the
cost of improper policies in each PDB to cost at least 100 in
one of its dimensions. Ignoring the Exbw3 domain, the top
3 configurations are LRTDP+Hpdb3

mossp, LRTDP+Hpdb2
mossp and

iLAO∗+Hpdb3
mossp and their 95% confidence intervals all over-

lap. The ranking of the top few planners remain the same if
the coverage is normalised.

What planner is best? To answer this question, we look at
the cumulative coverage marginalised over heuristics, that is,
we sum the coverage of a planner across the different heuris-
tics. The results are shown in Fig. 4b and Tab. 1 and the
best three planners in order are LRTDP, iLAO∗ and LAO∗.
Notice that the difference in coverage between LRTDP and
iLAO∗ is at 185.6 solved instances while the difference be-
tween TVI and VI is only 9.7. The ranking between planners
remains the same when the coverage is normalised per do-
main. Considering domains individually, LRTDP is the best
planner for Exbw and VisitAllTire while for iLAO∗ is the
best planner for SAR and Probabilistic VisitAll. For MO
Tireworld, both LRTDP and iLAO∗ are tied in first place.

What heuristic is best? The cumulative coverage
marginalised over planners for selected heuristics is shown
in Fig. 4c and Tab. 1. The MOSSP PDB heuristic of size 3
(Hpdb3

mossp) has the best performance followed by Hpdb2
mossp, Hpdb3

mo
and Hpdb2

mo . We note there is a large overlap in the 95% con-
fidence intervals of Hpdb2

mossp and Hpdb3
mossp due to the slow com-

putation of Hpdb3
mossp on Exbw3. The overlap disappears when

we remove the Exbw3 results with coverage and confidence
intervals given by 862.9 ± 3.0 and 807.6 ± 2.9 for Hpdb3

mossp

and Hpdb2
mossp, respectively. We further quantify heuristic accu-

racy using the directed Hausdorff distance between heuristic
and optimal values in Tab. 2. We notice that Hcomax

mo achieves
strong accuracy relative to other heuristics but has the worst
coverage of 504.5 due to its high computation time.
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SAR-4 100 97 44 93 92 44 44 38 26
SAR-5 100 97 43 93 92 43 43 37 27
ExBw-2d 100 59 22 51 45 51 45 51 45
ExBw-3d 100 58 22 52 44 52 44 52 44
Tireworld 100 100 68 100 100 68 68 57 13
Pr.VisitAll 100 100 54 100 100 61 53 22 12
VisitAllTire 100 100 50 100 100 66 45 66 45

Table 2: The mean relative error (%) of the heuristic
value relative to the optimal value at the initial state
computed with the directed Hausdorff distance divided
by the norm of the largest vector in the optimal value:
max~v∈V∗ min~u∈H d(~v, ~u)/max~v∈V∗ ‖~v‖. Only solved in-
stances for which all heuristics were computed for the initial
state within the time limit were considered. Best value in
each row is indicated in bold. Lower values are better.

What feature of MOSSPs is more important to capture in
a heuristic? To answer this question, consider the perfor-
mance of the 3 classes of PDB heuristics: probabilistic-only
PDBs (Hpdb

ideal), MO only PDBs (Hpdb
mo ), and MO probabilistic

PDBs (Hpdb
mossp). The cumulative coverage marginalised over

the different PDB heuristics shown in Fig. 4d and Tab. 1
highlights the effectiveness of MO PDBs. Hpdb

mossp is able to
solve 63.8 and 281 more instances than Hpdb

mo and Hpdb
ideal, re-

spectively. The ranking remains the same when the coverage
is normalised per domain. Moreover, notice in Tab. 2 that
Hpdb

mo heuristics are at least as informative as Hpdb
ideal heuristics

on all domains. Lastly, we note that an admissible ideal point
heuristic is upper bounded by {~u} where ~ui = min~v∈V∗ ~vi
for i = 1, . . . , n. These results suggest that it is more im-
portant for a heuristic to maintain the MO cost structure of
MOSSPs than the stochastic structure of actions.

6 Conclusion
In this work we define a new general class of problems,
namely multi-objective stochastic shortest path problems
(MOSSPs). We adapt MOVI which was originally con-
structed for solving multi-objective Markov Decision Pro-
cesses to our MOSSP setting with conditions for conver-
gence. We further design new, more powerful heuristic
search algorithms (i)MOLAO∗ and MOLRTDP for solv-
ing MOSSPs. The algorithms are complemented by a range
of MOSSP heuristics and an extensive set of experiments
on several benchmarks with varying difficulty and features.
Through our evaluation, we can conclude that MOLRTDP is
the best performing MOSSP solver, and abstraction heuris-
tics which consider both the MO and probabilistic aspects of
MOSSPs the best performing MOSSP heuristic. Our future
work includes adding probabilistic LTL constraints as addi-
tional multi-objectives in order to compute solutions to MO-
PLTL SSPs (Baumgartner, Thiébaux, and Trevizan 2018)
that are robust to the choice of probability thresholds.
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