## Branch-Induced Sparsity

 inRigid-Body Dynamics

Roy Featherstone<br>Dept. Information Engineering, RSISE<br>The Australian National University

© 2009 Roy Featherstone

## Branch-Induced Sparsity

What is it?
a pattern of zeros appearing in the joint-space inertia matrix (and some other matrices) as a direct consequence of branches in a kinematic tree

Why is it interesting?
exploiting this sparsity greatly improves the efficiency of $O\left(n^{3}\right)$ dynamics algorithms

What is the main application?
efficient dynamics calculations

## Branch-Induced Sparsity

$$
\tau=\boldsymbol{H} \ddot{\boldsymbol{q}}+\boldsymbol{C}
$$

What is it?
a pattern of zeros appearing in the joint-space inertia matrix (and some other matrices) as a direct consequence of branches in a kinematic tree

Why is it interesting?
exploiting this sparsity greatly improves the efficiency of $O\left(n^{3}\right)$ dynamics algorithms

What is the main application?
efficient dynamics calculations

## Kinematic Trees

A rigid-body system can be represented by a connectivity graph in which

- one node represents a fixed base, or fixed reference frame
- this special node is the root node of the graph
- all other nodes represent bodies
- arcs represent joints

If the connectivity graph is a tree, then the system it represents is a kinematic tree.

## Example



## connectivity graph



## Numbering Scheme

- the root node is numbered 0
- the other nodes are numbered 1 to $N$ in any order such that each node has a higher number than its parent
- arcs are numbered such that arc $i$ connects node $i$ to its parent
- bodies and joints have the same numbers as their nodes and arcs



## Floating Bases

A mobile robot, or other mobile device, is connected to a fixed base via a 6DoF joint - a joint that does not impose any motion constraints.

The body that is connected directly to the fixed base is called a floating base.


## Describing Connectivity


$\kappa(i)$ - all the joints between node $i$ and the root $\lambda(i)$ - the parent of node $i$
$\mu(i)$ - the children of node $i$
$\nu(i)$ - all the bodies beyond joint $i$

## Describing Connectivity



$$
\begin{array}{ll}
\lambda(1)=0 & \mu(0)=\{1\} \\
\lambda(2)=1 & \mu(1)=\{2,4\} \\
\lambda(3)=2 & \mu(2)=\{3\} \\
\lambda(4)=1 & \mu(3)=\{ \} \\
& \\
\kappa(1)=\{1\} & v(1)=\{1,2,3,4,5,6\} \\
\kappa(2)=\{1,2\} & v(2)=\{2,3\} \\
\kappa(3)=\{1,2,3\} & v(3)=\{3\} \\
\kappa(4)=\{1,4\} & v(4)=\{4,5,6\}
\end{array}
$$

## Describing Connectivity

The parent array, $\lambda$, defines both the connectivity and the numbering scheme.

$$
\lambda=[\lambda(1), \lambda(2), \ldots, \lambda(N)]
$$


$\lambda=[0,1,2,1,4,4] \quad \lambda=[0,1,1,2,3,2] \quad \lambda=[0,1,2,0,1,2,5,5,2]$

## Describing Connectivity

- $\lambda$ provides a complete description of the connectivity; so the sets $\mu(i), \nu(i)$ and $\kappa(i)$ can all be calculated from $\lambda$.
- Most dynamics algorithms only need $\lambda$.

Many algorithms rely on the property $0 \leq \lambda(i)<i$.

## Joint-Space Inertia Matrix

The equation of motion of a kinematic tree can be expressed in the following canonical form:

$$
\tau=\boldsymbol{H} \ddot{\boldsymbol{q}}+\boldsymbol{C}
$$

where
$\tau$ is a vector of joint force variables
$\ddot{\boldsymbol{q}}$ is a vector of joint acceleration variables
$\boldsymbol{H}$ is the joint-space inertia matrix
$\boldsymbol{C}$ is a vector containing Coriolis, centrifugal and gravity terms

## Joint-Space Inertia Matrix

The joint-space inertia matrix of a kinematic tree is given by the equation

$$
\boldsymbol{H}_{i j}=\left\{\begin{array}{cl}
\boldsymbol{S}_{i}^{\mathrm{T}} \boldsymbol{I}_{i}^{\mathrm{c}} \boldsymbol{S}_{j} & \text { if } i \in \mathrm{v}(j) \\
\boldsymbol{S}_{i}^{\mathrm{T}} \boldsymbol{I}_{j}^{\mathrm{c}} \boldsymbol{S}_{j} & \text { if } j \in \mathrm{v}(i) \\
\mathbf{0} & \text { otherwise }
\end{array}\right.
$$

The third case in this equation applies whenever $i$ and $j$ lie on different branches of the tree. This is the case that gives rise to branch-induced sparsity.

$$
\boldsymbol{H}_{i j}=\mathbf{0} \text { if } i \text { and } j \text { are on different branches }
$$

## Joint-Space Inertia Matrix

The joint-space inertia matrix of a kinematic tree is given by the equation

$$
\underbrace{\boldsymbol{H}_{i j}}_{\text {eneral, }}=\left\{\begin{array}{cl}
\boldsymbol{S}_{i}^{\mathrm{T}} \boldsymbol{I}_{i}^{\mathrm{c}} \boldsymbol{S}_{j} & \text { if } i \in \mathrm{v}(j) \\
\boldsymbol{S}_{i}^{\mathrm{T}} \boldsymbol{I}_{j}^{\mathrm{c}} \boldsymbol{S}_{j} & \text { if } j \in \mathrm{v}(i) \\
\mathbf{0} & \text { otherwise }
\end{array}\right.
$$

in general,
The $\begin{gathered}\text { this is a } \\ \text { submatrix }\end{gathered}$ h this equation applies whenever $i$ and sue virumerent branches of the tree. This is the case that gives rise to branch-induced sparsity.

$$
\boldsymbol{H}_{i j}=\mathbf{0} \text { if } i \text { and } j \text { are on different branches }
$$

## Sparsity Patterns


$\square$ = nonzero submatrix or element

## How can we exploit the sparsity?

1. If we factorize $\boldsymbol{H}$ into either $\boldsymbol{L}^{\mathrm{T}} \boldsymbol{L}$ or $\boldsymbol{L}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{L}$, rather than the usual $\boldsymbol{L} \boldsymbol{L}^{\mathrm{T}}$ (Cholesky) or $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{\mathrm{T}}$, then the sparsity pattern in $\boldsymbol{H}$ is preserved in the factors.
2. Algorithms that perform matrix multiplication and back-substitution can be modified to iterate over only the nonzero elements.
3. The more sparsity there is in $\boldsymbol{H}$, the faster it can be calculated and factorized.

## Maximizing Sparsity

Choose a floating base near the middle.


## Maximizing Sparsity

Choose a branchy spanning tree.


## $\boldsymbol{L}^{\mathrm{T}} \boldsymbol{L}$ Versus $\boldsymbol{L} \boldsymbol{L}^{\mathrm{T}}$

$$
\boldsymbol{H}=\boldsymbol{L} \boldsymbol{L}^{\mathrm{T}} \text { (Cholesky) }
$$


$\boldsymbol{H}=\boldsymbol{L}^{\mathrm{T}} \boldsymbol{L}$


## Innovations Factorization

The $\boldsymbol{L}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{L}$ factorization is numerically almost identical to the innovations factorization of the joint-space inertia matrix that was discovered by Rodriguez, Jain, et al. at NASA JPL.


## Sparse Factorization Algorithms

$$
\begin{array}{ll}
\operatorname{LTL}\left(\boldsymbol{H}, \boldsymbol{\lambda}_{\mathrm{e}}\right) & \rightarrow \boldsymbol{L} \\
\operatorname{LTDL}\left(\boldsymbol{H}, \boldsymbol{\lambda}_{\mathrm{e}}\right) & \rightarrow \boldsymbol{L}, \boldsymbol{D}
\end{array}
$$

Inputs $\boldsymbol{H}$ - the matrix to be factorized $\lambda_{\mathrm{e}}$ - the expanded parent array
Outputs $\quad L, \boldsymbol{D}-$ factors returned in $\boldsymbol{H}$
Applicability
$\boldsymbol{H}$ can be any symmetric positive-definite matrix with the sparsity pattern described by $\lambda_{\mathrm{e}}$. It does not have to be an inertia matrix.

## Expanded Parent Array

$\lambda$ is an $N$-element array, where $N$ is the number of joints.
$\boldsymbol{H}$ is an $N \times N$ block matrix
$\lambda$ describes the sparsity pattern in the submatrices of $\boldsymbol{H}$.
$\lambda_{e}$ is an $n$-element array, where $n$ is the number of joint variables.
$\boldsymbol{H}$ is an $n \times n$ matrix
$\lambda_{\mathrm{e}}$ describes the sparsity pattern in the elements of H.
$\lambda_{\mathrm{e}}$ is obtained from $\lambda$ by formally replacing each multiDoF joint with an equivalent chain of single-DoF joints and renumbering the nodes and arcs.

## Expanded Parent Array


$\lambda=[0,1,1,2,2,3]$
expanded graph

$\lambda_{\mathrm{e}}=[0,1,2,3,1,4,4,5]$
function $\operatorname{LTDL}\left(\boldsymbol{H}, \lambda_{\mathrm{e}}\right)$
for $k=n$ to 1 do $\longleftarrow$ loop runs backwards

$$
i=\lambda_{\mathrm{e}}(k)
$$

while $i \neq 0$ do
$a=H_{k i} / H_{k k}$
$j=i$
while $j \neq 0$ do
$H_{i j}=H_{i j}-H_{k j} a$
$j=\lambda \mathrm{e}(j)$
end
$H_{k i}=a$
$i=\lambda \mathrm{e}(i)$
end
end
loops iterate over ancestors of $k$

## How the algorithm works



By iterating only over the ancestors of $k$, the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at $k=7$ instead of 27 .


By iterating only over the ancestors of $k$, the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at $k=7$ instead of 27 .

## How the algorithm works



By iterating only over the ancestors of $k$, the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at $k=7$ instead of 27 .

## Computational Cost Formulae

$$
\begin{array}{ll}
\boldsymbol{L}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{L} \text { factorization } & D_{1} \mathrm{~d}+D_{2}(\mathrm{~m}+\mathrm{a}) \\
\text { back-substitution } & n \mathrm{~d}+2 D_{1}(\mathrm{~m}+\mathrm{a})
\end{array}
$$

where

$$
D_{1}=\sum_{i=1}^{n}\left(d_{i}-1\right) \quad D_{2}=\sum_{i=1}^{n} \frac{d_{i}\left(d_{i}-1\right)}{2}
$$

and

$$
d_{i}=1+d_{\lambda_{\mathrm{e}}(i)} \quad\left(d_{0}=1\right)
$$

$d_{i}$ is the depth of node $i$ in the expanded connectivity graph; and $\mathrm{d}, \mathrm{m}$ and a are the costs of floating-point divide, multiply and add/subtract operations.

## Computational Complexity

$D_{1}$ and $D_{2}$ are bounded by

$$
D_{1} \leq n(d-1) \quad \text { and } \quad D_{2} \leq n d(d-1) / 2
$$

where $d=\max _{i} d_{i}$ is the depth of the expanded connectivity graph.

The complexity of factorization is therefore $O\left(n d^{2}\right)$

## Dynamics Calculation Efficiency

- $O(n)$ algorithms
- branches have little effect on these algorithms.
- $O\left(n^{3}\right)$ algorithms
- branches substantially improve the efficiency of these algorithms, and reduce their complexity from $O\left(n^{3}\right)$ to $O\left(n d^{2}\right)$.


## Dynamics Calculation Efficiency

A typical $O\left(n^{3}\right)$ algorithm performs three steps:

1. calculate $\boldsymbol{C}$
$O(n)$
2. calculate $\boldsymbol{H}$
$O\left(n^{2}\right) \rightarrow O(n d)$
3. solve $\boldsymbol{H} \ddot{\boldsymbol{q}}=\tau-\boldsymbol{C}$
$O\left(n^{3}\right) \rightarrow O\left(n d^{2}\right)$

Branches accelerate steps 2 and 3, and reduce their computational complexity.

## Calculating $\boldsymbol{H}$

The composite-rigid-body algorithm (CRBA) is the best available algorithm for calculating $\boldsymbol{H}$.
Branch-induced sparsity improves the efficiency of this algorithm, and reduces its complexity to $O$ (nd), because

1. the CRBA implicitly exploits branch-induced sparsity by calculating only the nonzero elements of $\boldsymbol{H}$, and
2. there are only $n+2 D_{1}$ nonzero elements in $\boldsymbol{H}$, which is $O(n d)$.

## A Numerical Example

Let us compare the computational cost of forward dynamics for a 30-DoF unbranched chain and the 30-DoF humanoid (or quadruped) shown below.


## A Numerical Example


each $\square$ is a $6 \times 6$ matrix

H contains:
468 nonzero elements
432 zero elements
$\boldsymbol{H}$ is therefore 48\% zeros

## Cost Figures for Unbranched Chain



RNEA: Recursive Newton-Euler Algorithm
CRBA: Composite Rigid Body Algorithm
ABA: Articulated-Body Algorithm

## Cost Figures for Humanoid/Quadruped



## Summary

- branches in a kinematic tree cause sparsity in the joint-space inertia matrix
- exploiting this sparsity, using the new factorization algorithms presented here, greatly improves the efficiency and computational complexity of $O\left(n^{3}\right)$ dynamics algorithms


## Further Reading

- R. Featherstone, 2005. Efficient Factorization of the Joint Space Inertia Matrix for Branched Kinematic Trees. Int. J. Robotics Research, 24(6):487-500.
- R. Featherstone, 2008. Rigid Body Dynamics Algorithms. New York: Springer.

