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Abstract
Lifted message passing algorithms exploit repeated
structure within a given graphical model to answer
queries efficiently. Given evidence, they construct
a lifted network of supernodes and superpotentials
corresponding to sets of nodes and potentials that
are indistinguishable given the evidence. Recently,
efficient algorithms were presented for updating the
structure of an existing lifted network with incre-
mental changes to the evidence. In the inference
stage, however, current algorithms need to con-
struct a separate lifted network for each evidence
case and run a modified message passing algorithm
on each lifted network separately. Consequently,
symmetries across the inference tasks are not ex-
ploited. In this paper, we present a novel lifted
message passing technique that exploits symme-
tries across multiple evidence cases. The benefits
of this multi-evidence lifted inference are shown for
several important AI tasks such as computing per-
sonalized PageRanks and Kalman filters via multi-
evidence lifted Gaussian belief propagation.

1 Introduction
Message-passing algorithms, like Belief Propagation (BP)
[Pearl, 1991] and its variants, have proved empirically ef-
fective for solving hard/computationally intensive problems
in a range of important and real-world AI tasks. For ex-
ample, consider the well-known problem of web page rank-
ing. Viewing the web as a graph where nodes are web
pages and directed edges are hyperlinks between web pages,
a highly successful web page ranking metric computed from
this graph is the PageRank [Brin and Page, 2006]. Convert-
ing this graph to an ergodic Markov chain, the PageRank of
a web page node v is the (limit) stationary probability that a
random walker is at v. Recently, Bickson et al. have shown
how to compute the PageRank distributively and efficiently
using Gaussian belief propagation (GaBP) [2007].

There are many improvements that can be made to (Ga)BP,
especially when applied to inference in graphical models con-
taining structural symmetries. Such symmetries are com-
monly found in first-order and relational probabilistic models
(see e.g. Getoor and Taskar [2007]) that combine aspects of

first-order logic and probability, a long-standing goal of AI.
Instantiating all ground atoms from the formulae in such a
model induces a standard graphical model with symmetric,
repeated potential structures for all grounding combinations.

To exploit these symmetries, lifted BP (LBP) approaches
have been recently developed [Singla and Domingos, 2008;
Kersting et al., 2009] to automatically group nodes and po-
tentials of the graphical model into supernodes and super-
potentials if they have identical computation trees (i.e., the
tree-structured unrolling of the graphical model computations
rooted at the nodes). LBP then runs a modified BP on this
lifted (clustered) network. LBP has proved extremely fast
at computing approximate marginal probability distributions
and has yielded significant efficiency gains on important AI
tasks such as link prediction, social network analysis, satisfi-
ability and boolean model counting problems.

This paper makes a number of important and novel contri-
butions to both the LBP and GaBP literature while demon-
strating the powerful application of these techniques to im-
portant AI and novel lifted inference tasks: personalized
PageRanks and Kalman filters. To start, we note that the core
matrix inversion computation in both PageRank and Kalman
filtering can be naı̈vely solved by combining Shental et al.’s
[2008] GaBP approach to solving linear systems with Kerst-
ing et al.’s [2009] color passing approach for LBP, yielding
Lifted GaBP (LGaBP). In fact, this novel LGaBP approach —
as we will show — already results in considerable efficiency
gains. However, we can do considerably better.

Essentially, the computations in personalized PageRanks
and Kalman filters require the LGaBP solution of several
linear systems with only small changes to the evidence. In
turn repeatedly constructing the lifted network for each new
inference can be extremely wasteful, because the evidence
changes little from one inference to the next. Hence, a
less naı̈ve solution would exploit recent efficient approaches
for updating the structure of an existing lifted network with
small changes to the evidence [Nath and Domingos, 2010;
Ahmadi et al., 2010]. In the inference stage, however, this
solution would still run a modified LGaBP algorithm on each
lifted network separately: symmetries across the inference
tasks are not exploited. An investigation of the question of
whether we can achieve additional efficiency gains by ex-
ploiting symmetries across the inference tasks leads to our
main contribution: multi-evidence lifting.



In multi-evidence lifting, we first construct the ground net-
works for all inference tasks. We then run color passing on
the union of these networks to compute the joint lifted net-
work that automatically exploits symmetries across inference
tasks. Finally, we run a modified message passing algorithm
on the joint lifted network that simulates message passing on
each ground network in parallel. Intuitively, this sacrifices
space complexity for a lower time complexity, and the naı̈ve
approach of lifting the joint network will not scale well to
large problem sizes. Consequently, we develop an efficient
sequential lifting variant that computes the joint lifted net-
work by considering evidence sequentially rather than jointly.
As our experiments show, multi-evidence LGaBP1 and its se-
quential variant can yield significantly faster inference than
naı̈ve LGaBP and GaBP on synthetic problems and the real-
world problems of PageRank and Kalman filter computation.

We proceed as follows. After touching upon related work,
we briefly review GaBP and color passing for LBP. Then, we
introduce multi-evidence lifting, sketch its correctness, and
present an efficient sequential lifting variant. Before conclud-
ing, we provide empirical results including the first lifted ap-
proaches to PageRank and Kalman filter computations.

2 Related Work
Recent years have witnessed a surge of interest in lifted prob-
abilistic inference. Poole [2003], de Salvo Braz et al. [2005],
and Milch et al. [2008] have developed lifted versions of vari-
able elimination for discrete domains; Choi and Amir [2010]
have extended these ideas to relational continuous models.
These exact inference approaches are extremely complex and
have only been applied to artificial domains to date. More-
over, these methods require a first-order logical specifica-
tion of the model; multi-evidence lifting as presented here
does not. Sen et al. [2009] presented a lifted (approximate)
variable elimination approach based on bisimulation; in con-
trast to the previous approaches, it does not require a first-
order logical specification but is considerably complex. Ar-
guably, the simplest and most efficient approximate lifted in-
ference algorithms are based on the already mentioned LBP
approaches. Motivated by Jaimovich et al. [2007], Singla and
Domingos [2008] developed the first LBP variant requiring a
Markov logic network as input. Kersting et al. [2009] gener-
alized it to any graphical model over discrete, finite variables.

In contrast to LGaBP introduced here, all previous LBP
approaches have been developed for discrete domains only.
While in principle they can be applied to continuous domains
through discretization, Choi and Amir [2010] have noted the
precision of discretizations deteriorates exponentially in the
number of random variables. Thus, discretization and appli-
cation of LBP would be highly imprecise for large networks.

Finally, Nath and Domingos [2010] and Ahmadi et
al. [2010] developed efficient algorithms for sequential lift-
ing, where the structure of an existing lifted network is up-
dated with incremental evidence changes. However, for in-
ference, these algorithms run message passing independently
on the lifted networks constructed for each evidence case. In

1We focus here on matrix inversion, but multi-evidence lifting is
generally applicable, also to discrete domains.

contrast, the sequential version of multi-evidence lifting we
present shares computation via the joint lifted network.

3 Lifted Gaussian Belief Propagation
In this section, we present a unified review of Gaussian be-
lief propagation (GaBP) and lifted belief propagation (LBP)
leading to lifted GaBP (LGaBP). We develop LGaBP in the
context of solving linear systems that are key to our lifted
PageRank and Kalman filtering applications presented later.

Many real world applications such as environmental sensor
networks, information diffusion in social networks, and local-
ization in robotics involve systems of continuous variables.
One of the most fundamental problems encountered in these
applications is solving linear systems of the form Ax = b
where A ∈ Rn×n is a real-valued square matrix, and b ∈ Rn
is real-valued column vector, and we seek the column vector
x such that equality holds. As a running example, consider
b = (0 0 1)t (where t denotes transpose) and

A =

(
10 4 3
4 10 3
5 5 11

)
. (1)

Shental et al. [2008] have shown how to translate this prob-
lem into a probabilistic inference problem, i.e., to solve
a linear system of equations of size n we compute the
marginals of the Gaussian variables x1, . . . , xn in an ap-
propriately defined graphical model. Given the matrix A
and the observation matrix b, the Gaussian density function
p(x) ∼ exp(− 1

2x
tAx + btx) can be factorized according

to the graph consisting of edge potentials ψij and self po-
tentials φi as follows: p(x) ∝

∏n
i=1 φi(xi)

∏
i,j ψij(xi, xj),

where the potentials are ψij(xi, xj) := exp(− 1
2xiAijxj) and

φi(xi) := exp(− 1
2Aiix

2
i + bixi). The edge potentials ψij are

defined for all (i, j) s.t. Aij > 0.
To solve the inference task, Shental et al. proposed to use

Weiss et al.’s [2001] Gaussian BP (GaBP) which is a special
case of continuous BP, where the underlying distribution is
Gaussian. BP in Gaussian models gives simpler update for-
mulas than the general continuous case and the message up-
dates can directly be written in terms of the mean and preci-
sion. Since p(x) is jointly Gaussian, the messages are propor-
tional to Gaussian distributions N (µij , P

−1
ij ) with precision

Pij = −A2
ijP
−1
i\j and mean µij = −P−1ij Aijµi\j where

Pi\j = P̃ii +
∑

k∈N(i)\j
Pki

µi\j = P−1i\j
(
P̃iiµ̃ii +

∑
k∈N(i)\j

Pkiµki
)

for i 6= j and P̃ii = Aii and µ̃ii = bi/Aii. Here, N(i)
denotes the set of all the nodes neighboring the ith node and
N(i)\j excludes the node j fromN(i). All messages param-
eters Pij and µij are initially set to zero. The marginals are
Gaussian probability density functionsN (µi, P

−1
i ) with pre-

cision Pi = P̃ii+
∑
k∈N(i) Pki and mean µi = P−1i\j

(
P̃iiµ̃ii+∑

k∈N(i) Pkiµki
)
. If the spectral radius of the matrix A

is smaller than 1 then GaBP converges to the true marginal
means (x = µ). We refer to [Shental et al., 2008] for details.
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Figure 1: Lifted graphical models produced when inverting A in
Eq. (1) using LGaBP. An edge from i to j encodes potential ψij .
The φ potentials are associated with the nodes. (a) Colored network
when computing Ax1 = e1. All nodes get different colors; no
compression and lifted inference is essentially ground. (b) Colored
network for Ax2 = e2. Again no compression. Note, however, the
symmetries between (a) and (b). (c) Colored network for Ax3 = e3.
Nodes x1 and x2 get the same color and are grouped together (d).

Although already quite efficient, many graphical models
produce inference problems with symmetries not reflected in
the graphical structure. LBP can exploit this structure by
automatically grouping nodes (potentials) of the graphical
model G into supernodes (superpotentials) if they have iden-
tical computation trees (i.e., the tree-structured unrolling of
the graphical model computations rooted at the nodes). This
compressed graph G is computed by passing around color
signatures in the graph that encode the message history of
each node. The signatures are initialized with the color of
the self potentials, i.e., cs0i = φi and iteratively updated by
cski = {csk−1i } ∪ {[ψij , cs(ψk−1j )]| j ∈ N(i)}. The algorith-
mic details of color passing are not important for this paper,
we refer to [Kersting et al., 2009]. The key point to observe
is that this very same process also applies to GaBP (viewing
“identical” for potentials only up to a finite precision), thus
leading to a novel LGaBP algorithm.

To continue our running example, let us examine comput-
ing the inverse of matrix A in Eq. (1) using LGaBP. We
note that A−1 = [x1, . . . ,xn] can be computed by solv-
ing Axi = ei for i = 1 . . . n, where ei is the ith basis
vector — I = [e1, . . . , en] for the n × n identity matrix
I. In our running example, this yields the respective lifted
networks in Figs. 1(a–c). As one can see, for the evidence
cases e1 and e2 there is no compression and lifted inference
is essentially ground. All nodes get different colors for these
cases (Figs. 1(a) and (b)). For the evidence case e3, however,
variables x1 and x2 are assigned the same color by LGaBP
(Fig. 1(c)). The final lifted graph G is constructed by group-
ing all nodes (potentials) with the same color (signatures) into
supernodes (superpotentials), which are sets of nodes (poten-
tials) that behave identical at each step of carrying out GaBP
on G (Fig. 1(d)). On the lifted graph G, LGaBP then runs

a modified GaBP. The modified messages simulate running
GaBP on the original graph G. Following LBP, we have to
pay special attention to the self-loops introduced by lifting
that correspond to messages between different nodes of the
same supernode. Reconsider our running example. As shown
in Fig. 1(d), there is a self-loop for the supernode {x1, x2}.
In general, there might be several of them for each supern-
ode and we assume that they are indexed by k. To account
for the self-loops and in contrast to GaBP, we introduce “self-
messages” P kii = −A2

ii(P
k
i\i)
−1 and µkii = −P−1ij Aiiµ

k
i\i

with

P ki\i = P̃ii +
( ∑
l∈S(i)\k

]liiP
l
ii

)
+
( ∑
l∈N(i)\i

]liPli
)

µki\i = P−1i\j

[
P̃iiµ̃ii +

∑
l∈S(i)\k

]liiP
l
iiµ

l
ii +

∑
l∈N(i)\i

]liPliµli
]
.

As i is now a neighbor of itself, the term N(i) \ i is required.
Furthermore, ]lij — also given in Fig. 1(d) — are counts that
encode how often the message (potential) would have been
used by GaBP on the original network G. Using these counts
we can exactly simulate the messages that would have been
sent in the ground network. Messages between supernode i
and j, i 6= j, are modified correspondingly:

Pi\j = P̃ii +
∑
k∈S(i)

]kiiP
k
ii +

( ∑
k∈N(i)\i,j

]kiPki
)

µi\j = P−1i\j

[
P̃iiµ̃ii +

∑
k∈S(i)

]kiiP
k
iiµ

k
ii +

∑
k∈N(i)\i,j

]kiPkiµki
]

where N(i) \ i, j denotes all neighbours of node i without i
and j. Adapting the arguments from [Kersting et al., 2009],
the following LGaBP correctness theorem can be proved:
Theorem 3.1. Given a Gaussian model G, LGaBP computes
the minimal compressed lifted model, and running modified
GaBP on G produces the same marginals as GaBP on G.

4 Multi-Evidence Lifting
Both applications considered in this paper — lifted PageRank
and Kalman filtering — require the inversion of very large,
structured matrices. As shown previously, this task can be
reduced to the problem of solving several linear systems with
GaBP — more precisely, calling GaBP multiple times, each
time with a different evidence case.

Returning to our running example, inverting A from
Eq. (1) using GaBP results in three graphical models of size
3/9 (nodes/potentials). Given the recent success of LBP ap-
proaches, we ask “can we do better?” A first attempt to af-
firmatively answer the question is to simply replace GaBP
with LGaBP for each evidence case ei as illustrated in the
three lifted graphical models of Figs. 1(a–d). In general,
this single-evidence lifting approach is illustrated in Fig. 2(a).
Due to lifting, we can hope to greatly reduce the cost of infer-
ence in each iteration. For our running example, this results
in two ground networks both of size 3/9 and one lifted net-
work of size 2/5 shown respectively in Figs. 1(a,b) and (d).
Thus, the total size (sum of individual sizes) drops to 8/23
This LGaBP approach — as we will show in our experiments
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Figure 2: Inverting a matrix A using multi-evidence lifting. (a) Single-evidence lifting runs LGaBP solving Axi = ei for each i =
1, 2, . . . , n separately; ei denotes the ith basis vector; thus LGaBP computes each column vector of A−1 separately. (b) Multi-evidence
lifting runs LGaBP on the joint graphical model of Axi = ei for i = 1, 2, . . . , n; thus LGaBP computes A−1 for all ei at once. (c) Sequential
multi-evidence lifting directly builds the lifted joint graphical model in a sequential fashion, avoiding cubic space complexity

— can already result in considerable efficiency gains. How-
ever, we can do even better.

Repeatedly constructing the lifted network for each new
evidence case can be wasteful when symmetries across mul-
tiple evidence cases are not exploited (e.g., the common 0’s
amongst all ei). Compare for example the graphs depicted in
Fig. 1(a) and (b). These two networks are basically symmet-
ric which is not exploited in the single-evidence case.They
stay essentially ground if they are processed seperately. To
overcome this, we propose multi-evidence lifting (as illus-
trated in Fig. 2(b) for inverting a matrix):

compute the graphical models of each evidence
case, form their union, and run LGaBP on the re-
sulting joint graphical model.

This automatically employs the symmetries within and across
the evidence cases due to Theorem 3.1. In our running exam-
ple, we get a single lifted graph of size 5/14. Intuitively,
multi-evidence lifting only produces (in this example) one of
the two ground networks and hence consists of the union of
the networks shown in Figs. 1(a) and (d). This is clearly a
reduction compared to LGaBP’s size of 8/23.

However, there is no free lunch. Multi-evidence lifting
sacrifices space complexity for a lower time complexity. In-
verting a n × n matrix may result in a joint ground graph-
ical model with n2 nodes (n nodes for each of the n sys-
tems of linear equations) and O(n3) edges (O(n2) edges for
each of the n systems of linear equations; edges are omitted if
Aij = 0). This makes multi-evidence essentially intractable
for large n. For instance, already for n > 100 we have to deal
with millions of edges, easily canceling the benefits of lifted
inference. We develop an efficient sequential multi-evidence
lifting approach that computes the joint lifted network by con-
sidering one evidence case after the other (Fig. 2(c)).

Indeed, one is tempted to employ one of the efficient al-
gorithms recently presented for updating the structure of an
existing lifted network with incremental changes to the ev-
idence to solve the problem [Nath and Domingos, 2010;
Ahmadi et al., 2010]. While employing the symmetries in
the graphical model across multiple evidence cases for the

lifting, in the inference stage they need to construct a sepa-
rate lifted network for each evidence case and run a modified
message passing algorithm on each lifted network separately.
Thus, symmetries across evidence cases are missed.

5 Sequential Multi-Evidence Lifting
We seek a way to efficiently construct the joint lifted network
while still being able to lift across multiple evidence cases.
To do this, we can modify Ahmadi et al.’s [2010] sequential
single-evidence lifting to the multi-evidence case. Ahmadi
et al. give a clear characterization of the core information
required for sequential clamping for lifted message passing,
namely the shortest-paths connecting the variables in the net-
work which resemble the computation paths along which the
nodes communicate in the network.

Thus, to be able to adapt the lifted network for incoming
evidence in the single-evidence case, we compute in a first
step the set of shortest paths connecting any two nodes in
the graph. Now, when there is new evidence for a node, the
adapted lifted network is computed as a combination of the
nodes’ initial coloring, i.e. the lifting without evidence, and
the set of shortest paths to the nodes in our evidence.

Algorithm 1 describes how we can adapt this to the multi-
evidence case. Intuitively, we would like to view each Axi =
ei (i = 1, 2, . . . , n) as conditioning an initial network on node
i and efficiently computing its contribution to the resulting
lifted joint network directly from the initial one. But what
should be the initial network? It is not provided by the task
itself. Thus, to be able to efficiently find the lifted network
structure, we propose to introduce an additional system of
linear equations, namely the one with no evidence: Ax = 0
(Alg.1, line 1). Indeed, it is not needed in the inversion task
per se but it allows us to significantly speed up the multi-
evidence lifting process. Intuitively, each ei only differs from
0 in exactly one element so it serves as the basis for lifting
all subsequent networks. To do this, we compute the path
colors for all pairs of nodes (line 2) to know how it affects
the other nodes when conditioning on a variable i and the
initial lifting without evidence (line 3). The lifted graph Hi



Algorithm 1: Sequential Multi-Evidence Lifted GaBP
Input: Matrix A
Construct network G0 for Ax = 0;1
Compute path color matrix PC on G0;2
Lift G0 to obtain lifted network H0;3
foreach unit vector ei do4

colors(Hi) = colors(H0);5
evidence = {i:Aii};6
repeat7

colors(Hi) = newColor (H0, PC, evidence);8
Add nodes that have changed color to evidence;9

until colors(Hi) does not change ;10
if Hi is previously unseen then11

Add Hi to joint lifted network H{1,..,i−1}12

else13
Bookmark the corresponding index j14

15

Run modified GaBP on joint lifted network H{1,..,n};16

return X = (x1, x2, . . . , xn), the inverse of A;17

for the ith system of linear equations Axi = ei can now be
adaptively computed by combining the initial lifting and the
path colors to node i (line 8). The combination is essentially
an elementwise concatenation of the two respective vectors.

Consider computing the lifted network for Ax3 = e3 for
our running example. When we have no evidence the nodes
x1 and x2 are clustered together, and x3 is in a separate clus-
ter. Thus, we obtain an initial color vector C = (0, 0, 1).
Since we want to compute the network conditioned on x3 we
have to combine this initial clustering C with the path colors
with respect to x3, PCx3

= ({3, 5}, {3, 5}, ∅) = (0, 0, 1).
To obtain the lifted network conditioned on x3 we have to (1)
do an elementwise concatenation (in the following depicted
by ⊕) of the two vectors and (2) interpret the result as a new
color vector: H3 = (0, 0, 1)⊕(0, 0, 1) =(1) (00, 00, 11) =(2)

(2, 2, 3). Since only the shortest paths are computed, adapting
the colors has to be performed iteratively to let the evidence
propagate. For further details on adapting the color vector
(line 8) we refer to [Ahmadi et al., 2010].

Moreover, we can implement a type of memoization when
we perform the lifting in this fashion. Because we know
each resulting lifted network Hi in advance, we can check
whether an equivalent lifted network was already constructed:
if the same color pattern exists already, we simply do not add
Hi and instead only bookmark the correspondence of nodes
(line 11-14) 2. This does not affect the counts at all and,
hence, still constructs the correct joint lifted network. This ar-
gument together with the correctness of the sequential single-
evidence lifting and multi-evidence lifting effectively proves
the correctness of sequential multi-evidence lifting:

Theorem 5.1. Sequential multi-evidence lifting computes the
same joint lifted model as in the batch case. Hence, running
the modified GaBP on it produces the same marginals.

2This is not as hard as solving (sub)graph-isomorphisms. We
only have to check whether the color pattern of Hi was previously
seen. If so, the result has already been memoized.

6 Experimental Evaluation
Our intention here is to investigate the following ques-
tions: Q1 Can LGaBP be faster than GaBP? Q2 Can multi-
evidence lifting produce smaller inference problems than
single-evidence lifting? Q3 Does sequential multi-evidence
lifting scale better than just multi-evidence lifting.

We implemented all variants in Python using the LIBDAI
library3 and evaluated their performances on (a) random ma-
trices, (b) PageRank computations of graphs induced by a
Markov logic network (MLN), and (c) Kalman filtering prob-
lems. The GaBP variants ran using parallel message updates,
no damping and convergence threshold ε = 10−8. They all
converged within ε of the correct solution.

Inverting Random Matrices: We generated a random
matrix R ∈ R20×20 with Rij ∈ [0, 1] and added 10 to the
diagonal to ensure non-singularity. Using R, we constructed
a diagonal matrix with 1, 2, 4 and 8 blocks. On each of the
matrices we run all four algorithms measuring the number of
potentials created and total messages sent (including coloring
messages), and the CPU time. Figs. 3(a)-(c) show the re-
sults averaged over 10 random reruns. As one can see, SME-
LGaBP < ME-LGaBP < LGaBP < GaBP in terms of the
number of messages sent (b) and CPU-time (sec.) (c). Fur-
thermore, (sequential) ME-LGaBP and create — as expected
— the same number of potentials and significantly less than
(L)GaBP (b).

Lifted Personalized PageRank: Recall the problem of
ranking web pages already touched upon in the introduction.
In a nutshell, a Markov chain transition matrix M is con-
structed out of a given graphG. Let A be the n×n adjanceny
matrix of G, that is Aij = 1 if there is an edge from vertex j
to vertex i and zero otherwise. PageRank now constructs the
probability transition matrix M by adding 1/n to all entries
of A and renormalizes each row of A to sum to 1. Further-
more, a prior probability v can be taken to weight the results.
The personalized PageRank can then be computed by solv-
ing the following system of linear equations (I−αM)x = v
where α trades off speed of convergence with the accuracy of
the solution and I is the identity matrix.

In several PageRank applications, however, one needs to
know, in addition to the rank of a given page, which pages
or sets of pages contribute most to its rank. These PageRank
contributions have been used for link spam detection and in
the classification of web pages. The contribution that a vertex
v makes to the PageRank of a vertex u is defined rigorously
in terms of personalized PageRank for all vertices, i.e., for
vi = ei, i = 1, 2, . . . , n. So, we are interested in PRMα

— the matrix whose u-th row is the personalized PageRank
vector of u. The PageRank contribution of u to v is then the
entry (u, v) of this matrix. This, however, is the inverse of
(I− αM) and we can make use of multi-evidence lifting.

We computed PRM0.9 for the ground network induced
by the Friends & Smokers Markov logic network [Richardson
and Domingos, 2006]. We varied the number of people in the
domain, namely 3, 5, 10. Figs. 3 (d)–(f) show the (d) the to-
tal number of (lifted) potentials (e) total numbers of messages

3http://www.libdai.org/



1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10
4

10
5

T
ot

al
 N

br
. P

ot
en

tia
ls

 (
lo

g 
sp

ac
e)

(a) Random Matrices: Nbr. of Blocks

SME−LGaBPME−LGaBPLGaBPGaBP

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10
7

10
8

T
ot

al
 N

br
. M

es
sa

ge
s 

(lo
g 

sp
ac

e)

(b) Random Matrices: Nbr. of Blocks

GaBP LGaBP ME−LGaBP SME−LGaBP

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10
1

10
2

10
3

T
ot

al
 C

P
U

 T
im

e 
(lo

g 
sp

ac
e)

(c) Random Matrices: Nbr. of Blocks
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(d) PageRank: Nbr. of People
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(e) PageRank: Nbr. of People
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(f) PageRank: Nbr. of People
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Figure 3: Experimental results on random matrices and PageRank computations. (best viewed in color)

sent and (f) the total CPU times (sec.) per PRM0.9 computa-
tion averaged over 10 runs. Again one can see, SME-LGaBP
< ME-LGaBP < LGaBP < GaBP. In particular, we see the
benefit of multi-evidence lifting. The number of generated
potentials saturates for more than 3 people whereas single-
evidence lifting generates more and more potentials.

Lifted Kalman Filter: Kalman Filtering is a computa-
tional tool with widespread application in robotics, finan-
cial and weather forecasting, and environmental engineering.
Given observation and state transition models, the Kalman
Filter (KF) recursively estimates the state x ∈ Rn of a
discrete-time controlled process that is governed by the linear
stochastic difference equation xk = Axk−1+Buk−1+wk−1
with a measurement z ∈ Rm that is zk = Hxk + vk . Here,
wk and vk represent the process and measurement noise
(respectively) and are assumed to be independent (of each
other), white, and with normal density, i.e., p(w) ∼ N (0,Q)
and p(v) ∼ N (0,R). The matrix A relates consecutive
states xk−1 and xk. The matrix B relates the optional control
input u to the state, and H relates the state to the measure-
ment z. In practice, the matrices A,B,H,Q and R might
change with each time step or measurement, however, here
we assume they are constant.

Due to space limitations, we cannot go into details but in-
stead refer to, e.g, [Thrun et al., 2005], and note that the main
step of the KF consists of computing the Kalman gain: Kk =

P−kH
t
(
HP−kH

t + R
)−1

where P−k = APk−1A
t + Q.

Thus, the KF requires to invert a matrix at every time step
allowing us to apply multi-evidence lifting.

In our experiments, we tracked 10 people randomly spread
among k groups. Each group had its own (local) motion
model (mm). We varied the number of groups: 1 (all peo-
ple have the same mm) , 5 (two people have the same mm),
and 10 (everybody has its own mm). Figs. 4 shows (a) the

total number of (lifted) potentials, (b) the total number of
messages sent and (c) the CPU times (sec.) averaged over
all matrix inversion tasks in a Kalman filtering over 10 steps
(GaBP is omitted). It clearly shows: the larger the number
of groups, the lower the gain of (sequential) multi-evidence
lifting. For 10 groups, when there are no mm symmetries —
motion symmetries ratio 0 — across people, single-evidence
lifting is faster. However, when we have symmetries across
evidence cases — 5 and 1 groups, i.e., ratios of 0.5 and 1.0 —
ME lifting significantly outperforms single-evidence lifting.

The Discrete Case: Indeed, we introduced multi-evidence
lifting in the context of GaBP. It is, however, also appli-
cable in discrete cases. To validate its generality, we pe-
formed parameter estimation – another natural case for multi-
evidence lifting – in discrete domains. For the Friends &
Smokers MLN with ten people. we maximized the condi-
tional marginal log-likelihood (CMLL) using scaled conju-
gate gradient (SCG) for 10 data cases sampled from the joint
distribution. Here, lifted BP (LBP) took 0.089 seconds for a
single iteration — already a reduction compared to BP’s 0.1
sec. — but ME-LBP exploits the additional symmetries and
in turn took only 0.049 sec.

All experimental results together clearly answer questions
Q1-Q3 affirmatively.

7 Conclusions
In this paper, we proposed multi-evidence lifting for be-
lief propagation in graphical models that exploits symme-
tries within and across different evidence cases. To avoid
the cubic space requirement of a naı̈ve realization, we then
presented a sequential algorithm for efficiently computing
the multi-evidence lifted network. The experimental results
on two novel tasks for lifted inference, namely computing
PageRank contributions and Kalman filter updates show that
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Figure 4: Experimental results for Kalman filtering with varying degree of motion symmetries. (best viewed in color)

multi-evidence lifting provides substantial speedups — up to
two orders of magnitude — over standard lifting, making it
applicable to a wide range of problems.

Indeed, much remains to be done. Since lifting of GaBP
itself and the exploitation of multi-evidence sequential lifting
for solving large linear systems is a major advance, further
experimentation and application of these techniques to other
tasks requiring the solution of linear systems and matrix in-
version is one important direction. In addition, exploring its
usefulness in other AI and machine learning tasks is another
interesting avenue for future work; promising candidates are
lifted variants of ridge regression, least-squares support vec-
tor machines, and linear program solvers.
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