Branch–Induced Sparsity in Rigid–Body Dynamics

Roy Featherstone Dept. Information Engineering, RSISE The Australian National University

© 2009 Roy Featherstone

Branch–Induced Sparsity

What is it?

a pattern of zeros appearing in the *joint–space inertia matrix* (and some other matrices) as a direct consequence of branches in a *kinematic tree*

Why is it interesting?

exploiting this sparsity greatly improves the efficiency of $O(n^3)$ dynamics algorithms

What is the main application? efficient dynamics calculations

Branch–Induced Sparsity

What is it?

 $\tau = \boldsymbol{H}\boldsymbol{\ddot{q}} + \boldsymbol{C}$

a pattern of zeros appearing in the *joint-space inertia matrix* (and some other matrices) as a direct consequence of branches in a *kinematic tree*

Why is it interesting?

exploiting this sparsity greatly improves the efficiency of $O(n^3)$ dynamics algorithms

What is the main application? efficient dynamics calculations

Kinematic Trees

A rigid–body system can be represented by a connectivity graph in which

- one node represents a fixed base, or fixed reference frame
- this special node is the root node of the graph
- all other nodes represent bodies
- arcs represent joints

If the connectivity graph is a tree, then the system it represents is a *kinematic tree*.

Numbering Scheme

- the root node is numbered 0
- the other nodes are numbered 1 to N in any order such that each node has a higher number than its parent
- arcs are numbered such that arc *i* connects node *i* to its parent
- bodies and joints have the same numbers as their nodes and arcs

Floating Bases

A mobile robot, or other mobile device, is connected to a fixed base via a 6DoF joint — a joint that does not impose any motion constraints.

The body that is connected directly to the fixed base is called a *floating base*.

- $\kappa(i)$ all the joints between node i and the root
- $\lambda(i)$ the parent of node *i*
- $\mu(i)$ the children of node i
- v(i) all the bodies beyond joint i

$\lambda(1)=0$	
$\lambda(2) = 1$	
$\lambda(3)=2$	
$\lambda(4) = 1$	

 $\mu(0) = \{1\}$ $\mu(1) = \{2,4\}$ $\mu(2) = \{3\}$ $\mu(3) = \{\}$

 $\kappa(1) = \{1\}$ $\kappa(2) = \{1, 2\}$ $\nu(2) = \{2, 3\}$ $\kappa(3) = \{1, 2, 3\}$ $\nu(3) = \{3\}$ $\kappa(4) = \{1,4\}$ $\nu(4) = \{4,5,6\}$

 $v(1) = \{1, 2, 3, 4, 5, 6\}$

The parent array, λ , defines both the connectivity and the numbering scheme.

$$\lambda = [\lambda(1), \lambda(2), \ldots, \lambda(N)]$$

- λ provides a complete description of the connectivity; so the sets μ(i), ν(i) and κ(i) can all be calculated from λ.
- Most dynamics algorithms only need λ .

Many algorithms rely on the property $0 \le \lambda(i) < i$.

Joint–Space Inertia Matrix

The equation of motion of a kinematic tree can be expressed in the following canonical form:

$$\tau = H\ddot{q} + C$$

where

- τ is a vector of joint force variables
- \ddot{q} is a vector of joint acceleration variables
- *H* is the joint–space inertia matrix
- C is a vector containing Coriolis, centrifugal and gravity terms

Joint–Space Inertia Matrix

The joint–space inertia matrix of a kinematic tree is given by the equation

$$\boldsymbol{H}_{ij} = \begin{cases} \boldsymbol{S}_i^{\mathrm{T}} \boldsymbol{I}_i^{\mathrm{c}} \boldsymbol{S}_j & \text{if } i \in v(j) \\ \boldsymbol{S}_i^{\mathrm{T}} \boldsymbol{I}_j^{\mathrm{c}} \boldsymbol{S}_j & \text{if } j \in v(i) \\ \boldsymbol{0} & \text{otherwise} \end{cases}$$

The third case in this equation applies whenever iand j lie on different branches of the tree. This is the case that gives rise to *branch–induced sparsity*.

 $H_{ij} = 0$ if *i* and *j* are on different branches

Joint–Space Inertia Matrix

The joint–space inertia matrix of a kinematic tree is given by the equation

$$\boldsymbol{H}_{ij} = \begin{cases} \boldsymbol{S}_i^{\mathrm{T}} \boldsymbol{I}_i^{\mathrm{c}} \boldsymbol{S}_j & \text{if } i \in v(j) \\ \boldsymbol{S}_i^{\mathrm{T}} \boldsymbol{I}_j^{\mathrm{c}} \boldsymbol{S}_j & \text{if } j \in v(i) \\ \boldsymbol{0} & \text{otherwise} \end{cases}$$

The submatrix h this equation applies whenever *i* and *y* ne on unerent branches of the tree. This is the case that gives rise to *branch–induced sparsity*.

 $H_{ij} = 0$ if *i* and *j* are on different branches

Sparsity Patterns

= nonzero submatrix or element

How can we exploit the sparsity?

- **1.** If we factorize \boldsymbol{H} into either $\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}$ or $\boldsymbol{L}^{\mathrm{T}}\boldsymbol{D}\boldsymbol{L}$, rather than the usual $\boldsymbol{L}\boldsymbol{L}^{\mathrm{T}}$ (Cholesky) or $\boldsymbol{L}\boldsymbol{D}\boldsymbol{L}^{\mathrm{T}}$, then the sparsity pattern in \boldsymbol{H} is preserved in the factors.
- 2. Algorithms that perform matrix multiplication and back-substitution can be modified to iterate over only the nonzero elements.
- **3.** The more sparsity there is in **H**, the faster it can be calculated and factorized.

Maximizing Sparsity

Choose a floating base near the middle.

Maximizing Sparsity

Choose a branchy spanning tree.

$\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}$ Versus $\boldsymbol{L}\boldsymbol{L}^{\mathrm{T}}$

 $\boldsymbol{H} = \boldsymbol{L} \boldsymbol{L}^{\mathrm{T}}$ (Cholesky)

 $\boldsymbol{H} = \boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}$

Innovations Factorization

The **L**^T**DL** factorization is numerically almost identical to the innovations factorization of the joint–space inertia matrix that was discovered by Rodriguez, Jain, et al. at NASA JPL.

$$M = (1 + H\phi K) D (1 + H\phi K)^*$$

$$H L^T D L$$

$$M^{-1} = (1 - H\psi K)^* D^{-1} (1 - H\psi K)$$

$$H^{-1} L^{-1} D^{-1} L^{-T}$$

Sparse Factorization Algorithms

$$LTL(\boldsymbol{H}, \lambda_{e}) \longrightarrow \boldsymbol{L}$$
$$LTDL(\boldsymbol{H}, \lambda_{e}) \longrightarrow \boldsymbol{L}, \boldsymbol{D}$$

Inputs	H -	the matrix to be factorized
	λ_{e} —	the expanded parent array
Outputs	L, D -	factors returned in H

Applicability

H can be *any* symmetric positive–definite matrix with the sparsity pattern described by λ_e . It does not have to be an inertia matrix.

Expanded Parent Array

 λ is an *N*-element array, where *N* is the number of joints.

H is an $N \times N$ block matrix

 λ describes the sparsity pattern in the submatrices of **H**.

 λ_e is an *n*-element array, where *n* is the number of joint variables.

H is an $n \times n$ matrix

 λ_e describes the sparsity pattern in the elements of H.

 λ_e is obtained from λ by formally replacing each multi-DoF joint with an equivalent chain of single-DoF joints and renumbering the nodes and arcs.

Expanded Parent Array

 $\lambda = [0, 1, 1, 2, 2, 3]$

 $\lambda_{e} = [0, 1, 2, 3, 1, 4, 4, 5]$

function LTDL(H, λ_e) for k = n to 1 do loop runs backwards $i = \lambda_{e}(k)$ while $i \neq 0$ do $a = H_{ki} / H_{kk}$ j = iwhile $j \neq 0$ do loops iterate over $H_{ii} = H_{ii} - H_{ki} a$ ancestors of k $j = \lambda_{\mathbf{e}}(j)$ end $H_{ki} = a$ $i = \lambda_{e}(i)$ end end

How the algorithm works

By iterating only over the ancestors of k, the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at k = 7 instead of 27.

By iterating only over the ancestors of k, the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at k = 7 instead of 27.

How the algorithm works

By iterating only over the ancestors of k, the algorithm performs the least possible amount of work, e.g. by updating only 5 elements at k = 7 instead of 27.

Computational Cost Formulae

 $L^{\mathrm{T}}DL$ factorization $D_1d + D_2(\mathsf{m} + \mathsf{a})$ back-substitution $nd + 2D_1(\mathsf{m} + \mathsf{a})$

where

$$D_1 = \sum_{i=1}^n (d_i - 1) \qquad D_2 = \sum_{i=1}^n \frac{d_i(d_i - 1)}{2}$$

and

 $d_i = 1 + d_{\lambda_{\rm e}(i)} \qquad (d_0 = 1)$

 d_i is the depth of node i in the expanded connectivity graph; and d, m and a are the costs of floating-point divide, multiply and add/subtract operations.

Computational Complexity D_1 and D_2 are bounded by $D_1 \leq n(d-1)$ and $D_2 \leq nd(d-1)/2$ where $d = \max_i d_i$ is the depth of the expanded connectivity graph.

The complexity of factorization is therefore $O(nd^2)$

Dynamics Calculation Efficiency

- O(n) algorithms
 - branches have little effect on these algorithms.
- $O(n^3)$ algorithms
 - branches substantially improve the efficiency of these algorithms, and reduce their complexity from $O(n^3)$ to $O(nd^2)$.

Dynamics Calculation Efficiency A typical $O(n^3)$ algorithm performs three steps:

calculate C
 calculate C
 calculate H
 O(n²) → O(nd)
 solve Hÿ = τ − C
 O(n³) → O(nd²)

Branches accelerate steps 2 and 3, and reduce their computational complexity.

Calculating **H**

The composite-rigid-body algorithm (CRBA) is the best available algorithm for calculating H.

Branch-induced sparsity improves the efficiency of this algorithm, and reduces its complexity to O(nd), because

- the CRBA implicitly exploits branch-induced sparsity by calculating only the nonzero elements of *H*, and
- **2.** there are only $n + 2D_1$ nonzero elements in **H**, which is O(nd).

A Numerical Example

Let us compare the computational cost of forward dynamics for a 30–DoF unbranched chain and the 30–DoF humanoid (or quadruped) shown below.

each is a 6x6 matrix

H contains:

468 nonzero elements

432 zero elements

H is therefore 48% zeros

Cost Figures for Unbranched Chain

- **RNEA:** Recursive Newton–Euler Algorithm
- CRBA: Composite Rigid Body Algorithm
- ABA: Articulated–Body Algorithm

Cost Figures for Humanoid/Quadruped

36

Summary

- branches in a kinematic tree cause sparsity in the joint-space inertia matrix
- exploiting this sparsity, using the new factorization algorithms presented here, greatly improves the efficiency and computational complexity of $O(n^3)$ dynamics algorithms

Further Reading

- R. Featherstone, 2005. Efficient Factorization of the Joint Space Inertia Matrix for Branched Kinematic Trees. Int. J. Robotics Research, 24(6):487–500.
- R. Featherstone, 2008. *Rigid Body Dynamics Algorithms*. New York: Springer.