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Branch−Induced Sparsity

What is it?

Why is it interesting?

What is the main application?
efficient dynamics calculations

a pattern of zeros appearing in the joint−space
inertia matrix (and some other matrices) as a direct
consequence of branches in a kinematic tree

exploiting this sparsity greatly improves the
efficiency of O(n3) dynamics algorithms
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τ = Hq + C
..
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A rigid−body system can be represented by a
connectivity graph in which

one node represents a fixed base, or fixed
reference frame

all other nodes represent bodies

arcs represent joints

this special node is the root node of the graph

If the connectivity graph is a tree, then the system
it represents is a kinematic tree.

Kinematic Trees
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Example

body 3body 2

body 1

base
joint 1

root node

joint 1

body 1

joint 2

connectivity
graph

body 2 body 3
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Numbering Scheme

the root node is numbered 0

the other nodes are numbered 1 to N in any order
such that each node has a higher number than its
parent
arcs are numbered such that arc i connects node i
to its parent
bodies and joints have the same numbers as their
nodes and arcs

Examples
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Floating Bases

A mobile robot, or other mobile device, is connected
to a fixed base via a 6DoF joint −− a joint that does not
impose any motion constraints.

The body that is connected directly to the fixed base
is called a floating base.

fixed
base

6DoF joint

legs

legs

floating
basetorso

6DoF
joint

fixed
base

torso
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Describing Connectivity

κ(i)

λ(i)

µ(i)

ν(i)

−− all the joints between node i and the root

the parent of node i

the children of node i

all the bodies beyond joint i−−

−−

−−

κ(i) µ(i)

ν(i)

λ(i) i
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Describing Connectivity
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5 6 λ(1) = 0

λ(2) = 1

λ(3) = 2

λ(4) = 1

µ(0) = {1}

µ(1) = {2,4}

µ(2) = {3}

µ(3) = {}

κ(1) = {1}

κ(2) = {1,2}

κ(3) = {1,2,3}

κ(4) = {1,4}

ν(1) = {1,2,3,4,5,6}

ν(2) = {2,3}

ν(3) = {3}

ν(4) = {4,5,6}



10

Describing Connectivity

The parent array, λ, defines both the connectivity and
the numbering scheme.

λ = [ λ(1), λ(2), ..., λ(N) ]
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λ = [0,1,2,1,4,4] λ=[0,1,1,2,3,2] λ=[0,1,2,0,1,2,5,5,2]
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Describing Connectivity

λ provides a complete description of the
connectivity; so the sets µ(i), ν(i) and κ(i) can
all be calculated from λ.

Many algorithms rely on the property 0 < λ(i) < i.

Most dynamics algorithms only need λ.
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Joint−Space Inertia Matrix

The equation of motion of a kinematic tree can be
expressed in the following canonical form:

where

is a vector of joint force variables

is a vector of joint acceleration variables

is the joint−space inertia matrix

is a vector containing Coriolis, centrifugal and
gravity terms

τ

H

C

τ = Hq + C
..

q
..
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Joint−Space Inertia Matrix

The joint−space inertia matrix of a kinematic tree is
given by the equation

The third case in this equation applies whenever i
and j lie on different branches of the tree.  This is the
case that gives rise to branch−induced sparsity.

Hij = 0 if i and j are on different branches

Hij  =

Si
T Ii

c Sj

Si
T Ij

c Sj

0 otherwise

if   j    ν(i)

if   i    ν( j)
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Joint−Space Inertia Matrix

The joint−space inertia matrix of a kinematic tree is
given by the equation

The third case in this equation applies whenever i
and j lie on different branches of the tree.  This is the
case that gives rise to branch−induced sparsity.

Hij = 0 if i and j are on different branches

in general,
this is a

submatrix

Hij  =

Si
T Ii

c Sj

Si
T Ij

c Sj

0 otherwise

if   j    ν(i)

if   i    ν( j)
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Sparsity Patterns

= nonzero submatrix or element
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How can we exploit the sparsity?

1. If we factorize H into either LT
L or LT

DL, rather
than the usual LL

T (Cholesky) or LDL
T, then the

sparsity pattern in H is preserved in the factors.

2. Algorithms that perform matrix multiplication and
back−substitution can be modified to iterate over
only the nonzero elements.

3. The more sparsity there is in H, the faster it can
be calculated and factorized.
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Maximizing Sparsity

Choose a floating base near the middle.

H =

H =
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Maximizing Sparsity

Choose a branchy spanning tree.

closed−loop
system

spanning tree

H =
good

bad H =
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(Cholesky)H = LL
T

H = L
T
L

H  =

H  =

L
T
L Versus LL

T

0

1

2 3

4 5 6 7

H =
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Innovations Factorization

The LTDL factorization is numerically almost identical
to the innovations factorization of the joint−space
inertia matrix that was discovered by Rodriguez, Jain,
et al. at NASA JPL.

M = (1+HφK) D (1+HφK)*

LT D LH

M−1 = (1−HψK)* D−1 (1−HψK)

L−1 D−1
L−TH−1
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Sparse Factorization Algorithms

Inputs

Outputs

H

λe

L, D −− factors returned in H
the expanded parent array
the matrix to be factorized

−−
−−

Applicability
H can be any symmetric positive−definite matrix
with the sparsity pattern described by λe.  It does
not have to be an inertia matrix.

LTL( H, λe ) L

LTDL( H, λe ) L, D



22

Expanded Parent Array

λ is an N−element array,
where N is the number of
joints.

λe is an n−element array,
where n is the number of
joint variables.

λ describes the sparsity
pattern in the submatrices
of H.

λe describes the sparsity
pattern in the elements of
H.

λe is obtained from λ by formally replacing each multi−
DoF joint with an equivalent chain of single−DoF joints
and renumbering the nodes and arcs.

H is an N   N block matrix H is an n   n matrix
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Expanded Parent Array
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original graph expanded graph

3

2

3 DoF
joint

λ = [0,1,1,2,2,3] λe = [0,1,2,3,1,4,4,5]
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for   k = n  to   1  do
i = λe(k)

a = Hki / Hkk

j = i

Hij = Hij − Hkj a

j = λe( j)
end
Hki = a

i = λe(i)
end

end

while   j = 0  do

while   i = 0  do

function   LTDL( H, λe )
loop runs backwards

loops iterate over
ancestors of k
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How the algorithm works

By iterating only over the ancestors of k, the algorithm
performs the least possible amount of work, e.g. by
updating only 5 elements at k = 7 instead of 27.

upper triangle
never accessed

k = 7

λe(λe(7))

λe(7)

x x x x x x x
x x x x
x x x x
x x x
x x x
x x x
x x x

x = nonzero
      element
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x = nonzero
      element

How the algorithm works

By iterating only over the ancestors of k, the algorithm
performs the least possible amount of work, e.g. by
updating only 5 elements at k = 7 instead of 27.

upper triangle
never accessed

k = 7

λe(λe(7))

λe(7)

x x x x x x x
x x x x
x x x x
x x x
x x x
x x x
x x x

0

1

2 3

4 5 6 7
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How the algorithm works
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Computational Cost Formulae

di is the depth of node i in the expanded connectivity
graph; and d, m and a are the costs of floating−point
divide, multiply and add/subtract operations.

where

D1 = (di − 1)Σ
i=1

n

and
di = 1 + dλe(i)     (d0 = 1)

L
T
DL factorization

back−substitution

D1d + D2(m + a)

nd + 2D1(m + a)

D2 = Σ
i=1

n
di(di−1)

2



29

Computational Complexity

D1 and D2 are bounded by

D1 < n(d − 1) and D2 < nd(d − 1)/2

where  d = maxi di  is the depth of the expanded
connectivity graph.

The complexity of factorization is therefore    O(nd2)
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Dynamics Calculation Efficiency

O(n) algorithms

O(n3) algorithms

branches substantially improve the efficiency of
these algorithms, and reduce their complexity
from O(n3) to O(nd2).

branches have little effect on these algorithms.
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Dynamics Calculation Efficiency

A typical O(n3) algorithm performs three steps:

1.

2.

3.

calculate C

calculate H

O(n)

O(n2) O(nd)

O(n3) O(nd2)

Branches accelerate steps 2 and 3, and reduce their
computational complexity.

solve Hq = τ − C
..
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Calculating H

The composite−rigid−body algorithm (CRBA) is the
best available algorithm for calculating H.

1.

2.

the CRBA implicitly exploits branch−induced
sparsity by calculating only the nonzero elements
of H, and

there are only n + 2D1 nonzero elements in H,
which is O(nd).

Branch−induced sparsity improves the efficiency of
this algorithm, and reduces its complexity to O(nd),
because
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A Numerical Example

Let us compare the computational cost of forward
dynamics for a 30−DoF unbranched chain and the
30−DoF humanoid (or quadruped) shown below.

6−DoF joint

torso

four 6−DoF limbs
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A Numerical Example

H =

H contains:

468  nonzero elements
432  zero elements

H is therefore 48% zeros

each     is a
6x6 matrix
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5000 10,000 15,000 20,000 25,000

RNEA CRBA Factor & Solve

ABA

RNEA:

CRBA:

ABA:

Recursive Newton−Euler Algorithm

Composite Rigid Body Algorithm

Articulated−Body Algorithm

(total arithmetic operations)

O(n3)

O(n)

Cost Figures for Unbranched Chain



36 5000 10,000 15,000 20,000 25,000

RNEA CRBA Factor & Solve

RNEA

RNEA

CRBA

CRBA

ABA

Factor & Solve

F&S

CRBA exploits sparsity

new factorization
algorithm

Cost Figures for Humanoid/Quadruped
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Summary
branches in a kinematic tree cause sparsity in the
joint−space inertia matrix

exploiting this sparsity, using the new factorization
algorithms presented here, greatly improves the
efficiency and computational complexity of O(n3)
dynamics algorithms
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