# Achieving High Performance from Shape Memory Alloy (SMA) Actuators

**Roy Featherstone** (reporting the work of Yee Harn Teh)

School of Engineering, The Australian National University

this talk was presented at the Shanghai, Friday May 13, 2011









# **Differential Controller**

P<sub>max,L</sub> P<sub>max,R</sub>



Behaviour of the Plant

The *small–signal AC response* of nickel–titanium SMA approximates to a first–order low–pass filter.

- Gain varies with mean stress and strain in a 7–8 dB range
- Phase is independent of stress and strain
- Cut–off frequency varies with wire diameter



What Happened to the Hysteresis?



#### A Problem

When  $\mathsf{Flexinol}^\mathsf{TM}$  wires are used in an antagonistic–pair actuator, they quickly develop a *two–way shape memory effect*, in which the wires *actively lengthen* as they cool, even if the tension on the wire is zero.

Symptom: The wires can become slack as they cool.

Remedy: An *anti–slack mechanism* that maintains a minimum tension on both wires at all times.





## Anti-Slack Mechanism

9



#### Anti-Slack Mechanism



13

## Another Problem

We want the actuator to be as fast as possible. The speed can be increased by means of

- a faster heating rate, and/or
- a faster cooling rate.

A faster heating rate is more beneficial and easier to implement.

problem: how to achieve faster heating without risk of overheating?

# -0.2 <u>i i i i i i -</u> 0 2 4 6 8 10 12 14 16 18 20 Time (s) -5 0

#### with anti-slack



# Why Focus on Heating?

without anti-slack

1.5

04

-0.5

-1.5

\_2

0 3

0.1

\_0.0

-0.1

(Z) 0.7

tial Force (N)

Diffe

#### Excerpt from Flexinol<sup>™</sup> data sheet:

| Diameter<br>(mm) | Current<br>(mA) | Contraction<br>Time (sec) | Off Time<br>70C | Off Time<br>90C |
|------------------|-----------------|---------------------------|-----------------|-----------------|
| 0.050            | 50              | 1                         | 0.3             | 0.1             |
| 0.075            | 100             | 1                         | 0.5             | 0.2             |
| 0.100            | 180             | 1                         | 0.8             | 0.4             |

If we use the recommended safe heating currents then, for a thin wire, heating takes longer than cooling.

#### **Rapid Electrical Heating**

To obtain a rapid response from an SMA wire, we need a heating strategy that

- allows large heating powers when there is no risk of overheating, but
- allows only a safe heating power when there is a risk of overheating.

This can be accomplished by

- measuring the electrical resistance of the wire, and
- calculating a *heating power limit* as a function of the measured resistance

17

#### Electrical Resistance vs. Temperature

The electrical resistance (of nitinol) varies with the martensite ratio, and therefore also with temperature, because the resistivity of the martensite phase is about 20% higher than the resistivity of the austenite phase.



#### Calculating the Power Limit

1. Choose a threshold resistance,  $R_{\text{th}}$ , which is equal to the hot resistance of the wire plus a safety margin.



#### Calculating the Power Limit

2. Calculate the power limit,  $P_{max}$ , as a function of the measured resistance,  $R_{meas}$ .







## Yet Another Problem

Rapid heating can produce excessively high tensions on the wires, which can cause damage.

remedy: an *anti–overload mechanism* that *cuts the heating power* if the tension goes too high.





# Anti-Overload Mechanism





#### with anti-overload



#### Extension to Position and Stiffness Control

#### Position Stiffness method: close an outer position loop around the force controller stiffness result: result:

- very high accuracy
- low speed •

- method: redefine the error signal to be the force error in tracking the commanded
- very high accuracy
- high speed •

Recommendation: Use Stiffness Control

#### Summary

A new architecture for high–performance control of SMA actuators has been presented, comprising

- a PID controller for accurate control of the actuator's output force (i.e., the differential force);
- an anti–slack mechanism to enforce a minimum tension on both wires;
- a rapid-heating mechanism that allows faster heating rates, but protects the wires from overheating; and
- an anti-overload mechanism that protects the wires from mechanical overload.

#### Lessons

- 1. High performance can be achieved by studying the behaviour of the plant, discovering how to push the plant safely towards its performance envelope, and designing a control architecture accordingly
- 2. In general, such an architecture has 3 components:
  - a command–following component,
  - a performance–optimization component, and
  - a performance–limiting component with explicit knowledge of the plant's performance envelope

29

#### Acknowledgements:

- Most of the work reported here was done by Yee Harn Teh
- The experimental results graphs appearing in this talk are taken from Yee Harn's Ph.D. thesis.
- The stiffness controller (which has not been published) was implemented by Sylvain Toru

#### For more details, see

- Yee Harn's Ph.D. thesis
- Y. H. Teh & R. Featherstone, "An Architecture for Fast and Accurate Control of Shape Memory Alloy Actuators", *Int. J. Robotics Research*, 27(5):595–611, 2008.
- http://users.cecs.anu.edu.au/~roy/SMA/