
1

Learning Weighted Lower Linear Envelope
Potentials in Binary Markov Random Fields

Stephen Gould, Member, IEEE

Abstract—Markov random fields containing higher-order terms are becoming increasingly popular due to their ability to capture
complicated relationships as soft constraints involving many output random variables. In computer vision an important class of
constraints encode a preference for label consistency over large sets of pixels and can be modeled using higher-order terms known as
lower linear envelope potentials. In this paper we develop an algorithm for learning the parameters of binary Markov random fields with
weighted lower linear envelope potentials. We first show how to perform exact energy minimization on these models in time polynomial
in the number of variables and number of linear envelope functions. Then, with tractable inference in hand, we show how the parameters
of the lower linear envelope potentials can be estimated from labeled training data within a max-margin learning framework. We explore
three variants of the lower linear envelope parameterization and demonstrate results on both synthetic and real-world problems.

Index Terms—higher-order MRFs, lower linear envelope potentials, max-margin learning

✦

1 INTRODUCTION

MARKOV random field (MRF) parameter learning is
a challenging task that has advanced considerably

in the past several years with the introduction of the
max-margin principle for structured prediction [36, 37].
The standard max-margin approach is to learn model
parameters by constraining the prediction rule to favour
the ground-truth assignment over all other joint assign-
ments to the variables. Since the set of all possible joint
assignments can be prohibitively large (exponential in
the number of the variables), constraints are introduced
incrementally by finding the most violated ones (with
respect to the current parameter settings) during each
iteration of the learning algorithm.
Despite this advance, learning the parameters of an

MRF remains a notoriously difficult task due to the
problem of finding the most violated constraints, which
requires performing exact maximum a-posteriori (MAP)
inference. Except in a few special cases, such as tree-
structured graphs or binary pairwise MRFs with sub-
modular potentials [21], exact inference is intractable and
the max-margin framework cannot be applied. When
substituting approximate inference routines to generate
constraints, the max-margin framework is not guaran-
teed to learn the optimal parameters and often performs
poorly [10].
Recently, models with structured higher-order terms

have become of interest to the machine learning com-
munity with many applications in computer vision, par-
ticularly for encoding consistency constraints over large
sets of pixels, e.g., [26, 27, 33]. A rich class of higher-order
models, known as lower linear envelope potentials, was

• S. Gould is with the Research School of Computer Science, Australian
National University, ACT 0200, Australia.
E-mail: stephen.gould@anu.edu.au

proposed by Kohli and Kumar [17]. The class defines
a concave function of label cardinality (i.e., number of
variables taking each label) and includes the generalized
Potts model [19] and its variants. While efficient approx-
imate inference algorithms based on message-passing or
move-making exist for these models, parameter learning
remains an unsolved problem.
In this paper we focus on learning the parameters

of weighted lower linear envelope potentials for binary
MRFs. We present an exact MAP inference algorithm
for these models that is polynomial in the number
of variables and number of linear envelope functions.
This opens the way for max-margin parameter learn-
ing. However, to encode the max-margin constraints we
require a linear relationship between model parameters
and the features that encode each problem instance.
Our key insight is that we can represent the weighted

lower linear envelope in two different ways. The first
way encodes the envelope as the minimum over a
set of linear functions and admits tractable algorithms
for MAP inference, which is required during constraint
generation. The second representation encodes the en-
velope by linearly interpolating between a sequence of
sample points. This representation allows us to treat
the potential as a linear combination of features and
weights as required for max-margin parameter learning.
By mapping between these two representations we can
learn model parameters efficiently. Indeed, other linear
parameterizations are also possible and we explore these
together with the corresponding feature representations.
We evaluate our approach on synthetic data as well as

two real-world problems—a variant of the “GrabCut” in-
teractive image segmentation problem [32] and segmen-
tation of horses from the Weizmann Horse dataset [2].
Our experiments show that models with learned higher-
order terms can result in improved pixelwise segmenta-
tion accuracy.

2

2 RELATED WORK

Our work focuses on a class of higher-order potentials
known as lower linear envelope potentials, which can be
used to represent arbitrary concave functions over the
number of variables (in a clique) taking a given assign-
ment. Kohli and Kumar [17] show how such potentials
can be represented in an energy-minimization setting by
introducing a multi-valued auxiliary variable to select
each linear function in the envelope. In principle, the op-
timal assignment can be found by jointly minimizing the
energy function over the original variables and this aux-
iliary variable. However, this is non-trivial, in general,
and Kohli and Kumar [17] only show how the resulting
energy function can be approximately optimized.

Earlier research, on MRFs with restricted variants
of the lower linear envelope potential, showed how
exact inference can be performed in the binary case.
Kohli et al. [19] introduced the Pn-model for encoding
consistency constraints. This was later extended to the
robust Pn-model by Kohli et al. [20] who also describe
an efficient move-making inference algorithm based on
graph-cuts [5, 6]. The robust Pn-model is a lower linear
envelope potential with only two terms per label—one
increasing and one constant. Multiple robust Pn-models
can be added to form a non-decreasing concave enve-
lope. However, these works did not address the problem
of parameter learning. Ladicky et al. [25] used this model
for improving the quality of multi-class image labeling
with parameters set by hand. The model is still consid-
ered state of the art for the multi-class image labeling
task (i.e., dense semantic segmentation). For segmenting
large foreground classes (like those in the PASCAL VOC
Challenge [9]) methods based on proposing whole-object
segments are showing promise (e.g., [7]).

In contrast to these works, we propose an algorithm
for exactly optimizing binary MRFs with arbitrary lower
linear envelope potentials and show how to learn their
parameters. We extend our previous work [12] to al-
low each variable within the potential to be assigned
an arbitrary non-negative weight. Our work and the
previous approaches described above are related to a
number of methods in discrete optimization that trans-
form higher-order or multi-label energy functions into
quadratic pseudo-Boolean functions (e.g., [14, 15, 33]).
These functions have been studied extensively in the
operations research literature (for a survey see Boros
and Hammer [4]). Under certain conditions, the result-
ing pseudo-Boolean function can be minimized exactly
by finding the minimum-cut in a suitably constructed
graph [11, 13]. Our work and other graph-cut approaches
make use of this result.

More general methods—falling under the class of sub-
modular energy minimization algorithms—can also be
used to optimize binary MRFs with arbitrary lower lin-
ear envelope potentials. These include the strongly poly-
nomial algorithm of Orlin [29] for general submodular
functions and the recently proposed submodular flows

method of Kolmogorov [22] for minimizing the sum
of submodular functions. However, the availability of
efficient software implementations and strong empirical
performance of graph-cut approaches [5] makes graph-
cuts the most appropriate for our problem.
Our max-margin learning framework is based on the

approaches introduced by Tsochantaridis et al. [37, 38]
and Taskar et al. [36], which have been successfully
applied within many application domains (see Joachims
et al. [16] for a recent survey and the “1-slack” reformu-
lation). Szummer et al. [35] showed how this framework
could be adapted to learn pairwise MRF parameters
using graph-cuts for inference. Unlike their approach,
our method applies to models with higher-order terms—
specifically, weighted lower linear envelopes.

3 LOWER LINEAR ENVELOPE MRFS

We begin with a brief overview of higher-order Markov
random fields (MRFs). We then introduce the lower
linear envelope potential and show how to perform exact
inference in models with these potentials. In Section 4 we
will discuss learning the parameters of the models.

3.1 Higher-order MRFs

The energy function for a higher-order MRF over discrete
random variables y = {y1, . . . , yn} can be written as:

E(y) =

n∑

i=1

ψU
i (yi)

︸ ︷︷ ︸
unary

+
∑

ij∈E

ψP
ij(yi, yj)

︸ ︷︷ ︸
pairwise

+
∑

c∈C

ψH
c (yc)

︸ ︷︷ ︸
higher-order

(1)

where the potential functions ψU
i , ψ

P
ij and ψH

c encode
preferences for unary, pairwise and k-ary variable as-
signments, respectively. The pairwise terms, ψP

ij , also
called edge potentials, are usually only defined over a
sparse subset E of possible variable pairs (yi, yj). The
latter terms, ψH

c , are defined over arbitrary subsets
of variables (or cliques), yc = {yi : i ∈ c} where
c ⊆ {1, . . . , n} is a subset of variable indices. When
|c| > 2 these are known as higher-order potentials. The
higher-order potentials can be defined over multiple
overlapping cliques. We denote the set of all cliques for
which a higher-order potential is defined by C.

In this paper, we will be concerned with inference and
learning of higher-order binary MRFs (i.e., yi ∈ {0, 1})
with weighted lower linear envelope potentials. These
have been attracting much interest in computer vision
applications for encoding consistency constraints over
large subsets of pixels in an image [19, 26, 28]. A
weighted lower linear envelope potential over a subset
(clique) of binary variables yc is a piecewise linear
function defined as the minimum over a set of K linear
functions as

ψH
c (yc) , min

k=1,...,K

{
ak

∑

i∈c

wc
i yi + bk

}
(2)

3

Fig. 1: Example lower linear envelope ψH
c (yc) (shown solid)

with three terms (dashed) as a function ofWc(yc) =
∑

i∈c
wc

i yi.
When Wc(yc) ≤ W1 the first linear function is active, when
W1 < Wc(yc) ≤ W2 the second linear function is active,
otherwise the third linear function is active.

where wc
i ≥ 0 are non-negative per-variable weights for

each clique with
∑

i∈c w
c
i = 1, and (ak, bk) ∈ R

2 are
the linear function parameters.1 To simplify notation in
the sequel, we will define the weight of the clique for a
given assignment yc as Wc(yc) =

∑
i∈c wiyi. Using this

definition we can re-write Equation 2 as

ψH
c (yc) = min

k=1,...,K
{akWc(yc) + bk} . (3)

Note that if all variables are assigned the same weight
wc

i = 1
|c| , then Wc(yc) is simply the proportion of vari-

ables in the clique taking assignment one. This restriction
(of uniform weights) was assumed in Gould [12].
Figure 1 depicts an example lower envelope for three

linear functions. Kohli and Kumar [17] showed that this
representation can encode arbitrary concave functions
of Wc(yc) given sufficiently many linear functions. The
parameterization, however, is not unique.

Definition 3.1 (Active). We say that the k-th linear function
is active with respect to an assignment yc if ψH

c (yc) =
akWc(yc) + bk.

Note that more than one linear function can be active
for the same assignment (e.g., at points where two or
more linear functions intersect). Clearly, however, if a
linear function is never active, or only active whenever
another linear function is also active, it can be removed
from the potential without changing the energy function.

Definition 3.2 (Redundant). We say that the k-th linear
function is redundant if it is not active for any assignment
to yc in any clique c ∈ C or is only active whenever another
linear function is also active.

Although not strictly necessary, in the following, we
assume that our potentials do not contain redundant
linear functions. Furthermore, we assume that the pa-
rameters {(ak, bk)}

K
k=1 are sorted in decreasing order of

1. The condition that
∑

i∈c w
c
i = 1 is assumed so that the same

parameters (ak, bk) can be used for cliques with different per-variable
weights and still produce the same shaped lower linear envelope. Note
that if Z =

∑
i∈c w

c
i 6= 1 we can always normalize the wc

i by dividing
throughout by Z.

ak. Clearly, this implies that ak > ak+1 and bk < bk+1

since if not then the k-th linear function will lie above
the (k+1)-th linear function for all configurations of yc,
i.e., the k-th linear function will never be active.
One may ask what conditions on {(ak, bk)}

K
k=1 ensure

that the potentials do not have any redundant linear
functions. The following proposition provides such a
characterization.

Proposition 3.1. : Let f : [0, 1] → R be defined by
f(x) = mink=1,...,K {akx+ bk}. Assume the ak are sorted
in decreasing order (so ak > ak+1). Then the k-th linear
function is not redundant if

0 <
bk − bk−1

ak−1 − ak
<
bk+1 − bk
ak − ak+1

< 1. (4)

Proof: The k-th linear function is active (and no other
linear function is active) if there exists x ∈ (0, 1) such that
the following two inequalities hold

ak−1x+ bk−1 > akx+ bk

ak+1x+ bk+1 > akx+ bk

Rearranging for x and adding the constraint that 0 <

x < 1 gives the result.

Finally, we note that arbitrarily shifting each linear
function in the lower-linear envelope potential up or
down by the same fixed constant does not change the
energy-minimizing assignment y⋆ as captured by the
following observation.

Observation 3.2.: Let ψH
c (yc) be defined as in Equation 3

and let ψ̃H
c (yc) = mink=1,...,K {akWc(yc) + bk + bconst}.

Then

argmin
yc

ψH
c (yc) = argmin

yc

ψ̃H
c (yc). (5)

This property will be useful when considering dif-
ferent learning algorithms and will allow us to make
convenient assumptions such as b1 = 0 (and therefore
all the bk are non-negative), without loss of generality.

3.2 Exact Inference

The goal of inference is to find an energy-minimizing
assignment y⋆ ∈ argmin

y
E(y). As we will show our

energy function is submodular so can be solved in
time polynomial in the number of variables by general-
purpose submodular minimization algorithms [22, 29].
However, the special form of the lower linear envelope
higher-order terms admits the use of much faster graph-
cut based methods.
We follow the approach of a number of works that

address the problem of inference in certain classes of
higher-order MRFs by transforming the inference prob-
lem to that of minimizing a quadratic pseudo-Boolean
function, i.e., pairwise MRF (e.g., [4, 11, 15]). For ex-
ample, Kohli et al. [20] showed that exact inference can
be performed using graph-cuts when the potential is a

4

concave piecewise linear function of at most three terms
(one increasing, one constant, and one decreasing). Arbi-
trary concave functions can be handled by decomposing
them into a sum of piecewise linear functions of two or
three terms. Gould [12] showed an alternative graph-
cut method for minimizing potentials with arbitrary
many terms. We now develop a weighted version of that
method.
Consider, again the weighted lower linear envelope

potential represented by Equation 2. Introducing K − 1
auxiliary binary variables z = (z1, . . . , zK−1), we define
the quadratic pseudo-Boolean function

Ec(yc, z) = a1Wc(yc) + b1

+

K−1∑

k=1

zk ((ak+1 − ak)Wc(yc) + bk+1 − bk) (6)

for a single clique c ∈ C.
The advantage of this formulation is that minimizing

over z, subject to some constraints, selects (one of) the
active function(s) from ψH

c (y) as we will now show.

Proposition 3.3. : Minimizing the function Ec(yc, z)
over z subject to zk+1 ≤ zk for all k is equivalent to
mink=1,...,K {akWc(yc) + bk}, i.e.,

ψH
c (yc) = min

z:zk+1≤zk
Ec(yc, z).

Proof: The constraints ensure that z takes the form
of a vector of all ones followed by all zeros. There are K
such vectors and for k = 1Tz + 1 we have Ec(yc, z) =
akWc(yc)+ bk. Therefore, minimizing over z is the same
as minimizing over k ∈ {1, . . . ,K}.

In Gould [12] we showed that the constraints on z can
be enforced by addingMzk+1(1−zk) for k = 1, . . . ,K−2
to the energy function withM sufficiently large. We now
show that it is not necessary to add these terms as the
constraints are either automatically satisfied (with M =
0) or violations of the constraints do not affect the value
of the energy function or the optimal assignment of yc.

Lemma 3.4.: Unconstrained (binary) minimization of the
function Ec(yc, z) over z is equivalent to minimization
of Ec(yc, z) subject to the constraints zk+1 ≤ zk.

Before proving the lemma, we make two observations.

Observation 3.5.: Assume that for some assignment yc

we have ak+1Wc(yc) + bk+1 = akWc(yc) + bk. Then, for
any assignment to z ∈ {0, 1}K−1, flipping the value of
zk does not change Ec(yc, z).

Observation 3.6. : For any assignment yc such that
(ak+1 − ak)Wc(yc) + bk+1 − bk ≤ 0 we have that setting
zk = 1 will result in a lower energy than setting zk = 0.

We now proceed with the proof of Lemma 3.4.
Proof: Consider minimizing Equation 6 over z for

fixed yc. Clearly, from our observations above, zk = 1
if (ak+1 − ak)Wc(yc) + bk+1 − bk < 0. Likewise zk = 0 if

(ak+1 − ak)Wc(yc)+bk+1−bk > 0. Now assume zk+1 = 1.
Then

ak+2Wc(yc) + bk+2 ≤ ak+1Wc(yc) + bk+1

Since none of the linear functions are redundant, we
must have (by Proposition 3.1)

ak+1Wc(yc) + bk+1 ≤ akWc(yc) + bk

otherwise the (k + 1)-th function will never be active. If
the above holds with equality then the value of zk does
not affect the value of Ec(yc, z). Otherwise zk = 1 and
the constraint zk+1 ≤ zk is satisfied.

Rewriting the quadratic pseudo-Boolean function of
Equation 6 in posiform [4], we have

Ec(yc, z) = b1 − (a1 − aK) +
∑

i∈c

a1w
c
i yi

+
K−1∑

k=1

(bk+1 − bk) zk +
K−1∑

k=1

(ak − ak+1) z̄k

+

K−1∑

k=1

∑

i∈c

(ak − ak+1)w
c
i ȳizk (7)

where z̄k = 1 − zk and ȳi = 1 − yi, and all coefficients
(apart from the constant term) are positive.2

Importantly, Ec(yc, z) is a submodular energy func-
tion, which allows us to perform efficient inference by
minimizing jointly over both variables yc and auxiliary
variables z.

Proposition 3.7.: The energy function Ec(yc, z) defined
by Equation 7 is submodular.

Proof: Follows from the fact that all the bi-linear
terms in Equation 7 are of the form λūv with λ ≥ 0.
See Boros and Hammer [4].

It is well known that submodular pairwise energy
functions can be minimized exactly in time polynomial
in the number of variables by finding the minimum-st-
cut on a suitably constructed graph [13, 23]. We illustrate
one possible construction for Ec(yc, z) in Figure 2.
Using this fact, we can show that an energy function

containing arbitrary weighted lower linear envelope po-
tentials can be minimized in polynomial time.

Theorem 3.8.: For binary variables y ∈ {0, 1}n, let E0(y)
be a submodular energy function, and let

E(y) = E0(y) +
∑

c∈C

ψH
c (yc),

where ψH
c (yc) are arbitrary weighted lower linear en-

velope higher-order potentials. Then E(y) can be mini-
mized in time polynomial in the number of variables n
and total number of linear envelope functions.

2. Here we have assumed that a1 ≥ 0. If a1 < 0 then the term∑
i∈c a1w

c
i yi should be replaced with a1 +

∑
i∈c |a1|w

c
i ȳi. For all

other terms, recall we have ak > ak+1 and bk < bk+1.

5

Fig. 2: Construction of an st-graph for minimizing energy
functions with arbitrary weighted lower linear envelope poten-
tials. Every cut corresponds to an assignment to the random
variables, where variables associated with nodes in the S set
take the value one, and those associated with nodes in the T

set take the value zero. With slight abuse of notation, we use
the variables to denote nodes in our graph. For each lower
linear envelope potential edges are added as follows: for each
i ∈ c, add an edge from yi to t with weight a1w

c
i ; for each i ∈ c

and k = 1, . . . ,K − 1, add an edge from zk to yi with weight
(ak−ak+1)w

c
i ; and for k = 1, . . . ,K−1, add an edge from s to

zk with weight ak − ak+1 and edge from zk to t with weight
bk+1−bk. Other edges may be required to represent unary and
pairwise potentials (see [23]).

Proof: By Proposition 3.3 we have argmin
y
E(y) =

argmin
y
(E0(y) +

∑
c minzc

Ec(yc, zc)). By Proposi-
tion 3.7 we have that the Ec(yc, zc) are submodular.
The sum of submodular energy functions is submodular.
Each higher-order term adds K−1 auxiliary variables so
the total number of variables in the augmented energy
function is less than n plus the total number of linear
functions.

3.3 Relationship to Binary MRFs

From a graphical models perspective, we note that
Ec(yc, zc) is nothing more than a pairwise binary
Markov random field (MRF). Evidently, we can express
Equation 7 as

Ec(yc, z) = const.+
∑

i∈c

ψY
i (yi) +

K−1∑

k=1

ψZ
k(zk)

+
∑

(i,k)

ψP
ik(yi, zk) (8)

where, for example, ψZ
k(zk) = (bk+1 − bk) if zk = 1 and

(ak − ak+1) otherwise. For brevity, we omit details of
the remaining potential functions, which can be trivially
constructed by considering the corresponding unary and
pairwise terms in yi and zk between the two forms.

4 LEARNING THE LOWER LINEAR ENVELOPE

We now show how the max-margin framework can be
used to learn parameters of our weighted lower linear
envelope potentials. For simplicity of exposition we con-
sider a single higher-order term ψH

c (yc) and drop the
subscript c for brevity. The extension to multiple higher-
order terms defined over different subsets of variables is
straightforward.
We begin by reviewing a variant of the max-margin

framework introduced by Tsochantaridis et al. [37] and
Taskar et al. [36]. We then show how alternative repre-
sentations of the weighted lower linear envelope poten-
tial can be learned using the framework.

4.1 Max-margin Learning

Given an energy function E(y;θ) = θTφ(y) parameter-
ized as a linear combination of features φ(y) ∈ R

m and
weights θ ∈ R

m, and a set of T training examples {yt}
T
t=1

the max-margin framework is a principled approach to
learning the weights of the model.
In our formulation we will allow additional linear

constraints to be imposed on the weights of the form
Gθ ≥ h, where G ∈ R

d×m and h ∈ R
d. This is not

typically necessary for max-margin learning, but, as we
will see below, is required for enforcing concavity when
learning lower linear envelope potentials.
Now, let Yt = {0, 1}n be the set of all possible

assignments for the t-th training example. The (margin-
rescaling) max-margin approach formulates learning
as a quadratic programming optimization problem,
MAXMARGINQP

(
{yt,Yt}

T
t=1,G,h

)
:

minimize 1
2‖θ‖

2 + C
T

∑T
t=1 ξt (9)

subject to

θT δφt(y) + ξt ≥ ∆(y,yt), ∀t,y∈Yt,
ξt ≥ 0, ∀t,
Gθ ≥ h

where δφt(y) , (φt(y)− φt(yt)) is the difference be-
tween feature representations for some assignment y

and the t-th ground-truth assignment yt, C > 0 is
a regularization constant, and ∆(y,yt) measures the
loss between a ground-truth assignment yt and any
other assignment. In our work we use the Hamming
loss, which measures the proportion of variables whose
corresponding assignments disagree. More formally, the
Hamming loss is defined as ∆(y,y′) = 1

n

∑n
i=1 [[yi 6= y′i]],

where [[P]] is the indicator function taking value one
when P is true and zero otherwise.
The number of constraints in the QP is exponential

in the number of variables, and a standard approach
to solving the max-margin QP is by adding constraints
incrementally. Briefly, at each iteration the algorithm
checks for the most violated constraint (for each training
example), using loss-augmented inference, and, if found,
adds it to the constraint set. The algorithm terminates

6

Fig. 3: Example piecewise-linear concave function ofWc(yc) =∑
i∈c

wc
i yi. The function can be represented as the minimum

over a set of linear functions (lower linear envelope) or as a
set of sampled points θk with curvature constraint.

when no more violated constraints are found (see Algo-
rithm 1).
Note that while we use the Hamming loss in this

work, the loss function ∆(y,yt) in Equation 9 can be
more general. For example, Pletscher and Kohli [31]
recently showed that certain higher-order losses can be
reduced to binary pairwise supermodular functions. In
this way the loss function factors over the same terms
as in the energy function with the addition of auxiliary
variables. Since the loss function is subtracted from the
energy function during loss-augmented inference, the
supermodular loss becomes a submodular objective and
therefore admits tractable minimization.

4.2 Transforming Between Representations

The max-margin formulation (see Equation 9) requires
that the energy function be expressed as a linear com-
bination of features and weights, however, our higher-
order potential is represented as the minimum over a set
of linear functions. One simple way to re-parameterize
the energy function for learning is to sample the higher-
order potential at regular intervals between zero and
one.3 This provides a piecewise linear approximation
of the weighted lower linear envelope and the number
of points sampled lets us trade-off tightness of the
approximation with efficiency of inference. Let θ =
(θ0, . . . , θK) ∈ R

K+1 be the sampled values. Then, we can
retrieve the equivalent weighted lower linear envelope
representation as

ak = (θk − θk−1)K (10)

bk = θk − ak
k

K
= kθk−1 − (k − 1)θk (11)

for k = 1, . . . ,K as illustrated in Figure 3.4 The corre-
sponding feature vector φ(y) = (φ0, . . . , φK) ∈ R

K+1,
under this representation, is a (K+1)-length vector with

3. Recall from Section 3 that we have assumed, without loss of
generality, that

∑
i∈c w

c
i = 1.

4. Note that if ak = ak−1 then the k-th linear function is redundant
and can be omitted from the energy function.

n-th entry

φn−1 =

W (y) ·K − n+ 2 if n−2
K
≤W (y) < n−1

K

n−W (y) ·K if n−1
K
≤W (y) < n

K

0 otherwise.
(12)

so that θTφ(y) linearly interpolates between the samples
corresponding to the active linear function (see Figure 4).
For example, assume K = 3 and W (y) = 1

2 + ǫ then
φ(y) = (0, 12 − 3ǫ, 12 + 3ǫ, 0). Note that 1Tφ(y) = 1.
This representation is independent of clique size and
so can be used without modification for applications
where clique size varies between instantiations of the
higher-order potentials, e.g., when cliques are derived
from superpixels generated from an over-segmentation
algorithm.

Fig. 4: Illustration of how the feature vector φ(y) interpolates
between samples to produce the correct value for the active
linear function.

It is instructive to observe that under this representa-
tion, with weighted lower linear envelope sampled at
uniform intervals between 0 and 1, we can compute
k⋆ = argmin

k=1,...,K {akW (y) + bk} and hence z in
closed-form as

k⋆ =

{
1 if W (y) = 0
⌈W (y) ·K⌉ otherwise

(13)

which is the key insight behind the feature representa-
tion in Equation 12.
We now have a representation of our higher-order

potentials which is linear in the parameters θ. It remains
to ensure that θ represents a concave function. We do
this by adding the second-order curvature constraint
D2θ ≥ 0 where D2 ∈ R

(K−1)×(K+1) is the (negative)
discrete second-derivative operator:

D2 =

−1 2 −1 0 · · ·

. . .

· · · 0 −1 2 −1

 . (14)

Our optimization follows the standard max-margin
approach and is summarized in Algorithm 1.5

5. To jointly learn the unary and pairwise weights, we augment the
parameter vector θ with a weight θunary for the unary terms and non-
negative weight θpair for the pairwise terms, and add the correspond-
ing features φunary =

∑
i ψ

U
i (yi) and φpair =

∑
ij ψ

P
ij(yi, yj) to the

feature vector φ(y). The non-negativity of θpair ensures that the energy
function remains submodular.

7

Algorithm 1 Learning lower linear envelope MRFs.

1: input training set {yt}
T
t=1, regularization constant

C > 0, and tolerance ǫ ≥ 0
2: initialize active constraints set At = {} for all t
3: repeat
4: solve MAXMARGINQP

(
{yt,At}

T
t=1,D

2, 0
)
to get θ̂

and ξ̂

5: convert from θ̂ to (ak, bk) representation
6: for each training example, t = 1, . . . , T do

7: compute y⋆
t = argmin

y
E(y; θ̂)−∆(y,yt)

8: if ξ̂t + ǫ<∆(y⋆
t ,yt)− E(y⋆

t ; θ̂) + E(yt; θ̂) then
9: At ← At ∪ {y

⋆
t }

10: end if
11: end for
12: until no more violated constraints
13: return parameters θ̂

Theorem 4.1. : For the setting ǫ = 0, Algo-
rithm 1 terminates with the optimal parameters θ⋆ for
MAXMARGINQP

(
{yt,Yt}

T
t=1,D

2, 0
)
.

Proof: By Theorem 3.8, our test for the most violated
constraints (lines 7 and 8) can be performed exactly
(∆(y,yt) decomposes as a sum of unary terms). If the
test succeeds, then y⋆

t cannot already be in At. It is
now added (line 9). Since there are only finitely many
constraints, this happens at most 2n − 1 times (per
training example), and the algorithm must eventually
terminate. On termination there are no more violated
constraints, hence the parameters are optimal.

Unfortunately, as our proof suggests, it may take
exponential time for the algorithm to reach convergence
with ǫ = 0. Tsochantaridis et al. [38] showed, however,
that for ǫ > 0 and no additional linear constraints
(i.e., G = 0, h = 0) max-margin learning within a dual
optimization framework will terminate in a polynomial
number of iterations. Their result can be extended to the
case of additional linear constraints (see the Appendix
for details).

4.3 Alternative QP Formulations

Our quadratic program above is just one possible formu-
lation that is based on a particular choice for represent-
ing the weighted lower linear envelope and correspond-
ing feature vectors. An alternative representation may
encode the slope of the weighted lower linear envelope
directly, that is,

θ′i =

{
b1 for i = 0
ai = θi − θi−1 for i = 1, . . . ,K

(15)

The i-th component in the corresponding feature vec-
tor is then φ′i =

∑
j≥i φj . And instead of a second-order

constraint D2θ′ ≥ 0, we have a first-order constraint
Dθ′ ≥ 0. Here we can retrieve the bk recursively as

bk+1 = (ak − ak+1)
k

K
+ bk (16)

One of the advantages of this formulation is that
the regularization term does not penalize flat envelopes
(i.e., ak = 0). Moreover, it is interesting to note that under
this formulation the optimal θ′0 is always zero, i.e., b1 = 0,
which is not surprising in light of Observation 3.2.
We can take this process one step further and represent

the higher-order potential as

θ′′k =

b1 for k = 0
a1 for k = 1
ak−1 − ak for k = 2, . . . ,K

(17)

with non-negativity constraints on θ′′k for k = 2, . . . ,K,
and appropriate feature vectors, i.e.,

φ′′k =

1 if k = 0
W (y) if k = 1(

(k−1)
K
−W (y)

) [[
W (y) > k−1

K

]]
k = 2, . . . ,K

(18)

Here we are encoding the coefficients of the pseudo-
Boolean function used during inference directly into
the learning problem. Like the previous formulation we
know that the optimal b1 is zero so can simply drop θ0
and φ0 from the optimization.
It is interesting to note the resemblance of the lat-

ter QP formulation with latent-variable structural SVM
learning [39]. In our formulation the auxiliary variables
z (see Section 3.2) can be determined directly from the
ground-truth or inferred labels y. Moreover, since we
have fixed the piecewise-linear approximation to have
equally spaced break-points, the auxiliary variables are
independent of the parameters (ak, bk) given y. We also
have that the bk are a function of the ak (by Equation 16).
Removing the restriction of equally spaced break-points
(and introducing the bk into the optimization) results in a
latent-variable SVM. The main difficulty is that the latent
variables z now depend on the parameters making the
optimization problem non-convex.
A number of other variants can be considered by lin-

early constraining θ (or alternatively re-defining φ(y)).
For example, the parameters of the Pn-model can be
learned by constraining θ0 ≤ θ1 and forcing θi = θi−1

for i = 2, . . . ,K − 1. Although this case is somewhat
uninteresting as there is only one parameter to learn
(since by Observation 3.2 we can set θ1 = . . . = θK = 0
without changing the shape of the potential function),
which can often be done more efficiently by other means,
e.g., cross-validation over a range of values.

5 EXPERIMENTAL RESULTS

We conduct experiments on synthetic and real-world
data, comparing baseline MRF models with ones that
include higher-order terms learned by our method.

5.1 Synthetic Checkerboard

Our synthetic experiments are designed to explore the
different QP formulations for learning the lower linear

8

envelope model parameters and provide intuition into
the real-world experiments that follow. They involve an
8× 8 checkerboard pattern of alternating white (yi = 1)
and black (yi = 0) squares. Each square contains 256
pixels. We associate one variable in the model with each
pixel giving our MRF a total of 8 × 8 × 256 = 16, 384
variables. We generate a noisy version of the checker-
board as input by the following method. Let y⋆ be the
ground-truth checkerboard, then our input is generated
as xi = η0[[y

⋆
i = 0]]− η1[[y

⋆
i = 1]]+ δi where η0 and η1 are

the signal-to-noise ratios for the black and white squares,
respectively, and δi ∼ U(−1, 1) is additive i.i.d. uniform
noise. Our task is to recover the checkerboard pattern
from the noisy input.

We consider three difference MRF models involving:
(i) unary and pairwise terms, (ii) unary and higher-
order terms, and (iii) unary, pairwise, and higher-order
terms. Our unary terms are constructed for each pixel as
ψU
i (yi) = θunaryxi where θunary is an arbitrary weight. The

pairwise terms take the form ψP
ij(yi, yj) = θpair[[yi 6= yj]],

where i and j are neighbouring pixels, and θpair ≥ 0
weights the strength of the pairwise term relative to the
unary term.

For models including higher-order terms, we add
one lower linear envelope potential term ψH

c (yc) =

mink=1,...,K

{
ak

∑
i∈c

1
|c|yi + bk

}
for each square in the

checkerboard, so each higher-order potential contains
256 variables and the terms are disjoint. Intuitively, we
would like the potential to favour label consistency
within the square. We learn θunary, θpair (when included),
and {(ak, bk)}

K
k=1 for K = 10 linear functions using

Algorithm 1. For the baseline model with unary and
pairwise terms we set θunary = 1 and choose θpair to
give best the Hamming loss by evaluating 101 uniformly
spaced values in the range [0, 1].

We report results on two different problem instances.
The first has symmetric signal-to-noise ratios η0 = η1 =
0.1, and the second has five times less noise on the black
squares (η0 = 0.5) than on the white (η1 = 0.1). Figure 5
shows the ground-truth checkerboard patterns and the
noisy input. For both instances we set C = 1000 in
Equation 9. Learning is run to convergence, taking 27
iterations for the first instance and 19 iterations for the
second instance on the model with unary, pairwise and
higher-order terms. Each training iteration took under 1s
with inference taking about 120ms on a 2.66GHz quad-
core Intel CPU.

Figure 5 shows the inferred checkerboard patterns
for the pairwise MRF baseline, and for our higher-
order model after the third and after the final training
iterations ((c), (d), and (e), respectively). We see that after
just three iterations our higher-order model is already
performing well on both problem instances, and by the
final iteration we can perfectly recover the checkerboard
unlike the pairwise model. This is not surprising given
that our higher-order cliques are defined on the checker-
board squares. Below we run further experiments with

(a) (b) (c) (d) (e)

Fig. 5: Inferred output from our synthetic experiments. Shown
are (a) the ground-truth labels, (b) noisy inputs, (c) best inferred
labels using a pairwise model, (d)-(e) inferred output from
the model containing higher-order terms after three training
iterations and at convergence, respectively. Matlab source code
for reproducing these results is available from the author’s
homepage.

misspecified cliques.
We also compared the shape of the learned lower

linear envelope for different problem instances com-
paring the different QP formulations (as described in
Section 4.3). All formulations were able to learn param-
eters that perfectly reconstruct the known checkerboard
pattern. The learned linear envelope parameters (relative
to the unary weight) are shown in Figure 6. Note that
for the second instance (with asymmetric noise), our
algorithm is able to learn an asymmetric potential.
Next we evaluate our algorithm on synthetic data with

partially overlapping as well as misspecified cliques.
Here we generate multiple cliques (between one and
five) for each checkerboard square then randomly re-
move between 5% and 50% of the pixels from each
clique. We also introduce a number of completely mis-
specified cliques composed of pixels chosen at random
from anywhere in the image—on expectation half the
pixels in these cliques have ground-truth label one and
half have ground-truth label zero. We learn a model with
unary and higher-order terms only.
Inferred checkerboard patterns are shown in Figure 7.

Increasing from left to right is the percentage of pixels
randomly removed from the cliques (i.e., reduction in
clique size). Increasing from top to bottom is the number
of overlapping cliques. As expected our model performs
poorly when many of the pixels are not covered by a
higher-order clique, for example in Figure 7(i)(d). Multi-
ple partially overlapping cliques addresses this problem.
Moreover, our method is robust to a reasonable number
of misspecified cliques (10% in the case of the results
shown in Figure 7).

5.2 Interactive Figure-Ground Segmentation

We also ran experiments on the real-world “GrabCut”
problem introduced by Rother et al. [32]. Here the aim
is to segment a foreground object from an image given
a user-annotated bounding box of the object (see Fig-
ure 8(a) for some examples). To solve this problem the
GrabCut algorithm associates a binary random variable

9

2 4 6 8 10
−100

−50

0

50

100

2nd order (24 iters.)

1st order (25 iters.)

0th order (28 iters.)

2 4 6 8 10
−100

−50

0

50

100

2nd order (27 iters.)

1st order (61 iters.)

0th order (32 iters.)

10 20 30 40 50
−100

−50

0

50

100

2nd order (26 iters.)

1st order (100 iters.)

0th order (100 iters.)

(a) (b) (c)

2 4 6 8 10
−100

−50

0

50

100

2nd order (22 iters.)

1st order (33 iters.)

0th order (9 iters.)

2 4 6 8 10
−100

−50

0

50

100

2nd order (19 iters.)

1st order (48 iters.)

0th order (26 iters.)

10 20 30 40 50
−100

−50

0

50

100

2nd order (22 iters.)

1st order (56 iters.)

0th order (10 iters.)

(d) (e) (f)

Fig. 6: Learned linear envelopes (parameters are normalized by the unary weight) for synthetic experiments. The first row
(a)-(c) shows results with symmetric noise (η0 = η1 = 0.1) while the second row (d)-(f) shows results with asymmetric noise
(η0 = 0.5 and η1 = 0.1). Compared are models with unary and higher-order potentials with K = 10 linear terms ((a) and (d)),
unary, pairwise and higher-order potentials ((b) and (e)), and unary and higher-order potentials with K = 50 linear terms ((c)
and (f)).

(i)

(ii)

(iii)

(a) (b) (c) (d)

Fig. 7: Inferred output from our synthetic experiments with
misspecified cliques. Shown are inferred outputs from the
model at convergence. Rows (i)–(ii) correspond to partially
covering each grid square with 1, 2 and 5 higher-order cliques,
respectively. Columns (a)-(d) correspond to the size of each
clique (95%, 90%, 75%, 50% grid square coverage, respectively).
In addition, 10% of the cliques were generated to contain
random a random mix of pixels.

yi with each pixel in the image indicating whether the
pixel belongs to the “background” (binary label 0) or the
“foreground” (binary label 1). Variables corresponding to
pixels outside of the user-annotated bounding box are
automatically assigned a label of zero (i.e., background).
The assignment for the remaining variables, i.e., those

within the bounding box, is inferred.
We compare a model with learned higher-order terms

against the baseline GrabCut model by performing
leave-one-out cross-validation on a standard set of 50
images from Lempitsky et al. [26]. Following the ap-
proach of Rother et al. [32], our baseline model contains
unary and pairwise terms. The unary terms are defined
as the log-likelihood from foreground and background
Gaussian mixture models (GMMs) over pixel colour
and are image-specific. Briefly, the GMMs are initialized
by learning foreground and background models from
pixels inside and outside the user-annotated bounding
box, respectively. Next, the GMMs are used to relabel
pixels (within the bounding box) as either foreground or
background by taking the label with highest likelihood
according to the current parameter settings. Next the
parameters of the foreground and background colour
models are re-estimated given the new labeling. This
process of parameter estimation and re-labeling is re-
peated until convergence (or a maximum number of iter-
ations is reached). The final GMMs are used to construct
the unary terms.
The pairwise terms encode smoothness between each

pixel and its eight neighbours, and are defined as

ψP
ij(yi, yj) =

λ

dij
[[yi 6= yj]] exp

{
−
‖xi − xj‖

2

2β

}
(19)

where dij is the distance between pixels i and j, xi and

10

xj are the RGB colour vectors for pixels i and j, β is the
average squared-distance between adjacent RGB colour
vectors in the image, and λ determines the strength
of the pairwise smoothness term. It is the only free
parameter in the baseline model and learned by cross-
validation.
To construct the higher-order terms, we adopt a sim-

ilar superpixel-based approach to Ladicky et al. [25].
First, we over-segment the image into a few hundred
superpixels. Here we use the mean-shift segmentation
algorithm of Comaniciu and Meer [8] but our method
does not depend on this choice. The pixels within each
superpixel then define a higher-order term, much like
the checkerboard squares in our synthetic experiments.
Here, however, the higher-order terms are over different
sized cliques and there is no guarantee that they should
be labeled homogeneously.
We learn the weights for the unary and pairwise

potentials and the parameters for a lower linear envelope
potential with K = 10 terms using Algorithm 1. We
set C = 1000 and ran for a maximum of 100 iterations,
however, for most cross-validation folds, the algorithm
converged before the maximum number of iterations
was reached. The parameters determined at the last itera-
tion were used for testing. Learning took approximately
3 hours per cross-validation fold with the majority of
the time spent generating violated constraints for the
49 training images (each typically containing 640 × 480
pixels).
Some example results are shown in Figure 8. The

first row shows that our higher-order terms can capture
some fine structure such as the cheetah’s tail but it also
segments part of the similarly-appearing rock. In the
second example, we are able to correctly segment the
person’s legs. The third example shows that we are able
to segment the petals at the lower part of the rightmost
flower, which the baseline model does not. The final
example (fourth row) shows that our model is able to re-
move background regions that have similar appearance
to the foreground. However, we can also make mistakes
such as parts of the sculpture’s robe. Quantitatively, our
method achieves 91.5% accuracy compared to 90.0% for
the strong baseline.

5.3 Weizmann Horses

We also ran experiments on the 328-image Weizmann
Horse dataset [2, 3]. The task here is a supervised
machine learning one with the goal being to segment
horses from the background in unseen images. As with
the previous experiments, our model consists of unary,
pairwise and higher-order lower linear envelope terms.
We divide the dataset into three subsets of size 100,

64 and 164. The first subset of 100 images is used to
learn a classifier for predicting horse pixels from local
features. The second subset of 64 images is used to learn
the weights for the unary and pairwise terms, and the
parameters of the higher-order lower linear envelope

(a) (b) (c) (d)

Fig. 8: Example results from our GrabCut experiments. Shown
are: (a) the image and bounding box, (b) ground-truth segmen-
tation, (c) baseline model output, and (d) output from model
with higher-order terms.

potentials. The final subset of 164 images is used for
testing.
Concretely, our unary terms contain the log-

probability from a learned boosted decision tree
classifier, which estimates the probability of each pixel
belonging to a horse given colour and texture features
surrounding the pixel. We use the 17-dimensional
“texton” filterbank of Shotton et al. [34] for describing
texture.
Again for the higher-order terms we over-segment

the images using the mean-shift segmentation algo-
rithm [8] to produce superpixels. However, instead of
a single over-segmentation we compute multiple over-
segmentations by varying the spatial and colour band-
width parameters of the mean-shift algorithm. Super-
pixels containing less than 64 pixels are discarded. The
remaining set of (overlapping) superpixels are used to
define cliques for the higher-order terms with K = 10
linear functions.
Training the boosted classifier on the colour and tex-

ture features for the unary potentials took approximately
7 minutes on a 2.66GHz quadcore Intel CPU. Cross-
validating the strength of the pairwise term for the
model without higher-order terms took a further 15
minutes. When training the model with higher-order
terms we learn all parameters simultaneously. This took
approximately 6 hours with the bulk of the time spent
running loss-augmented inference.
We compare a baseline model with unary and pairwise

terms against a model that also includes the lower linear
envelope potentials. Results showing average pixel ac-
curacy over the set of test images are shown in Table 1.
Once again the baseline model is very strong but our

11

MODEL ACCURACY

Baseline 90.9
Higher-Order (1 Seg.) 91.4
Higher-Order (2 Segs.) 91.6
Higher-Order (3 Segs.) 91.2

TABLE 1: Results from our Weizmann Horse experiments.
The baseline model includes unary and pairwise terms. The
higher-order model includes unary, pairwise and lower-linear
envelope terms defined by multiple over-segmentations. See
text for details.

(a) (b) (c) (d) (e)

Fig. 9: Example segmentations produced by our Weizmann
Horse experiments. Shown are: (a) the image, (b) baseline
foreground mask, (c) baseline model foreground overlay, (d)
higher-order model foreground mask, and (e) higher-order
model foreground overlay.

method with higher-order terms is able to achieve a
slight improvement.
Example horse/background segmentation results are

shown in Figure 9. Qualitatively our method performs
better than the baseline on regions where the contrast
between the foreground horse and background is low
(e.g., in the third row of Figure 9). This is not surprising
when we consider that low contrast boundaries are
exactly where the pairwise smoothness term is expected
to perform poorly.

6 DISCUSSION

This paper has shown how to perform efficient inference
and learning for lower linear envelope binary MRFs,
which are becoming popular for enforcing higher-order

consistency constraints over large sets of random vari-
ables, particularly in computer vision.
Our formulation allows arbitrary non-negative

weights to be assigned to each variable in the higher-
order term. These weights allow different size cliques
to share the same higher-order parameters (resulting in
the same shape lower linear envelope). In addition, the
weights can be used to place more importance on some
variables than others, e.g., pixels further away from the
boundary of a superpixel.
Our work suggests a number of directions for future

research. Perhaps the most obvious is extending our
approach to multi-label MRFs. An initial exploration of
this extension was done by Park and Gould [30] using
our inference method within the inner loop of move-
making algorithms such as α-expansion or αβ-swap [6]
for generating constraints. However, the question of
efficient learning remains open since inference in this
regime is only approximate.
Other straightforward extensions include the intro-

duction of features for modulating the higher-order
terms and the use of dynamic graph cuts [18] for ac-
celerating loss-augmented inference within our learning
framework. We could also consider other optimization
schemes for solving our learning problem, e.g., dual-
decomposition [24] or the subgradient method [1, 28].
More interesting is the implicit relationship between

structured higher-order models and latent-variable
SVMs [39] as suggested by the introduction of auxiliary
variables for inference and our alternative QP formu-
lations. Exploring this relationship further may provide
insights into both models.
From an application perspective, we hope that the

ability to efficiently learn higher-order potentials from
data will encourage researchers to more readily adopt
these more expressive models for their applications.

ACKNOWLEDGMENTS

This research was supported under Australian Research
Council’s Discovery Projects funding scheme (project
number DP110103819).

REFERENCES

[1] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, 2004.

[2] E. Borenstein and S. Ullman. Class-specific, top-
down segmentation. In Proc. of the European Confer-
ence on Computer Vision (ECCV), 2002.

[3] E. Borenstein, E. Sharon, and S. Ullman. Combining
top-down and bottom-up segmentation. In Proc. of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2004.

[4] E. Boros and P. L. Hammer. Pseudo-boolean opti-
mization. Discrete Applied Mathematics, 123:155–225,
2002.

12

[5] Y. Boykov and V. Kolmogorov. An experimental
comparison of min-cut/max-flow algorithms for en-
ergy minimization in vision. IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI), 26:1124–
1137, 2004.

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast ap-
proximate energy minimization via graph cuts. In
Proc. of the International Conference on Computer Vi-
sion (ICCV), 1999.

[7] J. Carreira, R. Caseiro, J. Batista, and C. Sminchis-
escu. Semantic segmentation with second-order
pooling. In Proc. of the European Conference on
Computer Vision (ECCV), 2012.

[8] D. Comaniciu and P. Meer. Mean shift: A robust ap-
proach toward feature space analysis. IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI), 24:
603–619, 2002.

[9] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The PASCAL Visual
Object Classes Challenge 2010 (VOC2010) Results,
2012.

[10] T. Finley and T. Joachims. Training structural SVMs
when exact inference is intractable. In Proc. of the
International Conference on Machine Learning (ICML),
2008.

[11] D. Freedman and P. Drineas. Energy minimization
via graph cuts: Settling what is possible. In Proc. of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2005.

[12] S. Gould. Max-margin learning for lower linear en-
velope potentials in binary Markov random fields.
In Proc. of the International Conference on Machine
Learning (ICML), 2011.

[13] P. L. Hammer. Some network flow problems solved
with psuedo-boolean programming. Operations Re-
search, 13:388–399, 1965.

[14] H. Ishikawa. Exact optimization for Markov ran-
dom fields with convex priors. IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI), 25:
1333–1336, 2003.

[15] H. Ishikawa. Higher-order clique reduction in
binary graph cut. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2009.

[16] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane
training of structural SVMs. Machine Learning, 77:
27–59, 2009.

[17] P. Kohli and M. P. Kumar. Energy minimization for
linear envelope MRFs. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2010.

[18] P. Kohli and P. H. S. Torr. Dynamic graph cuts for
efficient inference in markov random fields. IEEE
Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 2007.

[19] P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 &
beyond: Solving energies with higher order cliques.
In Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2007.
[20] P. Kohli, L. Ladicky, and P. H. S. Torr. Graph cuts

for minimizing higher order potentials. Technical
report, Microsoft Research, 2008.

[21] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[22] V. Kolmogorov. Minimizing a sum of submodular
functions. Discrete Applied Mathematics, 160(14):
2246–2258, Oct 2012.

[23] V. Kolmogorov and R. Zabih. What energy func-
tions can be minimized via graph cuts? IEEE
Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 26:65–81, 2004.

[24] N. Komodakis. Efficient training for pairwise or
higher order crfs via dual decomposition. In Proc. of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

[25] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr.
Associative hierarchical CRFs for object class image
segmentation. In Proc. of the International Conference
on Computer Vision (ICCV), 2009.

[26] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp.
Image segmentation with a bounding box prior.
In Proc. of the International Conference on Computer
Vision (ICCV), 2009.

[27] S. Nowozin and C. H. Lampert. Global connectivity
potentials for random field models. In Proc. of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

[28] S. Nowozin and C. H. Lampert. Structured learning
and prediction in computer vision. Foundations and
Trends in Computer Graphics and Vision, 6(3–4):185–
365, 2011.

[29] J. B. Orlin. A faster strongly polynomial time
algorithm for submodular function minimization.
Mathematical Programming, 118(2):237–251, 2009.

[30] K. Park and S. Gould. On learning higher-order
consistency potentials for multi-class pixel labeling.
In Proc. of the European Conference on Computer Vision
(ECCV), 2012.

[31] P. Pletscher and P. Kohli. Learning low-order mod-
els for enforcing high-order statistics. In Proc. of the
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2012.

[32] C. Rother, V. Kolmogorov, and A. Blake. Grab-
Cut: Interactive foreground extraction using iter-
ated graph cuts. In Proc. of the Intl. Conf. on
Computer Graphics and Interactive Techniques (SIG-
GRAPH), 2004.

[33] C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing
sparse higher order energy functions of discrete
variables. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[34] J. Shotton, J. Winn, C. Rother, and A. Criminisi.
TextonBoost: Joint appearance, shape and context
modeling for multi-class object recognition and seg-
mentation. In Proc. of the European Conference on
Computer Vision (ECCV), 2006.

13

[35] M. Szummer, P. Kohli, and D. Hoiem. Learning
CRFs using graph-cuts. In Proc. of the European
Conference on Computer Vision (ECCV), 2008.

[36] B. Taskar, V. Chatalbashev, D. Koller, and
C. Guestrin. Learning structured prediction
models: A large margin approach. In Proc. of the
International Conference on Machine Learning (ICML),
2005.

[37] I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Support vector learning for interdepen-
dent and structured output spaces. In Proc. of the
International Conference on Machine Learning (ICML),
2004.

[38] I. Tsochantaridis, T. Joachims, T. Hofmann, and
Y. Altun. Large margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research (JMLR), 6:1453–1484, 2005.

[39] C.-N. Yu and T. Joachims. Learning structural SVMs
with latent variables. In Proc. of the International
Conference on Machine Learning (ICML), 2009.

Stephen Gould is a Fellow in the Research
School of Computer Science in the College of
Engineering and Computer Science at the Aus-
tralian National University. He received his BSc
degree in mathematics and computer science
and BE degree in electrical engineering from the
University of Sydney in 1994 and 1996, respec-
tively. He received his MS degree in electrical
engineering from Stanford University in 1998. He
then worked in industry for a number of years
before returning to PhD studies in 2005. He

earned his PhD degree from Stanford University in 2010. His research
interests are in computer and robotic vision, machine learning, proba-
bilistic graphical models, and optimization. He is a member of the IEEE.

14

APPENDIX

In this section we show that the polynomial time cutting-
plane method of Tsochantaridis et al. [38] can be ex-
tended to handle linear inequality constraints on the
parameters. Our argument follows their SVM∆m

1 formu-
lation of the max-margin structured prediction problem.
Let us begin by writing out the Lagrangian for the

quadratic program MAXMARGINQP
(
{yt,Yt}

T
t=1,G,h

)

defined in Equation 8. Introducing dual variables α, β
and γ, we have

L(θ, ξ,α,β,γ) =
1

2
‖θ‖2 +

C

T

T∑

t=1

ξt

−

T∑

t=1

∑

y∈Yt

αt,y

(
θT δφt(y) + ξt −∆(y,yt)

)

− βT (Gθ − h)−

T∑

t=1

γtξt (20)

subject to α � 0, β � 0, and γ � 0 where “a � b”
denotes componentwise inequality between the vectors
a and b.
Setting ∂L

∂ξi
= C

T
−
∑

y∈Yt
αt,y−γt = 0 and substituting

for γt we can re-write Equation 20 as

L(θ,α,β) =
1

2
‖θ‖2

−
T∑

t=1

∑

y∈Yt

αt,y

(
θT δφt(y)−∆(y,yt)

)

− βT (Gθ − h) (21)

subject to constraints
∑

y∈Yt
αt,y ≤

C
T
for all t = 1, . . . , T .

Now

∇θL = θ −

T∑

t=1

∑

y∈Yt

αt,yδφt(y)−GTβ. (22)

Eliminating θ by setting ∇θL = 0 we have

L(α,β) = −
1

2

T∑

t=1,
y∈Yt

T∑

t′=1,
y′∈Y′

t

αt,yαt′,y′δφt(y)
T δφt′(y

′)

−

T∑

t=1,
y∈Yt

αt,yδφt(y)
TGTβ −

1

2
βTGGTβ

+
T∑

t=1,
y∈Yt

αt,y∆(y,yt) + hTβ (23)

where we have written the double summations over t
and y more succinctly. This is a quadratic equation that
can be written more compactly as

L(α,β) = −
1

2

[
α

β

]T[
Jαα Jαβ

Jβα GGT

][
α

β

]
+

[
∆

h

]T[
α

β

]
(24)

where α is a vector containing the αt,y , ∆ is a vector
with entries ∆(y,yt) corresponding to the entries in α.

The dual optimization problem to
MAXMARGINQP

(
{yt,Yt}

T
t=1,G,h

)
is to maximize

L(α,β) subject to constraints α � 0, β � 0, and∑
y∈Yt

αt,y ≤
C
T

for t = 1, . . . , T .
Lemmas 10, 11, 12, and 13 from Tsochantaridis et al.

[38] apply directly to Equation 23 on the joint variables
(α,β). Specifically, we have the following bounds

max
0<λ≤D

{L(α̂+ λη, β̂)} − L(α̂, β̂)

≥
1

2
min

{
D,

ηT∇αL(α̂, β̂)

ηTJααη

}
ηT∇αL(α̂, β̂) (25)

and

max
0<λ≤D

{L(α̂+ λet,y, β̂)} − L(α̂, β̂)

≥
1

2
min

{
D,

∂L
∂αt,y

(α̂, β̂)

‖δφt(y)‖2

}
∂L

∂αt,y

(α̂, β̂) (26)

from Lemmas 12 and 13, respectively.
Now for a given pair of primal parameters (θ̂, ξ̂) and

corresponding dual variables (α̂, β̂), consider the adding
an example y⋆

t to the constraint set At in Line 9 of
Algorithm 1. Fixing β = β̂ ≥ 0 we can write

L(α; β̂) = −
1

2

T∑

t=1,
y∈Yt

T∑

t′=1,
y′∈Y′

t

αt,yαt′,y′δφt(y)
T δφt′(y

′)

+
T∑

t=1,
y∈Yt

αt,y

(
∆(y,yt)− δφt(y)

TGT β̂
)
+ κ(β̂) (27)

where κ is independent of α. Then recognizing that

θ̂ =
T∑

t=1,
y∈Yt

α̂t,yδφt(y)
T +GT β̂ (28)

and

∆(y⋆
t ,yt)− θ̂

T
δφt(y

⋆
t) > ξ̂t + ǫ ≥ ǫ (29)

we arrive at the same bound for improvement in L as
[Proposition 17, 34] for SVM∆m

1 .
Finally, noticing that for the case of h = 0 we have as

a primal feasible point θ = 0. Therefore we can upper
bound L(α,β) by C∆̄where ∆̄ = maxt,y∈Yt

∆(y,yt) and
so Theorem 18, which bounds the number of iterations of
the dual optimization algorithm of Tsochantaridis et al.
[38], applies. We conclude that for ǫ > 0 our algorithm
will converge in a polynomial number of iterations.

	Introduction
	Related Work
	Lower Linear Envelope MRFs
	Higher-order MRFs
	Exact Inference
	Relationship to Binary MRFs

	Learning the Lower Linear Envelope
	Max-margin Learning
	Transforming Between Representations
	Alternative QP Formulations

	Experimental Results
	Synthetic Checkerboard
	Interactive Figure-Ground Segmentation
	Weizmann Horses

	Discussion
	Biographies
	Stephen Gould

	Appendix

