
Labelled tree sequents, Tree hypersequents and
Nested (Deep) Sequents

Rajeev Goré 1

Logic and Computation Group
Research School of Computer Science
The Australian National University

Canberra, ACT 0200, Australia

Revantha Ramanayake 2

CNRS
LIX, École Polytechnique
91128 Palaiseau, France

Abstract

We identify a subclass of labelled sequents called “labelled tree sequents” and show
that these are notational variants of tree-hypersequents in the sense that a sequent
of one type can be represented naturally as a sequent of the other type. This rela-
tionship can be extended to nested (deep) sequents using the relationship between
tree-hypersequents and nested (deep) sequents, which we also show.
We apply this result to transfer proof-theoretic results such as syntactic cut-
admissibility between the tree-hypersequent calculus CSGL and the labelled sequent
calculus G3GL for provability logic GL. This answers in full a question posed by
Poggiolesi about the exact relationship between these calculi.
Our results pave the way to obtain cut-free tree-hypersequent and nested (deep)
sequent calculi for large classes of logics using the known calculi for labelled sequents,
and also to obtain a large class of labelled sequent calculi for bi-intuitionistic tense
logics from the known nested (deep) sequent calculi for these logics. Importing proof-
theoretic results between notational variant systems in this manner alleviates the
need for independent proofs in each system. Identifying which labelled systems can
be rewritten as labelled tree sequent systems may provide a method for determining
the expressive limits of the nested sequent formalism.

Keywords: labelled tree sequents, notational variants, cut-elimination, proof theory.

1 rajeev.gore@anu.edu.au
2 revantha@lix.polytechnique.fr

2 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

1 Introduction

Gentzen [6] introduced the sequent calculus as a tool for studying proof systems
for classical and intuitionistic logics. Gentzen sequent calculi are built from
traditional sequents of the form X ⇒ Y where X and Y are formula multisets.
The main result is the cut-elimination theorem, which shows how to eliminate
the cut-rule from these calculi. The resulting sequent calculi are said to be cut-
free. A significant drawback of the Gentzen sequent calculus is the difficulty of
adapting the calculus to new logics. For example, although there is a traditional
cut-free Gentzen sequent calculus for S4, there is no known traditional cut-free
Gentzen calculus for S5 despite the fact that the logic S5 can be directly
obtained from a Hilbert calculus [3] for S4 by the addition of a single axiom
corresponding to symmetry. This has lead to various generalisations of the
Gentzen sequent calculus in an attempt to present many different (modal)
logics in a single modular proof-theoretic framework with nice properties.

Hypersequent calculi [18,1] generalise Gentzen sequent calculi by using a /-
separated list of traditional sequents (a hypersequent) rather than just a single
one. Usually, the order of the sequents is not important so a multiset can be
used instead of a list. In this case the hypersequent X ⇒ Y/U ⇒ V is the
same as U ⇒ V/X ⇒ Y , for example.

Tree-hypersequents [16] are defined from hypersequents through the addi-
tion of the symbols ; and () to the syntax, and by attaching importance to the
order of the traditional sequents. Furthermore, the placement of the / and ;
symbols play a crucial role in the semantic meaning of a tree-hypersequent,
enabling each tree-hypersequent to be associated with a tree-like frame. For
example, the tree-hypersequents −/(−/(−;−));− and −/−/−/(−;−), where
the dashes stand for sequents, correspond to the (tree) frame figures below left
and below right respectively:

__???????

??�������__???????

??�������

__???????

??�������OO

OO

Nested (Deep) Sequents [11,2] generalise traditional sequents through the
addition of the symbol [] to the syntax, giving us unordered but nested expres-
sions of the form ⇒ [·, [·], [·]], [·] and ⇒ [·, [·, [·], [·]]] to capture the same frames
as above. Further connections with display sequents are also known [7].

Labelled sequents [10,4,13] generalise the traditional sequent by the prefixing
of indices or labels to formulae occurring in the sequent. A labelled sequent
can be viewed as a directed graph with sequents at each node [20].

Negri [14] has presented a method for generating cut-free labelled sequent
calculi for a large family of modal logics. These labelled sequent calculi incor-

Goré and Ramanayake 3

porate the frame accessibility relation into the syntax of the calculi.
All of these extended sequent formalism are modular, since a new logic can

be presented by the inclusion of extra rules corresponding to the properties
of its accessibility relation or to the appropriate modal axioms. The modal
logic S5, for example, can be given a cut-free presentation by adding rules for
reflexivity, transitivity and symmetry to the base calculus, or by adding rules
that capture the axioms T , 4 and 5, as appropriate to the formalism.

A labelled tree sequent is a special instance of a labelled sequent where
the underlying graph structure is restricted to a tree. Labelled tree sequents
have appeared in various guises in the literature, where they have been used to
construct calculi for non-classical logics (for example, see [9]). We observe that
restricting the underlying graph structure of a labelled tree sequent to a tree
(forcing irreflexivity, for example) does not limit the logics that we can handle to
simply K-like or GL-like logics. This is because the formulae used to construct
the inference rules may of course contain modalities, consequently enriching
the expressiveness of the framework. As a trivial example, a standard Gentzen
sequent calculus CS4 for the reflexive and transitive logic S4 induces a labelled
tree sequent calculus C ′S4 for S4, obtained by replacing each traditional sequent
Γ⇒ ∆ in each inference rule in CS4 with the labelled tree sequent x : Γ⇒ x : ∆
where x : Γ is obtained by prefixing each formula in Γ with the label x.

Here we establish mappings between tree-hypersequent calculi and labelled
tree sequent calculi. This result shows that these systems are notational vari-
ants. Using this result it becomes possible to transfer proof-theoretic results
between these systems, alleviating the need for independent proofs in each
system. As an application of this work, we answer in full a question posed
by Poggiolesi [17] regarding the relationship between tree-hypersequent and
labelled sequent calculi for provability logic. We envisage that the existing
results in the general labelled sequent framework may be coerced under suit-
able restrictions to provide new proof systems for tree-hypersequent and nested
sequent calculi.

Related Work. This paper is based on work appearing in Ramanayake’s [19]
PhD thesis. The independent but contemporaneous work of Fitting [5] shows
that there is a to-and-fro correspondence between prefixed tableaux and
Brünnler’s deep sequents [2], and coincidentally, uses exactly the same term
“notational variants” as does Ramanayake.

Fitting does not prove syntactic cut-admissibility for his prefixed tableaux,
but uses the standard semantic completeness proof to establish “cut-free com-
pleteness”. On the other hand, in this paper, we obtain syntactic transforma-
tions between the various calculi that we study, which lead to syntactic proofs
of cut-admissibility.

Fitting notes that prefixed tableaux are subsumed by Negri’s [14] labelled
systems, and states that clarifying the relationship between labelled systems
and Bruennler’s deep sequent systems is an interesting question. We answer
this question as follows.

Since deep sequents are an independent re-invention of Kashima’s much

4 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

older notion of nested sequents [11], we use the term nested (deep) sequents
uniformly. In Section 5, we present to-and-fro maps between labelled tree se-
quent and nested (deep) sequent systems, thus providing an answer to Fitting’s
question. Finally, since the labelled tree sequent is a proper subclass of the la-
belled sequent, by ascertaining which labelled sequents cannot be written as
labelled tree sequents, it may be possible to determine the expressive limits of
the nested sequent formalism. This is a primary motivation for studying la-
belled tree sequents, rather than just working with the more expressive labelled
sequents of Negri.

2 Preliminaries

The basic modal languageML is defined using a countably infinite set Atms =
{pi}i∈N of propositional variables, the usual propositional connectives ¬, ∨, ∧
and ⊃, the unary modal operators 2 and 3, and the parenthesis symbols ().

A formula is an expression generated by the following grammar

A ::= p ∈ Atms | ¬A | (A ∨B) | (A ∧B) | (A ⊃ B) |2A |3A

In this paper we work exclusively with classical modal logics. In this context we
have the freedom of working with certain proper subsets of {¬,∨,∧,⊃,2,3},
as the missing language elements can be defined in terms of the remaining ones.

A traditional sequent (denoted X ⇒ Y) is an ordered pair (X,Y) where X
(the ‘antecedent’) and Y (the ‘succedent’) are finite multisets of formulae.

Definition 2.1 [Gentzen sequent calculus] The Gentzen sequent calculus con-
sists of some set of traditional sequents (the initial sequents) and some set of
inference rules, each of the form

S1 . . .Sn
S

where the traditional sequents S1, . . . ,Sn are called the premises of the rule,
and S is called the conclusion sequent.

2.1 Tree-hypersequent calculi
A tree-hypersequent is built from traditional sequents using the symbols ‘/’
and ‘;’, and the parenthesis symbols ().

Definition 2.2 A tree-hypersequent is defined inductively as follows:

(i) if S is a traditional sequent, then S is a tree-hypersequent,

(ii) if S is a traditional sequent and G1, G2, . . . , Gn are tree-hypersequents,
then S/(G1;G2; . . . ;Gn) is a tree-hypersequent.

We write THS as an abbreviation for the term ‘tree-hypersequent(s)’.

As usual, we often introduce or delete parentheses for the sake of clarity.
Following are some examples of THS:

p⇒ p ∨ q p⇒ q/((q ⇒ r/2r ⇒ ¬s); l⇒ 2(p ⊃ s))

Goré and Ramanayake 5

We write G{
π

H} to mean that π is an occurrence of the THS H in the THS G.
Within the context of any discussion within this paper, we will be concerned
with at most one fixed occurrence of a THS H in G. Thus, following standard
practice, we will refer only implicitly to the specific occurrence, by dropping the
occurrence name π and writing G{H} to mean that H occurs at a ‘distinguised
position’ in G. This will not cause ambiguity in practice. For a THS H ′, we
write G{H ′} to mean the THS obtained from G{H} by replacing that fixed
occurrence of H with H ′.

Throughout this paper, we will use an underlined capitalised letter of the
form X (possibly with subscripts) to denote a ;-separated sequence G1; . . . ;Gn
of THS. We define the notion of equivalent position between occurrences of the
traditional sequents S1 and S2 at distinguished positions in the THS G1{S1}
and G2{S2} respectively (denoted G1{S1} ∼ G2{S2}) as follows:

(i) if G is S1 and H is S2, then G{S1} ∼ H{S2};
(ii) if G is S1/X1 and H is S2/X2, where the distinguished positions of S1

and S2 are the pictured ones, then G{S1} ∼ H{S2};
(iii) if H1{S1} ∼ H2{S2} then T1/(H1{S1};X1) ∼ T2/(H2{S2};X2) where T1

and T2 are traditional sequents.

The intended interpretation I of a THS as a formula is:

(X ⇒ Y)I = ∧X ⊃ ∨Y (S/(G1; . . . Gn))I = SI ∨2GI1 ∨ . . . ∨2GIn

Definition 2.3 [tree-hypersequent calculus] Obtained from Definition 2.1 with
the phrase ‘traditional sequent’ replaced with ‘tree-hypersequent’.

Define X ⇒ Y ⊗ U ⇒ V as X,U ⇒ Y, V . Let H{S} and H ′{S ′} be THS
such that H{S} ∼ H ′{S ′}. Then define H{S} ?H ′{S ′} inductively as follows:

(i) S ? S ′ = S ⊗ S ′

(ii) (S/X) ? (S ′/Y) = (S ⊗ S ′/X;Y)

(iii) (T /H{S};X) ? (T ′/H ′{S ′};Y) = T ⊗ T ′/(H{S} ? H ′{S ′};X;Y) where
T and T ′ are traditional sequents:

We define the cut-rule as follows: for THS G{X ⇒ Y,A} and G′{A,U ⇒ V }
such that G{X ⇒ Y,A} ∼ G′{A,U ⇒ V },

G{X ⇒ Y,A} G′{A,U ⇒ V }
cut

G{X ⇒ Y } ? G′{U ⇒ V }
The ? operation can be viewed as a merge operation on trees, and it ensures
that the conclusion sequent of the cut-rule is indeed a THS.

2.2 Labelled sequent calculi
Fitting [4] has described the incorporation of frame semantics into tableau
proof systems for the purpose of obtaining tableau systems for certain logics.
Approaches to internalise the frame semantics into the Gentzen sequent calculus
via the labelling of formulae appear in Mints [13], Vigano [21] and Kushida and

6 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

Okada [12]. Both approaches originate from Kanger’s “spotted formulae” [10].
Here, we use the labelled systems for modal logic presented in Negri [14].

Assume that we have at our disposal an infinite set SV of (‘state’) variables
disjoint from the set of propositional variables. We will use the letters x, y, z . . .
to denote state variables. A labelled formula has the form x : A where x is a
state variable and A is a formula. If X = {A1, . . . An} is a formula multiset,
then x : X denotes the multiset {x : A1, . . . , x : An} of labelled formulae. No-
tice that if the formula multiset X is empty, then the labelled formula multiset
x : X is also empty. A relation term is a term of the form Rxy where x and y are
variables. A (possibly empty) set of relations terms is called a relation set. A
labelled sequent (denoted R, X ⇒ Y) is the ordered triple (R, X, Y) where R is
a relation set and X (‘antecedent’) and Y (‘succedent’) are multisets of labelled
formulae.

Definition 2.4 [labelled sequent calculus] Obtained from Definition 2.1 with
the phrase ‘traditional sequent’ replaced with ‘labelled sequent’. Moreover,
each inference rule may include a standard variable restriction of the form “z
does not appear in the conclusion sequent of the rule” for some state variable z.

Observe that the standard variable restriction is a specific type of side
condition on an inference rule.

2.3 Labelled tree sequent calculi
We begin by introducing some terminology and notation.

A frame is a pair F = (W,R) where W is a non-empty set of states and R is
a binary relation on W . For x ∈W , define the subframe x↑ in the usual way [3]
as (W ′, R′) where W ′ is the minimal upward closed set of {x} wrt R, and R′

is the restriction of R to W ′. When F = x↑ we say that F is generated by x
and x is said to be a root of F . If a frame has a root it is said to be rooted. A
rooted frame whose underlying undirected graph does not contain a path from
any state back to itself (ie. no cycles) is called a tree. For example, a frame
containing a reflexive state is not a tree. Although a rooted frame may have
multiple roots, due to the prohibition of cycles, a tree has exactly one root.

If S is a set of states and Γ is a multiset of labelled formulae, then ΓS is
the multiset {x : A |x ∈ S and x : A ∈ Γ}. So Γ{x} is the multiset of labelled
formulae in Γ that are labelled with the state x. With a slight abuse of notation,
we write this multiset as Γx.

A (possibly empty) set of relations terms (ie. terms of the form Rxy) is
called a relation set. For a relation set R, the frame Fr(R) defined by R is
given by (|R|,R) where |R| = {x |Rxv ∈ R or Rvx ∈ R for some state v}. In
the reverse direction, given a frame F = (W,R), write Rel(F) for the relation
set corresponding to R, and let |F | = W .

Definition 2.5 [treelike] A relation set R is treelike if the frame defined by R
is a tree or R is empty.

For a non-empty relation set R that is treelike, let root(R) denote the root
of this tree.

Goré and Ramanayake 7

To illustrate this definition, consider the relation sets {Rxx}, {Rxy,Ruv},
{Rxy,Rzy}, and {Rxy,Rxz,Ryu,Rzu}. The frames defined by these sets are,
respectively,

x
��

y v

x

OO

u

OO y

x

??�������
z

__???????

u

y

??�������
z

__????????

x

__???????

??��������

None of the above relation sets are treelike because the frames defined by their
relation sets are not trees. In the above frames from left-to-right, frame 1
contains a reflexive state (and hence a cycle); frame 2 and frame 3 are not
rooted. Finally, frame 4 is not a tree because the underlying undirected graph
contains a cycle.

Definition 2.6 [labelled tree sequent] A labelled tree-sequent is a labelled se-
quent of the form R, X ⇒ Y where

(i) R is treelike, and

(ii) if R = ∅ then X has the form {x : A1, . . . , x : An} and Y has the form
{x : B1, . . . , x : Bm} for some state variable x (ie. all labelled formulae
in X and Y have the same label), and

(iii) if R 6= ∅ then every state variable x that occurs in either X or Y (in some
labelled formula x : A for some formula A) also occurs in R (ie as a term
Rxu or Rux for some state u).

We write LTS as an abbreviation for the term “labelled tree sequent(s)”

Each of the following is a LTS:

x : A⇒ x : A ⇒ y : A Rxy,Rxz, x : A⇒ y : A

Notice that it is possible for a state variable to occur in the relation set and
not in the X,Y multisets (this is what happens with the state variable z in the
example above far right). The following are not LTS:

x : A⇒ x : A, z : A Rxy, x : A⇒ z : A Rxy,Ryz,Rxz ⇒

From left-to-right above, the first labelled sequent is not a LTS because the
relation set is empty and yet two distinct state variables occur in the sequent,
violating condition (ii). The next sequent violates condition (iii) because the
state variable z appears in the succedent as z : A but it does not appear in the
relation set. The final sequent violates condition (i) because the relation set is
not treelike.

Definition 2.7 [labelled tree sequent calculus] A labelled tree sequent calculus
is a labelled sequent calculus whose initial sequents and inference rules are
constructed from LTS.

8 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

Negri [14] uses the following cut-rule for labelled sequent calculi:

R1, X ⇒ Y, x : A R2, x : A,U ⇒ V
cutR1 ∪R2, X, U ⇒ Y, V

We cannot use this rule directly in a labelled tree sequent calculus because
R1 ∪ R2 need not be treelike even if R1 and R2 are treelike. Instead of plac-
ing additional conditions on the cut-rule, we define an ‘additive’ cut-rule for
labelled tree sequent calculi as follows:

R, X ⇒ Y, x : A R, x : A,X ⇒ Y
cutLTSR, X ⇒ Y

We close this section by revising some standard terminology. The terminology
is applicable to each of the sequents and calculi we have defined in this section.

An initial sequent instance in the calculus C is a substitution instance of
propositional variables/formulae (and state variables, if applicable) of an initial
sequent from C. A rule instance in the calculus C is a substitution instance of
propositional variables/formulae (and state variables, if applicable) of one of
the inference rules from C. A derivation in the calculus C is defined in the usual
way, as either an initial sequent instance, or an application of a rule instance to
derivations of the premises of the rule. If there is a derivation of some sequent S
in C, then we say that S is derivable in C. The height of a derivation is defined
in the usual way as the maximum depth of the derivation tree. We write `δC S
to mean that there is a derivation δ of the sequent S in C. To avoid having to
name the derivation we simply write `C S.

We say that an inference rule ρ is admissible in C if whenever premises of
any rule instance of ρ is derivable in C, then so is the conclusion of the rule
instance. Following standard terminology, we say that a calculus C is sound
and complete for the logic L if it derives exactly the theorems of L. Formally,
for every formula A:

`C ⇒ A (or `C ⇒ x : A if C is a labelled sequent calculus) iff A ∈ L

The results we present in this paper are syntactic in the sense that there is
an underlying algorithm witnessing each result.

3 Maps between THS and LTS

If X ⇒ Y and U ⇒ V are traditional sequents, recall that we defined X ⇒
Y ⊗ U ⇒ V to be the traditional sequent X,U ⇒ Y, V . Overloading the
operator, if R1, X ⇒ Y and R2, U ⇒ V are two labelled sequents, then define
(R1, X ⇒ Y)⊗ (R2, U ⇒ V) to be the labelled sequent R1 ∪R2, X, U ⇒ Y, V .
Because the order of elements in a multiset is irrelevant, in each case ⊗ is
associative and commutative.

Definition 3.1 [THS to LTS] For a state variable x, define the mapping TLx
from a THS to a LTS as follows, where the variable xs̄ (s̄ ∈ N∗) passed to a

Goré and Ramanayake 9

recursive call of TL is never reused:

TLx(X ⇒ Y) = x : X ⇒ x : Y
TLx(X ⇒ Y/G1; . . . ;Gn) =

(
⊗nj=1TLxj (Gj)

)
⊗ (Rxx1, . . . , Rxxn, x : X ⇒ x : Y)

Of course, we need to verify for arbitrary THS H that TLx(H) is indeed
a LTS. This is a straightforward induction on the structure of H. In the base
case (H is X ⇒ Y) the image x : X ⇒ x : Y is a LTS. In the inductive case
(H is X ⇒ Y/G1; . . . ;Gn), by the induction hypothesis we have that TLxi

(Gi)
(1 ≤ i ≤ n) is a LTS. Then it is easy to see that the relation set R of TLx(H)
is non-empty and treelike — in particular, Rxx1, . . . , Rxxn ∈ R and the frame
defined by R has root x. It remains to check condition (iii) of Definition 2.6.
The state variable of a labelled formula in TLx(H) either is x or occurs in the
relation set Rj of the LTS TLxj

(Gj) for some j. Since x certainly occurs in R
and Rj ⊆ R, the condition is satisfied in each case.

Example 3.2 If H is the THS p⇒ q/((q ⇒ r/2r ⇒ ¬s); l⇒ 2(p ⊃ s)),

TLx(H) = TLx1(q ⇒ r/2r ⇒ ¬s)⊗ TLx2(l⇒ 2(p ⊃ s))
⊗ (Rxx1, Rxx2, x : p⇒ x : q)

= TLx11(2r ⇒ ¬s)⊗ (Rx1x11, x1 : q ⇒ x1 : r)
⊗ (x2 : l⇒ x2 : 2(p ⊃ s))⊗ (Rxx1, Rxx2, x : p⇒ x : q)

= (x11 : 2r ⇒ x11 : ¬s)⊗ (Rx1x11, x1 : q ⇒ x1 : r)
⊗ (x2 : l⇒ x2 : 2(p ⊃ s))⊗ (Rxx1, Rxx2, x : p⇒ x : q)

The last equality simplifies to the LTS

Rx1x11, Rxx1, Rxx2, x11 : 2r, x1 : q, x2 : l, x : p
⇒ x11 : ¬s, x1 : r, x2 : 2(p ⊃ s), x : q

We sometimes suppress the subscript, writing TL instead of TLx for the sake
of clarity when the state variable that is used is not important. Observe that
TLG assigns a unique state variable to each traditional sequent S appearing
in the THS G. Moreover, given G1{S1} ∼ G2{S2}, without loss of generality
we may assume that the state variable assigned to S1 in TL(G1{S1}) and S2

in TL(G2{S2}) is identical.

Definition 3.3 Define the function LT from an LTS R, X ⇒ Y to a THS as:

R = ∅: then R, X ⇒ Y must have the form x : U ⇒ x : V for some state
variable x, so let LT(x : U ⇒ x : V) = (U ⇒ V)

R 6= ∅: then suppose that x = root(R) and Rx = {Rxy1, . . . , Rxyn}, and let
∆i = |yi↑|, and let

LT(R, X ⇒ Y) =
Xx ⇒ Yx/(LT(Rel(y1↑), X∆1 ⇒ Y∆1); . . . ; LT(Rel(yn↑), X∆n

⇒ Y∆n
)).

10 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

Recall that SV denotes the set of state variables. Let Var(S) ⊂ SV denote
the finite set of state variables occurring in the labelled sequent S. A renaming
of S is a one-to-one function fS : Var(S) 7→ SV (by one-to-one we mean that
if fS(x) = fS(y) then x = y). We write Dom(fS) and Im(fS) to denote the
domain and image of fS respectively.

For any labelled sequent S ′ and renaming fS of the labelled sequent S, let
S ′fS be the labelled sequent obtained from S ′ by the simultaneous and uniform
substitution x 7→ fS(x) for all x ∈ Dom(fS) ∩ Var(S ′). Notice that S ′fS need
not be an LTS even if S ′ is a LTS.

Example 3.4 Consider the following LTS S (below left) and S ′ (below right):

x : A⇒ x : A Rxy, x : A⇒ y : B

Let the renaming fS of S be the function mapping x 7→ y. Then S ′fS is the
labelled sequent Ryy, y : A⇒ y : B. Clearly this sequent is not a LTS.

However, if S is a LTS, then for any renaming fS of S, it is easy to see
that SfS

must be a LTS.

Lemma 3.5 Let G denote a THS and let S denote a LTS. Then

(i) TLG is a labelled tree-sequent.

(ii) LTS is a THS.

(iii) LT(TLG) is G, and TL(LTS) is SfS for some renaming fS of S.

Proof. The proofs of (i) and (ii) are straightforward, following from an in-
spection of the functions TL and LT. In the case of (iii), observe that Defini-
tion 2.6(iii) ensures that no labelled formulae are ‘lost’ when passing from S to
LTS. However, since the TL function assigns state variables, it may be nec-
essary to ‘swap’ label names in order to obtain equality of the LTS TL(LTS)
and S. That is, there is some renaming fS of S such that TL(LTS) is SfS . a

Lemma 3.6 (substitution lemma) Suppose that C is a LTS calculus and S
is a LTS. Let fS be an arbitrary renaming of S. If `δC S then there is an
effective transformation to a derivation δ′ such that `δ′C SfS .

Proof. Induction on the height of δ. If the height is one, then δ must be an
initial sequent. It is easy to see that SfS is also an initial sequent.

Now suppose that the last rule in δ is the LTS inference rule ρ, with premises
S1, . . . ,Sn. The proof is not completely trivial since f ∪iVar(Si) contains state
variables not in S (for example, due to a standard variable restriction on ρ),
then it is possible that (Si)fS is not a LTS even though Si is a LTS. For
example, suppose that f is the renaming x 7→ y of the LTS ⇒ x : 2A, and
consider the following rule instance of ρ:

S1 = Rxy, y : 2A⇒ y : A
S = ⇒ x : 2A

Then (S1)f is the labelled sequent Ryy, y : 2A ⇒ y : A which is not a LTS
(because the relation set contains the cycle Ryy) although S1 is a LTS.

Goré and Ramanayake 11

Returning to the proof, the solution is to define first a one-to-one function g
from ∪iVar(Si) \ Dom(fS) to fresh state variables (in particular, to variables
outside Im(fS)). Then ((Si)g)fS is a LTS. Then ((·)g)fS implicitly defines a
renaming Var(Si) 7→ SV for Si for each i. So ((Si)g)fS is a LTS.

Continuing the example above, set g as the map y 7→ z, so

((S1)g)f = Ryz, z : 2A⇒ z : A
(Sg)f = ⇒ y : 2A

and this is a legal rule instance of ρ.
Once again, returning to the proof, by the induction hypothesis we can

obtain derivations of ((Si)g)fS in C. Moreover, observe that

((S1)g)fS . . . ((Sn)g)fS
(Sg)fS

is a rule instance of ρ. Hence we have a derivation of (Sg)f . Since Var(S) ∩
Dom(g) = ∅, it follows that (Sg)fS = SfS . a

We remind the reader that this substitution lemma pertains to LTS calculi
as given in Definition 2.7. In particular, this lemma may not apply to calculi
containing pathological rules that are not invariant under renaming, such as
the following rule:

x 6= a
(a is some fixed state variable)

x : A⇒ x : B
3.1 Inference rules induced by TL and LT
It is straightforward to construct an inference rule for THS from an inference
rule for LTS and vice versa under the maps LT and TL. We illustrate with
some detailed examples. Following standard practice, the active formulae in the
conclusion (resp. premise) of an inference rule are called principal (auxiliary)
formulae.

Example 3.7 Consider the following inference rule R2:

R,
principal︷ ︸︸ ︷

Rxy, y : 2A,Γ⇒ ∆,

principal︷ ︸︸ ︷
y : A

R2R,Γ⇒ ∆, x : 2A︸ ︷︷ ︸
principal

where y does not appear in the conclusion of the rule. We can write the premise
and conclusion, respectively, as

(R,Γ⇒ ∆)⊗ (Rxy, y : 2A⇒ y : A)
(R,Γ⇒ ∆)⊗ (⇒ x : 2A)

The sequent R,Γ⇒ ∆ is an arbitrary LTS except it does not contain y, hence
it follows that

LT(R,Γ⇒ ∆) = G{
x︷ ︸︸ ︷

X ⇒ Y /(X;

y︷︸︸︷
∅)}

12 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

for arbitrary G,X, Y,X — the braces indicate the locations corresponding to
the state variables, and we use ∅ as a metalevel symbol to explicate that there
is no position in the THS corresponding to y. Meanwhile we have

LT(Rxy, y : 2A⇒ y : A) =

x︷ ︸︸ ︷
⇒ /

y︷ ︸︸ ︷
2A⇒ A

LT(⇒ x : 2A) = ⇒ 2A︸ ︷︷ ︸
x

Thus, the image LT(R2) of R2 under LT is the THS inference rule:

G{X ⇒ Y/2A⇒ A}
LT(R2)

G{X ⇒ Y,2A}
Example 3.8 For the other direction, consider the THS rule 2Kgl.

G{
x︷ ︸︸ ︷

X ⇒ Y /

y︷ ︸︸ ︷
2A⇒ A}

2Kgl
G{X ⇒ Y,2A︸ ︷︷ ︸

x

/ ∅︸︷︷︸
y

}

As before, we have used braces to identify location in the THS with state vari-
ables, and ∅ as a metalevel symbol to explicate that there is no position in the
conclusion THS corresponding to y. Notice that the sequent 2A ⇒ A in the
premise disappears in the conclusion. Equivalently, the location correponding
to the variable y is not populated. Applying TLx to the premise of 2Kgl we
get the LTS

R, Rxy, y : 2A,Γ⇒ ∆, y : A

where R,Γ and ∆ are arbitrary. Applying TLx to the conclusion of 2Kgl we
get the LTS

R,Γ⇒ ∆, x : 2A

where y does not appear in the conclusion. We thus obtain the LTS rule
TL2Kgl.

R, Rxy, y : 2A,Γ⇒ ∆, y : A TL2KglR,Γ⇒ ∆, x : 2A

with the standard variable restriction “y does not occur in the the conclusion
of TL2Kgl”.

3.2 Calculi induced by TL and LT
We can now construct a THS calculus from a LTS calculus and vice versa. If
C is a THS calculus, then let TLC denote the calculus consisting of the image
of every initial sequent and inference rule in C under TL. Similarly, if C is a
LTS calculus, then let LTC denote the calculus consisting of the image of every
initial sequent and inference rule in C under LT.

Lemma 3.9 Let C be a THS calculus. Then,

Goré and Ramanayake 13

(i) for any THS G, we have `C G iff `TLC TLG
(ii) for any LTS S, we have `TLC S iff `C LTS.

In each case, the respective derivations in C and TLC have identical height.

Proof. Proof of (i). Suppose that `δC G. We need to show that TLG is
derivable in TLC. We can obtain a derivation δ′ of TLG from δ by replacing
every THS G′ appearing in δ with TLG′, and every rule ρ with TLρ — by
the definition of TLC, the resulting object is a derivation in the calculus TLC
with endsequent TLG. In particular, notice that if ρ is a legal rule instance
in C, then TLρ will obey any relevant standard variable restrictions in TLC.
Moreover, by construction, δ and δ′ have identical height.

Proof of (ii) is analogous to the above. a

Corollary 3.10 For any THS calculus C and formula A we have `C⇒ A iff
`TLC⇒ x : A.

Proof. Immediate from Lemma 3.9. a

4 Poggiolesi’s CSGL and Negri’s G3GL

Negri [14] has given a labelled sequent calculus G3GL for provability logic GL
as part of a systematic program to present labelled sequent calculi for modal
logics. Subsequently Poggiolesi [17] presented the THS calculus CSGL for GL
and proved syntactic cut-admissibility. In that work, Poggiolesi [17] states:

“As it has probably already emerged in the previous sections, CSGL is quite
similar to Negris calculus G3GL [see [14]]: indeed, except for the rule 4
that only characterizes CSGL, the propositional and modal rules of the two
calculi seem to be based on a same intuition. Given this situation, a question
naturally arises: what is the exact relation between the two calculi? Is it
possible to find a translation from the THS calculi to the labeled calculi and
vice versa?”

Here we establish the following.

(i) We answer in full the question raised by Poggiolesi. In particular, we give
a translation between CSGL and G3GL; and

(ii) Show that CSGL is sound and complete for provability logicGL and prove
syntactic cut-admissibility utilising the existing proofs of these results for
G3GL. In contrast, Poggiolesi [17] has to provide a new proof for each
result, in particular, dealing with the many cases that arise in the proof
of syntactic cut-admissibility. Since many proof-theoretical properties
(invertibility of the inference rules, for example) are preserved under the
notational variants translation, we get these results directly, once again
alleviating the need for independent proofs.

A key aspect of our work is the coercion of results from the labelled sequent
calculus G3GL into the LTS calculus TLCSGL (Theorem 4.4).

14 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

Initial THS: G{p, X ⇒ Y, p} G{2A, X ⇒ Y, 2A}
Propositional rules:

G{X ⇒ Y, A}
¬A

G{¬A, X ⇒ Y }
G{A, X ⇒ Y }

¬K
G{X ⇒ Y,¬A}

G{A, B, X ⇒ Y }
∧A

G{A ∧B, X ⇒ Y }
G{X ⇒ Y, A} G{X ⇒ Y, B}

∧K
G{X ⇒ Y, A ∧B}

Modal rules:

G{2A, X ⇒ Y/(U ⇒ V, 2A/X)} G{2A, X ⇒ Y/(A, U ⇒ V/X)}
2A

G{2A, X ⇒ Y/(U ⇒ V/X)}
G{X ⇒ Y/2A ⇒ A}

2K
G{X ⇒ Y, 2A}

Special logical rule:

G{2A, X ⇒ Y/(2A, U ⇒ V/X)}
4

G{2A, X ⇒ Y/(U ⇒ V/X)}

Table 1
CSGL: the THS calculus of Poggiolesi [17].

Initial LTS: R, x : p, Γ ⇒ ∆, x : p R, x : 2A, Γ ⇒ ∆, x : 2A

Propositional rules:

R, Γ ⇒ ∆, x : A
¬AR, x : ¬A, Γ ⇒ ∆

R, x : A, Γ ⇒ ∆
¬KR, Γ ⇒ ∆, x : ¬A

R, x : A, x : B, Γ ⇒ ∆
∧AR, x : A ∧B, Γ ⇒ ∆

R, Γ ⇒ ∆, x : A R, Γ ⇒ ∆, x : B
∧KR, Γ ⇒ ∆, x : A ∧B

Modal rules:

R, Rxy, x : 2A, Γ ⇒ ∆, y : 2A R, Rxy, x : 2A, y : A, Γ ⇒ ∆
TL2AR, Rxy, x : 2A, Γ ⇒ ∆

R, Rxy, y : 2A, Γ ⇒ ∆, y : A
TL2KR, Γ ⇒ ∆, x : 2A

Special logical rule:

R, Rxy, x : 2A, y : 2A, Γ ⇒ ∆
TL4R, Rxy, x : 2A, Γ ⇒ ∆

Table 2
TLCSGL: the LTS calculus obtained from CSGL under the mapping TL. Rule

TL2K has the standard restriction that y does not appear in the conclusion.

4.1 The calculus CSGL and TLCSGL
Poggiolesi’s THS calculus CSGL [17] is given in Table 1. From this calculus
we construct the LTS calculus TLCSGL (Table 2) following the procedure
given in the previous section.

For a relation term or labelled formula α, define the left and right weakening
rules as follows:

Goré and Ramanayake 15

R,Γ⇒ ∆
LWR, α,Γ⇒ ∆

R,Γ⇒ ∆
RWR,Γ⇒ ∆, α

We remind the reader that each of the above rules when viewed as a LTS in-
ference rule (as opposed to a labelled sequent inference rule) has the restriction
that the premise and conclusion is a LTS. The left and right contraction rules
are defined as follows:

R, x : A, x : A,Γ⇒ ∆
LCR, x : A,Γ⇒ ∆

R,Γ⇒ ∆, x : A, x : A
RCR,Γ⇒ ∆, x : A

Lemma 4.1 The rules LW and RW for weakening and the rules LC and RC
for contraction are height-preserving syntactically admissible in TLCSGL.

Proof. Poggiolesi [17] shows that the corresponding THS rules (ie. the weak-
ening and contraction rules under LT) are height-preserving syntactically ad-
missible in CSGL. By Theorem 3.9, the mapping between derivations in
CSGL and TLCSGL is height-preserving. Hence the analogous results ap-
ply to TLCSGL too, so we are done. a

4.2 Negri’s calculus G3GL
If we compare the TLCSGL calculus with Negri’s labelled sequent calculus
G3GL, the only differences are that

(i) in G3GL, the treelike condition on the relation set of every labelled se-
quent is removed, and

(ii) G3GL does not contain the inference rule TL4, and

(iii) G3GL contains the initial sequent (Irrefl) and inference rule (Trans):

R, Rxx,Γ⇒ ∆ (Irref)
R, Rxz,Rxy,Ryz,Γ⇒ ∆

(Trans)R, Rxy,Ryz,Γ⇒ ∆
For those rules in G3GL that also occur in TLCSGL, we will use the rule

labelling of TLCSGL. For example, we write TL2K instead of the label R2−L
used in [14]. Strictly speaking, the calculus G3GL also contains rules for the
disjunction and implication connectives. Since these connectives can be written
in terms of negation and conjunction, for our purposes there is no harm in this
omission. The rules LW and RW as well as the contraction rules LC and RC
are height-preserving admissible in G3GL [14].

Theorem 4.2 (Negri) The labelled sequent calculus G3GL (i) has syntactic
cut-admissibility, and (ii) is sound and complete for the logic GL.

Proof. See Negri [14]. a

4.3 Results
Let G3GL + TL4 be the calculus obtained by the addition of the rule TL4 to
G3GL, where the rule TL4 will no longer be subject to the restriction that its
premise and conclusion are LTS. Suppose that ρ is the following instance of
(Trans) in a derivation in G3GL+ TL4:

16 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

R, Rxy,Ryz,Rxz,Γ⇒ ∆
(Trans)R, Rxy,Ryz,Γ⇒ ∆

Define the width of ρ to be the number of rule occurrences above ρ that make
the term Rxz principal. Observe that Rxz can be principal in this way only
due to a rule from {TL2A,TL4, (Trans), (Irref)}.

Lemma 4.3 Let δ be a derivation in G3GL+TL4 not containing (Irref). Then
the (Trans) rule is eliminable from δ.

Proof. The non-trivial case is when there is a positive number s+ 1 of occur-
rences of (Trans) in δ. Let ρ be an arbitrary topmost occurrence of (Trans)
in δ:

no (Trans) rules
Rxy,Ryz,Rxz,R,Γ⇒ ∆

ρ
Rxy,Ryz,R,Γ⇒ ∆

...
R0, X ⇒ Y

Let γ denote the subderivation of δ deriving Rxy,Ryz,R,Γ⇒ ∆. We claim
that ρ is eliminable. Proof by induction on the width n of ρ.

If n = 0 then there is no rule above ρ that makes Rxz principal. It is
clear that we can transform γ by deleting the Rxz term from every sequent
above ρ to obtain directly a derivation γ′ of Rxy,Ryz,R,Γ⇒ ∆. Replacing the
subderivation γ in δ with γ′ we have eliminated ρ and thus the new derivation
contains only s occurrences of (Trans).

Now suppose that n = k+1. Since δ does not contain (Irref) and because ρ
is a topmost occurrence of (Trans), the Rxz term must be principal due to
either a TL2A rule or a TL4 rule.

Case I (Rxz principal by TL2A). Then δ has the following form, where we
have written the two premises of the TL2A rule one above the other:

Rxy,Ryz,Rxz,R′, x : 2B,Γ′ ⇒ ∆′, z : 2B

Rxy,Ryz,Rxz,R′, x : 2B, z : B,Γ′ ⇒ ∆′
TL2A

Rxy,Ryz,Rxz,R′, x : 2B,Γ′ ⇒ ∆′

...
Rxy,Ryz,Rxz,R,Γ⇒ ∆

ρ
Rxy,Ryz,R,Γ⇒ ∆

...
R0, X ⇒ Y

Apply the admissible rule LW with y : 2B to each of the premises of
TL2A. Then apply TL2A to these sequents and proceed as follows (once
again we write the two premises of the TL2A rule one above the other):

Goré and Ramanayake 17

Rxy,Ryz,Rxz,R′, x : 2B, y : 2B,Γ′ ⇒ ∆′, z : 2B

Rxy,Ryz,Rxz,R′, x : 2B, z : B, y : 2B,Γ′ ⇒ ∆′
TL2A

Rxy,Ryz,Rxz,R′, x : 2B, y : 2B,Γ′ ⇒ ∆′
TL4

Rxy,Ryz,Rxz,R′, x : 2B,Γ′ ⇒ ∆′

...
Rxy,Ryz,Rxz,R,Γ⇒ ∆

ρ
Rxy,Ryz,R,Γ⇒ ∆

...
R0, X ⇒ Y

Notice that in the TL2A and TL4 rules in the above proof diagram, it is
the Ryz and Rxy term respectively that is principal (and not the Rxz term).
As a result the width of ρ is reduced to k. Eliminate ρ using the induction
hypothesis.

Case II (Rxz principal by TL4). Then δ has the following form:

Rxy,Ryz,Rxz,R′, x : 2B, z : 2B,Γ′ ⇒ ∆′
TL4

Rxy,Ryz,Rxz,R′, x : 2B,Γ′ ⇒ ∆′

...
Rxy,Ryz,Rxz,R,Γ⇒ ∆

ρ
Rxy,Ryz,R,Γ⇒ ∆

...
R0, X ⇒ Y

Apply the admissible rule LW with y : 2B to the premise of TL4. Then
apply TL4 to this sequent and proceed as follows:

. . . TL4
Rxy,Ryz,Rxz,R′, x : 2B, y : 2B,Γ′ ⇒ ∆′

TL4
Rxy,Ryz,Rxz,R′, x : 2B,Γ′ ⇒ ∆′

...
Rxy,Ryz,Rxz,R,Γ⇒ ∆

ρ
Rxy,Ryz,R,Γ⇒ ∆

...
R0, X ⇒ Y

Notice that in the two TL4 rules in the above proof diagram, it is the Ryz
and Rxy term respectively that is principal (and not the Rxz term). As a result
the width of ρ is reduced to k. Eliminate ρ using the induction hypothesis.

We have shown how to reduce the number of occurrences of (Trans) from
s + 1 to s. As ρ was an arbitrary topmost occurrence, the result follows from
an induction argument. a

The following result connects Negri’s labelled sequent calculus G3GL and
the LTS calculus TLCSGL. Together with Corollary 3.10, this completely

18 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

answers the question posed in Poggiolesi [17].

Theorem 4.4 For any formula A, `TLCSGL⇒ x : A iff `G3GL⇒ x : A. More-
over the translation between the corresponding derivations is effective.

Proof. For the left-to-right direction it suffices to show that TL4 is syntacti-
cally admissible in G3GL. First, working in G3GL (because we are working in
a labelled sequent calculus, the relation sets that occur in the derivation need
not be treelike), observe that:

z : 2A ⇒ z : 2A
Rxz, x : 2A, z : 2A ⇒ z : A, z : 2A

z : A ⇒ z : A
Rxz, z : A, x : 2A, z : 2A ⇒ z : A

TL2A
Rxz, x : 2A, z : 2A ⇒ z : A

LW
Rxy, Ryz, Rxz, x : 2A, z : 2A ⇒ z : A

(Trans)
Rxy, Ryz, x : 2A, z : 2A ⇒ z : A

TL2K
Rxy, x : 2A ⇒ y : 2A

Suppose that we are given a derivation of the premise R, Rxy, y : 2A, x :
2A,X ⇒ Y of TL4. From the cut-rule and the above derivation we get a
derivation of R, Rxy, x : 2A, x : 2A,X ⇒ Y . By Theorem 4.2 we can obtain
a cut-free derivation of this sequent. Since the left contraction rule LC is
admissible in G3GL [14], we get R, Rxy, x : 2A,X ⇒ Y and thus TL4 is
syntactically admissible in G3GL.

Now for the right-to-left direction. First observe that the derivation of
⇒ x : A does not contain any occurrences of the initial sequent (Irref). To see
this, observe that in any G3GL derivation, viewed downwards, a state variable
occurrence y can disappear from premise sequent to conclusion sequent only
via the TL2K rule — all the other rules preserve the set of state variables in
the relation set. Moreover, for this to occur, the variable y must occur exactly
once in the relation set of the premise of TL2K (in a term of the form Rxy
for some variable x distinct from y). Now, if the given derivation contains
the initial sequent (Irref) R, Ryy,X ⇒ Y , then the relation set of the initial
sequent contains at least two occurrences of y. It follows that the relation set of
every sequent below this initial sequent in δ will contain these two occurrences
of y, contradicting the fact that the endsequent has the form ⇒ x : A.

Suppose that we are given a derivation δ of the LTS ⇒ x : A in G3GL. We
need to obtain a derivation of ⇒ x : A in TLCSGL. By Lemma 4.3, there is a
derivation δ′ of ⇒ x : A in G3GL+ TL4 containing no occurrences of (Trans).
To complete the proof, we will show that δ′ is a derivation in TLCSGL. It
suffices to show that every labelled sequent in δ′ is a LTS. By inspection, every
rule in G3GL + TL4 with the exception of the (Trans) rule has the property
that if the conclusion is a LTS, then so are the premise(s). Since ⇒ x : A is a
LTS by assumption, every sequent in δ′ must be a LTS so we are done. a

A comment regarding the initial sequent R, Rxx,Γ ⇒ ∆ (Irref). Negri
uses this initial sequent in the proof of cut-admissibility for G3GL to argue
that there cannot be a labelled sequent with a relation set (in our terminol-
ogy) containing {Rxx1, Rx1x2, . . . Rxnx} (a ‘loop’). We saw above that (Irref)

Goré and Ramanayake 19

cannot occur in any G3GL derivation of a sequent of the form ⇒ x : A. By
definition, the relation set of a LTS can never contain such a loop so there is
no initial LTS in TLCSGL corresponding to (Irref) in G3GL.

Theorem 4.5 The calculus CSGL (i) is sound and complete for the logic GL,
and (ii) has syntactic cut-admissibility.

Proof. Follows from Theorem 4.2 using Corollary 3.10 and Theorem 4.4. a
Note that although the above proofs make use of the results for G3GL [14],

these results are syntactic because the proofs for G3GL are syntactic.

5 Conclusion

We have shown that THS and LTS are notational variants, allowing us to
transfer proof-theoretic results including syntactic cut-admissibility between
these formalisms, thus alleviating the need for independent proofs in each sys-
tem. We have answered in full Poggiolesi’s question regarding the relationship
between the THS calculus CSGL and the labelled sequent calculus G3GL.

It is straightforward to construct mappings between THS and the nested
(deep) sequents that Fitting [5] refers to in his work (adapting to Brünnler’s [2]
formulation of nested sequents is analogous). Define a nested sequent to be of
the form Γ, [N1], . . . , [Nk] where Γ is a formula multiset and N1, . . . ,Nk (k ≥ 0)
are nested sequents. Nested sequent calculi consist of initial sequents and
inference rules built from nested sequents. Following the formulations used by
Brünnler and Fitting, nested sequent inference rules are permitted to operate
at any level of nesting. That is, the auxiliary formulae — the ‘active’ formulae
in the premise — of a rule instance are permitted to occur inside the scope
of []. For example, here is a rule instance of Fitting’s ∧-introduction rule:

p, [q, [r]] p, [q, [s]]
p, [q, [r ∧ s]]

However, a nested sequent inference rule is not permitted to operate inside a
formula — ie. a proper subformula cannot be the auxiliary formula of a rule
instance. For example, the following is forbidden as the auxiliary formulae are
the proper subformulae r (of q ∨ r) and s (of q ∨ s):

p, [q ∨ r] p, [q ∨ s]
p, [q ∨ (r ∧ s)]

Informally speaking, this means that the deep inference applies to the nesting
but not to subformulae. This restriction leads to straightforward maps between
THS and nested sequents as shown below.

Given a traditional sequent X ⇒ Y , we will assume that we have at hand
a suitable concrete representation X ⇒1S Y of X ⇒ Y as a formula multiset
— think of X ⇒1S Y as a one-sided sequent. Also asssume that given a
formula multiset Γ, we have at hand a suitable concrete representation Γs of Γ
as a traditional sequent. Then the maps TN and NT respectively map THS
to nested sequents and vice versa. In the following: X ⇒ Y is a traditional

20 Labelled tree sequents, Tree hypersequents and Nested (Deep) Sequents

sequent; G1, . . . , Gk are THS; Γ is a formula multiset; and N1, . . . ,Nk are
nested sequents.

TN(X ⇒ Y/(G1; . . . ;Gk)) = (X ⇒1S Y, [TNG1], . . . , [TNGk])
NT(Γ, [N1], . . . , [Nk]) = (Γs/(NTN1; . . . ; NTNk))

In this way we can show that THS and nested sequents are notational vari-
ants. By computing the calculi induced by these mappings our results can be
extended to these systems. Since THS and LTS are notational variants, this
provides an answer to the question posed by Fitting concerning how labelled
systems and nested (deep) sequent systems relate.

Negri [14,15] has identified a large class of modal and intermediate logics
that can be presented using cut-free labelled sequent calculi. We would like to
identify the subclass of such labelled sequent calculi that can be coerced into
the LTS framework. In this way we could directly obtain proofs of syntactic
cut-admissibility for LTS and THS calculi for suitable logics from the existing
proofs for labelled sequent calculi. Theorem 4.4 in this paper is an example of
such a result. Hein [8] has conjectured that such a coercion is possible for modal
logics axiomatised by 3/4 Lemmon-Scott formulae {3h2ip ⊃ 2jp|h, i, j ≥ 0}.
This investigation is the subject of future work.

References

[1] Avron, A., The method of hypersequents in the proof theory of propositional non-classical
logics, in: Logic: from foundations to applications (Staffordshire, 1993), Oxford Sci.
Publ., Oxford Univ. Press, New York, 1996 pp. 1–32.

[2] Brünnler, K., Deep sequent systems for modal logic, in: Advances in modal logic. Vol. 6,
Coll. Publ., London, 2006 pp. 107–119.

[3] Chagrov, A. and M. Zakharyaschev, “Modal logic,” Oxford Logic Guides 35, The
Clarendon Press Oxford University Press, New York, 1997, xvi+605 pp., oxford Science
Publications.

[4] Fitting, M., “Proof methods for modal and intuitionistic logics,” Synthese Library 169,
D. Reidel Publishing Co., Dordrecht, 1983, viii+555 pp.

[5] Fitting, M., Prefixed tableaus and nested sequents, Ann. Pure Appl. Logic 163 (2012),
pp. 291–313.

[6] Gentzen, G., “The collected papers of Gerhard Gentzen,” Edited by M. E. Szabo.
Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co.,
Amsterdam, 1969, xii+338 pp. (2 plates) pp.

[7] Goré, R., L. Postniece and A. Tiu, Taming displayed tense logics using nested sequents
with deep inference, in: M. Giese and A. Waaler, editors, TABLEAUX, Lecture Notes in
Computer Science 5607 (2009), pp. 189–204.
URL http://dx.doi.org/10.1007/978-3-642-02716-1

[8] Hein, R., “Geometric Theories and Modal Logic in the Calculus of Structures,” Master’s
thesis, Technische Universität Dresden (2005).

[9] Ishigaki, R. and K. Kikuchi, Tree-sequent methods for subintuitionistic predicate logics,
in: Automated reasoning with analytic tableaux and related methods, Lecture Notes in
Comput. Sci. 4548, Springer, Berlin, 2007 pp. 149–164.

[10] Kanger, S., “Provability in logic,” Stockholm Studies in Philosophy 1, Almqvist and
Wiksell, Stockholm, 1957.

[11] Kashima, R., Cut-free sequent calculi for some tense logics, Studia Logica 53 (1994),
pp. 119–135.

http://dx.doi.org/10.1007/978-3-642-02716-1

Goré and Ramanayake 21

[12] Kushida, H. and M. Okada, A proof-theoretic study of the correspondence of classical
logic and modal logic, J. Symbolic Logic 68 (2003), pp. 1403–1414.

[13] Mints, G., Indexed systems of sequents and cut-elimination, J. Philos. Logic 26 (1997),
pp. 671–696.

[14] Negri, S., Proof analysis in modal logic, J. Philos. Logic 34 (2005), pp. 507–544.
[15] Negri, S., Proof analysis in non-classical logics, in: Logic Colloquium 2005, Lect. Notes

Log. 28, Assoc. Symbol. Logic, Urbana, IL, 2008 pp. 107–128.
[16] Poggiolesi, F., The method of tree-hypersequents for modal propositional logic, in:

Towards mathematical philosophy, Trends Log. Stud. Log. Libr. 28, Springer, Dordrecht,
2009 pp. 31–51.

[17] Poggiolesi, F., A purely syntactic and cut-free sequent calculus for the modal logic of
provability, The Review of Symbolic Logic 2 (2009), pp. 593–611.

[18] Pottinger, G., Uniform, cut-free formulations of T, S4 and S5, Abstract in JSL 48
(1983), pp. 900–901.

[19] Ramanayake, R., “Cut-elimination for provability logics and some results in display
logic,” Ph.D. thesis, Research School of Computer Science, The Australian National
University, Canberra. (2011).
URL http://users.cecs.anu.edu.au/~rpg/Revantha.Ramanayake/thesis.pdf

[20] Restall, G., Comparing modal sequent systems, http://consequently.org/

papers/comparingmodal.pdf.
[21] Viganò, L., “Labelled non-classical logics,” Kluwer Academic Publishers, Dordrecht,

2000, xiv+291 pp., with a foreword by Dov M. Gabbay.

http://users.cecs.anu.edu.au/~rpg/Revantha.Ramanayake/thesis.pdf

	Introduction
	Preliminaries
	Tree-hypersequent calculi
	Labelled sequent calculi
	Labelled tree sequent calculi

	Maps between THS and LTS
	Inference rules induced by TL and LT
	Calculi induced by TL and LT

	Poggiolesi's CSGL and Negri's G3GL
	The calculus CSGL and TLCSGL
	Negri's calculus G3GL
	Results

	Conclusion
	References

