Plücker Basis Vectors

Roy Featherstone Dept. Information Engineering, RSISE The Australian National University 6D vectors are routinely expressed in Plücker coordinates;

but a coordinate system on a vector space is defined by a basis;

SO

- 1. what are the basis vectors for Plücker coordinates?
- 2. why should we want to know?

Rigid Body Velocity

The velocity of a rigid body is specified by

- 1. choosing a point, *O*, anywhere in space
- 2. specifying the linear velocity, v_0 , of the point in the body that coincides with O
- **3.** specifying the angular velocity, **ω**, of the body as a whole

Rigid Body Velocity

The body is then deemed to be

translating with a linear velocity of v_0

while simultaneously

rotating with an angular velocity of ω about an axis passing through O

Add a Coordinate Frame

 \odot and \mathbf{v}_0 can now be expressed in Cartesian coordinates:

and the 6D velocity vector, $\hat{\mathbf{v}}$, can be expressed in Plücker coordinates as:

 $\begin{bmatrix} \mathbf{\omega}_x \\ \mathbf{\omega}_y \\ \mathbf{\omega}_z \\ \mathbf{\upsilon}_{Ox} \\ \mathbf{\upsilon}_{Oy} \\ \mathbf{\upsilon}_{Oz} \end{bmatrix}$

$$\hat{\mathbf{v}} = \boldsymbol{\omega}_{x} \, \mathbf{d}_{Ox} + \boldsymbol{\omega}_{y} \, \mathbf{d}_{Oy} + \boldsymbol{\omega}_{z} \, \mathbf{d}_{Oz} + v_{Ox} \, \mathbf{d}_{x} + v_{Oy} \, \mathbf{d}_{y} + v_{Oz} \, \mathbf{d}_{z}$$

Plücker Basis Vectors

Plücker Basis Vectors:-

- define precisely the relationship between a Plücker coordinate vector and the quantity it represents
- clarify the concept of a 6D vector, and debunk some misconceptions
- plug a hole in our 6D vector theories
- provide a new analytical tool to users of 6D vectors

Example Misconception:

"The reduction point (**P**) is not the origin."

This mistake is the result of not realizing that the Plücker basis vectors are intrinsically tied to P. If P is moving, then the Plücker basis is changing with time.