Plücker Basis Vectors

Roy Featherstone
Dept. Information Engineering, RSISE The Australian National University

6D vectors are routinely expressed in Plücker coordinates;
but a coordinate system on a vector space is defined by a basis;
so

1. what are the basis vectors for Plücker coordinates?
2. why should we want to know?

Rigid Body Velocity

The velocity of a rigid body is specified by

1. choosing a point, O, anywhere in space
2. specifying the linear velocity, \mathbf{v}_{o}, of the point in the body that coincides with O
3. specifying the angular velocity, ω, of the body as a whole

Rigid Body Velocity

The body is then deemed to be
 translating with a linear velocity of \mathbf{v}_{o}
while simultaneously
rotating with an angular velocity of ω about an axis passing through O

Add a Coordinate Frame
ω and \mathbf{v}_{o} can now be expressed in Cartesian coordinates:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \quad \text { representing } \quad \omega_{x} \mathbf{i}+\omega_{y} \mathbf{j}+\omega_{z} \mathbf{k}} \\
& {\left[\begin{array}{l}
v_{O x} \\
v_{O y} \\
v_{O z}
\end{array}\right] \quad \text { representing } \quad v_{O x} \mathbf{i}+v_{O y} \mathbf{j}+v_{O z} \mathbf{k}}
\end{aligned}
$$

and the 6D velocity vector, $\hat{\mathbf{v}}$, can be expressed in Pluicker coordinates as:

$$
\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z} \\
v_{O x} \\
v_{O y} \\
v_{O z}
\end{array}\right] \quad \begin{array}{r}
\text { representing } \\
\hat{\mathbf{v}}=\omega_{x} \mathbf{d}_{O x}+\omega_{y} \mathbf{d}_{O y}+\omega_{z} \mathbf{d}_{O z} \\
+v_{O x} \mathbf{d}_{x}+v_{O y} \mathbf{d}_{y}+v_{O z} \mathbf{d}_{z}
\end{array}
$$

Pluicker Basis Vectors

motion

force

Pluicker Basis Vectors:-

- define precisely the relationship between a Pluicker coordinate vector and the quantity it represents
- clarify the concept of a 6D vector, and debunk some misconceptions
- plug a hole in our 6D vector theories
- provide a new analytical tool to users of 6 D vectors

Example Misconception:
"The reduction point (P) is not the origin."

This mistake is the result of not realizing that the Pluicker basis vectors are intrinsically tied to P. If P is moving, then the Pluicker basis is changing with time.

