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Abstract

We tackle the problem of semantic segmentation of dy-
namic scene in video sequences. We propose to incorporate
foreground object information into pixel labeling by jointly
reasoning semantic labels of super-voxels, object instance
tracks and geometric relations between objects. We take
an exemplar approach to object modeling by using a small
set of object annotations and exploring the temporal con-
sistency of object motion. After generating a set of moving
object hypotheses, we design a CRF framework that jointly
models the supervoxel and object instances. The optimal
semantic labeling is inferred by the MAP estimation of the
model, which is solved by a single move-making based opti-
mization procedure. We demonstrate the effectiveness of our
method on three public datasets and show that our model
can achieve superior or comparable results than the state-
of-the-art with less object-level supervision.

1. Introduction
Semantic segmentation, which aims to jointly segment

and detect object classes in images and videos, has be-
come a core problem in scene understanding [8, 27], and
has wide applications in automatic navigation, egocentric
vision and surveillance. In order to achieve better seman-
tic parsing of images, it is essential to explore object in-
formation [12, 28, 29] as well as multiple properties of the
underlying scenes [6]. In particular, reasoning object in-
stances and their relations with contexts has played an im-
portant role in the state-of-the-art methods for image seg-
mentation [12, 24].

Semantic parsing of a single image requires relatively
strong prior assumptions on the scene structure, and recent
progress in object-augmented scene segmentation heavily
relies on large datasets with object instance level annotation
and/or pre-trained object detectors, which are expensive to
obtain. For a complex scene with novel object classes,
it remains a challenging task to reliably incorporate ob-
ject instance knowledge into semantic image segmentation.
To address these difficulties, we instead consider semantic
parsing of image sequences in a video in this work.

Figure 1: Overview of our approach. We jointly predict the
semantic, geometric labels with respect to object detection,
tracking and their relative ordering. The frontal-most object
is in pink.

Video sequences of dynamic scene provide a natural set-
ting to incorporate object level information in semantic seg-
mentation. Motion cues can facilitate localizing object in-
stances and inferring geometric relationships between ob-
jects. In addition, tracking of moving objects imposes long-
range temporal consistency constraints to segmentation and
allows weak supervision at object level. Most of previous
video segmentation methods, however, either focus on cap-
turing mid-level spatio-temporal consistency [3, 16], mod-
eling static scenes [1], or using a single-class object detector
trained with many additional object annotations [27].

In this work, we propose a joint framework for multi-
class semantic video segmentation which integrates both
region-level labeling and object-level reasoning. Given a
video sequence taken from monocular camera, we formu-
late the segmentation as a supervoxel labeling problem. At
region-level, we seek consistent semantic and geometric la-
beling of super-voxels that are smooth in spatio-temporal
domain. At object-level, we infer foreground moving ob-
jects and their relative depth in a chunk of video frames,
which imposes long-range spatial and temporal consistency
of multi-class object segmentation. More importantly, we
adopt a weak supervision strategy at object-level as in [7],
in which only a small set of object exemplars is used for
modeling each object class. An overview of our method is



shown in Figure 1.
Specifically, our approach consists of two stages. We

first use object exemplars and dense point trajectories to
generate a number of object segmentation hypotheses for
each foreground class. Given these object hypotheses, we
design a conditional random field (CRF) that jointly mod-
els semantic and geometric classes of supervoxels, as well
as segmentation and relative depth of objects in videos. In
particular, we propose a set of pairwise and higher-order
potentials to impose the label consistency between objects
and corresponding supervoxels, and to encode occlusion
and support relations between object classes. To parse a
video sequence, we compute the MAP estimation of the
CRF model, which is formulated as minimizing a unified
energy function and solved by an efficient move-making
algorithm. We test our model on three public available
datasets [1, 27, 26] and show that our method can achieve
state-of-the-art or even better performance with much less
training data.

The main contributions of our work can be summarized
as follows. First, we incorporate multi-class object rea-
soning to semantic video segmentation, which enables us
to capture long-range dependency in spatial-temporal do-
main. We show that inferring object instances and their
relationships is beneficial to video segmentation. Second,
we propose a weak supervision approach to model the fore-
ground object classes by exploiting temporal coherency,
pixel-object label consistency and a few annotated object
exemplars. Finally, our method produces a better under-
standing of dynamic scenes, which includes not only pixel-
wise semantic segmentation of videos but also object-level
parsing with object instance segmentation, tracking and
their relative depth ordering.

2. Related Work
In recent years, semantic parsing of images has been ex-

tensively investigated in computer vision and a large num-
ber of techniques have been proposed to address the prob-
lem of pixel labeling with semantic class information. Our
work builds on recent progress in semantic scene parsing
and object segmentation of static images, in which ob-
ject information is incorporated into (super-)pixel label-
ing [12, 28, 24]. Particularly, we take the holistic perspec-
tive of scene understanding [29] which jointly parses the
scene at pixel, object and scene level.

Early approaches in semantic segmentation use pre-
trained object detectors and impose the consistency between
pixel labeling and object detection output by higher-order
potentials [12]. Their performance critically depends on the
accuracy of object detectors. Yang et al [28] also introduce
a global relative depth ordering to improve modeling of oc-
clusion relation between overlapped objects. More recently,
Tighe et al [24] jointly infer scene labeling, object segmen-

tation and relative depth ordering. Their method decom-
poses the problem into three coupled subtasks and solves
them in an alternating way. Similarly, Kim et al [10] inte-
grate object detection and semantic segmentation. Those
methods reply on large amount of training data with in-
stance annotations to build object models. Our exemplar-
based object reasoning is inspired by [7], which uses a small
set of annotated exemplars to segment multiple object in-
stances of a single class. However, our work differs from [7]
in two important aspects. First, we address multi-class ob-
ject segmentation and model their relative depth. Also, we
add temporal cues to generate object trajectory hypotheses
in video sequences.

While much progress has been made in semantic image
segmentation, dynamic scene segmentation in video attracts
less attention. Most existing approaches focus on model-
ing temporal consistency at pixel or region level [3, 16, 23],
which do not have object-level reasoning, or building sparse
or dense 3D models of statics scenes based on structure
from motion [1], which cannot handle multiple moving ob-
jects. Top-down object information is first introduced by
Wojek et al [27, 26], and they combine object tracking
and the pixel labeling with a pairwise CRF. However, their
method depends on object detectors pre-trained on many ex-
amples and does not jointly infer pixel labeling, object and
object relations.

Some works aim to model the relative depth and occlu-
sion of objects in video. Wang et al [25] consider fore-
ground object segmentation, tracking and occlusion rea-
soning with a unified MRF model. Similar to our work,
[13] uses long-term trajectories to discover moving ob-
jects. However, they do not model multiple semantic object
classes, nor do they capture contextual relations between
objects and background classes. Taylor et al [21] jointly
infer pixel semantic classes and occlusion relationship in
video segmentation. Unlike our method, they do not incor-
porate object instance level reasoning.

Geometrically and semantically consistent labeling is
first introduced in [6], and has been extended to video scene
parsing in [23, 14]. Stixel world model [18] also exploits
geometric cues in semantic segmentation. However, none
of them jointly estimate object instance segmentation.

3. Our Approach
We address the multi-class semantic video segmentation

problem from a holistic perspective, in which we jointly as-
sign a category label to every pixel, and infer object instance
segmentation and their geometric relations in a video. Our
main focus is to explore temporal consistency of object mo-
tion and thus to integrate object-level information more ef-
fectively.

To this end, we propose an exemplar-based approach to
incorporating object instance segmentation and object rela-
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tions to semantic video segmentation. We first use a small
number of objects and their masks as well as dense trajecto-
ries to generate a redundant set of dynamic object hypothe-
ses. Given these object hypotheses, we design a spatio-
temporal CRF to jointly label all supervoxels and infer ac-
tivations and relations of object hypotheses.

3.1. Dynamic Object Hypothesis Generation

To handle multiple object instances, we first generate a
set of object trajectory hypotheses from a video sequence,
which are binary masks in spatio-temporal domain. This
hypothesize-and-verify approach greatly reduces the search
space of object instances.

Our hypothesis generation method consists of three
steps. The first step detects object instances and gener-
ates their masks in a sparse set of key frames, which aims
to improve the efficiency. We apply an exemplar SVM [15]
detectors trained with a small number of examples (10–20)
to obtain object proposals in the key frames as in [7].

Given these static proposals, we then propagate them to
the entire sequence in the second step. We perform both
forward and backward propagation based on pixel-level tra-
jectories, which are obtained by employing the method
in [19]. We compute an affine transformation of each object
mask using the pixel trajectories passing through the mask.
This enables us to partially accommodate the variation of
shapes due to motion. Compare with the per-frame detec-
tion method [27], we can generate static proposals more ef-
fectively and efficiently by exploring the temporal informa-
tion. Some examples of generated object hypotheses are
shown in Figure 2.

Finally, we build longer-range object trajectory hypothe-
ses in the third step, which extends the trajectories gener-
ated from the propagation in the second step. To this end,
we first construct a directed graph of the static object pro-
posals. Each node of the graph is a static proposal and we
add an edge between two nodes if they are: (1) from con-
secutive frames (2) of the same category (3) of similar mask
size and heavily overlapped after propagation. We refer the
reader to Section 4.2 for details. We define edge direction
as the direction of time evolution. Given the directed graph,
we use depth-first search to generate possible paths start-
ing from all the earliest static object proposals which corre-
spond to the nodes without parents in the graph. In the end,
we collect all the generated paths as the object trajectory
hypotheses.

3.2. Spatio-temporal CRF with Object Reasoning

We represent a video sequence as a set of supervox-
els, which are computed based on [2]. For long video se-
quences, we take a sliding window approach and consider
a video chunk with length T each time. We then augment
the supervoxel representation with a set of object trajectory

Figure 2: Examples of proposals from detectors (top) and
from propagation (bottom) in CamVid. Occluded objects
are failed to be detected by detectors but can be successfully
proposed from propagation.

hypotheses, and introduce reasoning of the activation of ob-
jects and their occlusion and support relations.

Formally, given a video chunk T , let i ∈ {1, ..., N} in-
dex the supervoxels in T . We denote the label of superpixel
i as li = {lgi , lsi }, which is a random variable in the joint
space of semantic class Ls and geometric classes Lg . The
variable L = (l1, ..., lN ) is the label configuration of the
whole video chunk.

For the set of object trajectory hypotheses, we want to
infer the true active objects jointly with the supervoxel la-
beling and remove the false ones. To that end, we introduce
a binary variable dm indicating whether the m-th hypothe-
sis is activated or not, and letm ∈ {1, ...,M} indexing from
hypothesis pool O as described in Section 3.1. For hypoth-
esis m, we denote its trajectory as m = {m1, ...,mtm} and
mt is the static object proposal in t-th frame. Note that once
the m-th hypothesis is activated, all static proposals on its
trajectory are activated. The variable D = (d1, ..., dM ) is
the configuration of all the object hypotheses. Also, we de-
note the object class of the m-th hypothesis as om and the
set of supervoxels it occupies as Sm.

In addition, we capture the relative depth ordering of ob-
ject instances by introducing an occlusion variable hmn ∈
{−1, 0, 1} for each pair of overlapped proposals {m,n}.
The value −1 and 1 denotes m-th proposal is occluded by
or occludes n-th proposal respectively and 0 denotes there
exists no occlusion relation between them, which means
at least one of the proposals is inactive. We denote the
set of all pairs of overlapped proposals as P , and repre-
sent the configuration of all occlusion variables by H =
{hmn}(m,n)∈P . Details of the overlapping proposal pairs
will be explained in 4.2.

We formulate the semantic video parsing problem as a
joint labeling of supervoxels, object hypotheses and object
relations, and build a joint Conditional Random Field (CRF)
on the label variables L, D, and H. An overview of our
graphical model is shown in Figure 3. The overall energy
function of our CRF model consists of three main compo-
nents (we omit the input T for clarity):

E(L,D,H) = Es(L) + Eo(D,H) + Ec(L,D,H), (1)

where Es(L) represents supervoxel-level potentials,

3



Figure 3: Graphical representation of our CRF. Note that all
unary terms and supervoxel pairwise terms are not shown for clar-
ity. Two proposals are occluded pairs and one is exclusive pair
(two Cars). Supervoxels are shown in red.

Eo(D,H) is the object-level potentials, and Ec(L,D,H)
are the potentials imposing the consistency between the
object and supervoxel labeling. We will describe the details
of these three terms in the following subsections.

3.2.1 Supervoxel-level potentials
The supervoxel-level potentials Es(L) include a data term
potential for every supervoxel and a pairwise potential that
encodes spatio-temporal smoothness of the supervoxel la-
beling:

Es(L) =
∑
i φs(li) +

∑
(i,j)∈Nl

Φs(li, lj) (2)

whereNl denotes the set of spatio-temporal adjacent super-
voxels.

The supervoxel unary term φs(li) is the cost of assign-
ing li to supervoxel i. We define φs(li) = − logPl(li),
where Pl(li) is the output of a unary classifier (See Sec 4.2
for details.)

We use an edge sensitive Potts model as the super-
voxel pairwise term Φs(li, lj), which to enforce adja-
cent supervoxels to take the same label unless there is
an intensity edge in between. Specifically, Φs(li, lj) =

αl exp(−‖f(i)−f(j)‖
2

β )Jli 6= ljK, where f(i) is the averaged
color feature of supervoxel i in CIELab space, and J·K is the
indicator function.

3.2.2 Object-level potentials

The object-level potentialsEo(D,H) describe the data term
for object proposals, occlusion variables and the relation-
ship between object D and the occlusion H:

Eo(D,H) =
∑
m

φo(dm)+

∑
(m,n)∈P

(
φh(hmn) + Φp(hmn, dm, dn)

)
(3)

where φo(dm) and φh(hmn) is the object and occlusion
unary respectively, and Φp(hmn, dm, dn) is the relation
term.

The object unary term φo(dm) models the cost of acti-
vating m-th proposal and has the following form,

φo(dm) =

(
αc − αo log Pm

1−Pm

)
dm (4)

where Pm is the probability of activating m-th proposal,
which is obtained from a trained classifier’s output (See
Sec 4.2 for details). αo and αc are two weight parameters
and αc is introduced to encourage sparse detections.

The occlusion unary term φh(hmn) models the cost
of hmn taking one of the three states and is defined as
φh(hmn) = −αh logPh(hmn). Similarly, Ph is the proba-
bilistic score from a trained classifier (See Sec 4.2).

The occlusion relation term Φp encodes that the occlu-
sion variable hmn should be consistent with the states of
dm and dn, i.e., hmn 6= 0 iff dm and dn are active, and an
exclusive relation:

Φp(hmn, dm, dn) = αinf

(
Jdmdn = 0 ∧ hmn 6= 0K (5)

+ Jdmdn = 1 ∧ hmn = 0K + Jdmdn = 1 ∧ {m,n} ∈ EoK
)

where the exclusive set Eo consists of pairs that share
the same category and are significantly overlapped (See
Sec 4.2), and αinf is a large cost.

3.2.3 Supervoxel-object label consistency potentials

The supervoxel-object label consistency potentials Ec en-
force the consistency of an object activation and the labels
of supervoxels related to the object. It consists of three
terms, encoding overlap, support and occlusion consistency
respectively,

Ec (L,D,H) =
∑
m∈S

( ∑
i∈Sm

Φv(dm, li) +
∑
i∈Bm

Φg(dm, li)

)
+

∑
(m,n)∈P

∑
k∈{m,n}

∑
i∈Sk

Φc(hmn, li, dk) (6)

where S denotes the set of isolated object proposals, and
Bm is the neighboring supervoxels located below the m-th
object hypothesis.

The overlap consistency term Φv(dm, li) penalizes the
inconsistency between the class of an active object and the
semantic label of the supervoxels it contains. The more in-
consistency exists between local supervoxel prediction and
the object class, the higher cost will be assigned if the object
is active. We define the cost as:

Φv(dm, li) = αv
vol(i)

vol(Sm)
dmJli 6= omK (7)
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where Sm denotes the set of supervoxels contained by ob-
ject proposal m and om is the object class. vol(·) computes
the volume of a region, and αv is the weight coefficient.

The support consistency term Φg(dm, li), is introduced
to encode the supporting relation between the foreground
objects and its supporting surface. We enforce that ac-
tive objects should be supported from below by supervoxels
with geometric label Horizontal. That is,

Φg(dm, li) = αg
vol(i)

vol(Bm)
dmJlgi 6= HorizontalK (8)

where Bm is define in Eq (6) and αg is the weight coeffi-
cient.

The occlusion consistency term penalizes the inconsis-
tency between the class of object proposals and the labels
of the supervoxel they contain with respect to the occlusion
relations. Specifically, we enforce the supervoxels in the
overlapped regions should be explained by the frontal-most
object if both proposals are activated. Otherwise, their la-
beling should be consistent with the active one:

Φc(hmn, li, dm) = αp
vol(i)
vol(Sm)Jli 6= omK

(
Jhmn = 1K

+Jhmn = 0 ∧ dm = 1K + Ji ∈ {Sm \ Sn} ∧ hmn = −1K

)
(9)

where {Sm \ Sn} donates the set of supervoxels occupied
by m-th object proposal but not by n-th. αp is the weight
coefficient.

3.3. Model Inference and Learning

Due to the complexity of our model, we adopt the piece-
wise learning [20] approach to incrementally estimate pa-
rameters. We firstly learn the parameters of pairwise CRF.
It consists only φs and Φs. Then we fix learnt parameter
αl and learn the coefficients αc, αo, αv , αg for the object
potentials in the CRF, including φo, Φv and Φg . We refer to
this partial model as the incremental CRF. Finally, we learn
the rest parameters of our full model (αh, αp). Note that all
parameters are learnt on validation set by grid search and
αinf is set to be a large number (1020). We automatically
choose the set of parameters that maximize the per-class ac-
curacy during the piecewise learning.

Given the parameters and test sequences, we compute
the maximum a posterior (MAP) estimate by minimizing
the energy E(L,D,H) according to the method in [17].
Specifically, we apply the improved version of QPBO (QP-
BOI) introduced in [17] and prefer the unassigned nodes
keep their original labels during the expansion move.

4. Experiments
4.1. Datasets

We test the efficacy of the proposed framework on three
multi-class semantic video segmentation datasets. We fo-

Color
C1: mean and variance in CIE-Lab color space
Texture
T1: mean and covariance of 17-dimensional filterbank response
HoG
H1: mean and variance of HOG feature on 8x8 patches
Optical Flow
O1: weighted dense optical flow histogram and mean
O2: flow differential : Histogram of differential of dense optical flow in
x and y, across 3 kernel size of differential(3, 5 and 7)
Semantic and Geometric Label Feature
S1: average, max and variance of semantic probability for each class
G1: average, max and variance of geometric probability for each class

Table 1: Statistics computed to represent supervoxels.

cus on the CamVid dataset here as they provide multiple
foreground classes. To demonstrate the generalisability of
our model, we also evaluate on the MPIScene and Dynam-
icScene datasets.

CamVid [1] consists of 5 video sequences captured dur-
ing the daytime and dusk. These sequences are sparsely la-
belled at 1Hz with 11 semantic classes. We follow the data
split in [1] and annotate 20 exemplars for Car, Bicyclists
and Pedestrian respectively. To obtain the ground truth
geometric label, we apply a simple mapping from 11 se-
mantic classes to 5 geometric classes.

MPIScene [26] consists of 156 annotated frames with 5
semantic classes. We follow the set-up in [16] and annotate
10 exemplars for V ehicle.

DynamicScene [27] consists of 176 sequences with 11
successive images each, and the last frame of each sequence
is labelled with 8 classes. Half of the sequences are used for
training and the remaining ones are for testing. Among all
the training data they provide, we use only 46 images for
unary term learning and 10 samples for detector. And we
test our model on the same test set as [27].

4.2. Implementation Details

The supervoxel generation and supervoxel unary term
are different in three datasets. In CamVid dataset, we use
a sliding window approach, in which each window consists
of 61 frames and shares one image with previous one to
maintain temporal label consistency. Then we employ the
method in [2] to generate spatio-temporal supervoxels. We
extract a set of image and motion features at each pixel, such
as color, texture and HoG features. We also apply methods
proposed in [5] and [9] in each frame to obtain per-pixel
semantic and geometric probability independently. Then we
train the random forest classifier [4] for Pl on these features
(See Table 1 for a summary).

In MPIScene and DynamicScene datasets, we set T as
156 and 11 respectively with no overlapping frames with
other chunks. We follow the same supervoxel generation
procedure as in the CamVid and set Pl as the averaged se-
mantic probability for each class.
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Image PCRF ICRF Detection

Figure 4: Semantic segmentation results from PCRF and ICRF
and the activated detections in ICRF in the CamVid. Active detec-
tions impose strong labeling consistency in our model.

The proposal and relation parts are the same for three
datasets. We obtain detectors by the exemplar SVM [15].
As no proposal ground truth is available for probability
regression on object instances, we automatically generate
“ground-truth” from segmentation ground truth by defining
a proposal as“true positive” if more than half of its occu-
pied pixels are consistent with its category. Then we extract
S1, C1 as in Table 1 and the Chamfer distance between ob-
ject mask and edge as features and train logistic regressors
to obtain Po.

We define two relations for proposed chains. In par-
ticular, proposal chains M and N are exclusive if : (1)
they belong to the same category. (2) some values of
foverlap(mt, nt) are larger than λ1, where λ1 is empirically
set as 0.75. Besides, we define M and N are overlapped
if some values of foverlap(mt, nt) are larger than λ2. λ2
is selected as 0.15 in experiment. We manually label the
relations of 20 pairs as ground truth and fit a multiclass lo-
gistic regressor for Ph. The features for regressor are C1,
the Chamfer distance between mask and edge, and number
of terminated trajectories for each proposal chain.

4.3. Results on CamVid Dataset

4.3.1 Segmentation Results

There are three settings of our model, the baseline—
pairwise CRF (PCRF), incremental CRF (ICRF) and our
full model. PCRF consists only supervoxel unary and pair-
wise terms while ICRF combines multiple detections with-
out reasoning object occlusion relation. Quantitative se-
mantic segmentation results in Table 2 show that by ex-
ploring occlusion relation, we can achieve (1) better per-
formance in terms of overall measurement and three fore-
ground classes with respect to PRCF and ICRF. (2) com-
parable results in overall measurement and better perfor-
mance in interested classes compare with state-of-the-art
under much less supervision.

Figure 4 compares segmentation results between PCRF

Image ICRF Full model Geo.F

Figure 5: Semantic segmentation results of ICRF and full model
in CamVid. Geo.F represents the geometric labeling results of the
full model.
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Stage [14] 88.3 88.7 69.2 52.7 40.3 67.8
Full model 90.0 93.3 76.1 65.7 48.7 74.8

Table 3: CamVid dataset geometric labeling results.

and ICRF. The second and last row show that the strong
labeling consistency is enforced by activated Car detec-
tions. As can be seen from Table 2, performance in three
interested classes is improved but the overall performance is
roughly the same. There are two possible reasons. Firstly,
supervision for detection is quite weak and we may intro-
duce too much noise during regression. Secondly, spatially
overlapped detections introduce conflicts in ICRF and thus
deteriorate the performance.

We then incorporate object relations to address the ex-
isting problems in ICRF. We explicitly model the labeling
consistency with respect to occlusions in full model. The
quantitative results in Table 2 show that incorporating re-
lations do boost the performance. Compared with state-of-
the-art, our model can achieve better or comparable results
with much weaker supervision. Figure 5 shows the quanti-
tative semantic results of both ICRF and full model as well
as the geometric output of full model. The fourth and last
row show that object relation reasoning inactivates the false
positive and activates the true positive respectively. The sig-
nificant improvement in both three object classes and over-
all measurement can be seen in Table 2.

We also compare our geometric predictions with the
state-of-the-art geometric labeling method [14] in Table 3.
We can see that our method outperforms the state-of-the-art
significantly on the CamVid dataset.

4.3.2 Object Segmentation and Proposal Efficiency
Table 4 shows the detector performance under weak super-
vision. Although detectors fail to detect more than half of
the objects and propose a large number of false positives,
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Static 95.6 84 94.9 76.7 53.1 66.9 4.9 9.2 28.7 17.6 5.9 78.2 48.9
PCRF 90.7 74.8 95.6 80.3 70.3 76.4 10.2 30.6 60.3 36.9 51.4 81.3 61.6
ICRF 90.4 73.9 95.6 80.0 69.9 79.3 10 29.9 60.6 38.3 51.2 81 61.7
Full model 92.4 73.8 95.5 79.2 73.6 81.7 9.7 29 60.9 42.1 50.3 82.5 62.5
Tighe [23] 95.9 87.0 96.9 67.1 70.0 62.7 1.7 17.9 14.7 19.4 30.1 83.3 51.2
Tighe [22] 96 83.1 94.6 73.5 71.2 78.1 5.3 32.8 58.6 45.9 71.2 83.9 62.5
Ladicky [12] 93.9 81.5 96.2 76.6 81.5 78.7 14.3 47.6 43 33.9 40.2 83.8 62.5
IOU score
ICRF 82.1 66.7 90.0 66 53.7 54.1 7.3 12.3 22.2 15.0 21.4 - 44.6
Full model 85.5 67.3 89.8 65.7 61.4 55.6 7.3 11.8 22.4 14.9 22.2 - 45.8
GeoF[11] - - - - - - - - - - - - 38.3
F1 score
ICRF 90.3 80.1 94.7 79.5 69.9 70.2 13.7 21.9 - 26.1 35.2 - 58.1
Full model 92.2 80.4 94.6 79.3 76.1 71.5 13.6 21.0 - 25.9 36.3 - 59.1
Occlusion[21] 87.0 71.6 92.9 57.0 76.1 60.9 19.8 37.5 - 24.3 54.4 - 58.2

Table 2: Averaged semantic recall, intersection-over-union (IOU) and F1 score of existing methods in CamVid. Note that supervision in
our model is much weaker than the baselines. F1 score in Pedestrian is not provided to have a fair comparison with [21].

Category Precision Recall IOU
Car 64.7/74.8 30/30 26.3/27.2
Pedes. 2.9/32.3 3.2/10 2/8.2
Bicy. 0/6.8 0/4.7 0/2.9

Table 4: Precision, recall and IOU score of detection performance
at equal FPPI in CamVid. In each cell, the first one is the object
segmentation result from detectors only method and the second is
that of full model.

our model can still learn from weak detections and benefit
from object relation reasoning. The detector performance is
improved significantly in terms of precision, recall and IOU
criterion.

In addition to the improvement in object segmentation,
our model also boosts the efficiency compare with per-
frame detection method. In terms of time consuming for
proposal generation in each chunk, per-frame method takes
858s while that of our method is less than 248s. Overall, we
improve the detection efficiency by 3.5 times.

4.3.3 Object Reasoning

As can be seen in the top three rows in Figure 6, the full
model inactivates false positives that fail to be identified in
ICRF by reasoning object relations. The last two rows of
Figure 6 show the relative ordering of overlapped proposals.
We can see that the full model provides a better representa-
tion of scenes by inferring the invisible parts of occluded
objects.

4.4. Extension to Other Datasets

To test the generalization of our model, we also evaluate
our framework on MPIScene and DynamicScene datasets.
Except the supervoxel unary and exemplars, we do not re-

Image ICRF Full model All Proposals

Figure 6: Examples of all detector proposals, active detections
from ICRF and full model in CamVid. Full model can successfully
infer the relative depth of overlapped objects and suppress the false
positives. The frontal-most proposal is colored in red.
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PCRF 89.8 91.7 11.2 66.8 95.2 71
Full model 90.2 91.7 11.2 72.5 95.2 72.2
Ondrej [16] 73 34 33 28 56 53.7
IOU score
PCRF 81.6 84.7 6 50.1 90.8 62.6
Full model 82.2 84.6 6 56.9 90.8 64.1
Recall
PCRF 83.6 98.7 6 74.7 99.3 72.4
Full model 83.2 98.1 6 90.9 99.3 75.5

Table 5: Semantic segmentation performance in MPIScene. Our
results outperform the state-of-the-art significantly.

train the CRF parameters specifically for these two datasets
but apply those we learned in CamVid directly.

Table 5 shows the semantic segmentation results on MP-
IScene dataset. Our model outperforms the state-of-the-art
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Image GT PCRF Full model

Figure 7: Comparison of the semantic segmentation results of
PCRF and full model on MPIScene dataset.

method [16] significantly. Qualitative results can be viewed
in Figure 7.

Our model also outperforms the state-of-the-art
method [27] on DynamicScene dataset. The per-class
and per-pixel accuracy on DynamicScene are 91.6% and
69.8% respectively from our model. According to [27],
their results are 88.3% and 68.4% respectively. It is
worth mentioning that our results are obtained under much
weaker supervision and tested on the same test set as [27].
Particularly, we utilize one third of their labeling training
data and less than 1% of object annotations during training.

5. Conclusion

In this paper, we propose a multiclass semantic video
segmentation method that joint infers semantic, geometric
labeling and relative ordering of proposed objects in dy-
namic scenes. We build a unified CRF model with a va-
riety of potential functions that encode object relations with
local semantic and geometric labeling. We also solve the
MAP inference problem efficiently in an one-shot optimiza-
tion procedure. Moreover, we exploit the temporal informa-
tion in videos and propose an efficient way to generate ob-
ject proposals with less training samples. We show that we
can achieve comparable or better performance than state-of-
the-art methods in three popular multi-class segmentation
datasets.
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