
1
© 2009 Roy Featherstone

Branch−Induced Sparsity
in

Rigid−Body Dynamics

Roy Featherstone
Dept. Information Engineering, RSISE

The Australian National University

2

Branch−Induced Sparsity

What is it?

Why is it interesting?

What is the main application?
efficient dynamics calculations

a pattern of zeros appearing in the joint−space
inertia matrix (and some other matrices) as a direct
consequence of branches in a kinematic tree

exploiting this sparsity greatly improves the
efficiency of O(n3) dynamics algorithms

3

Branch−Induced Sparsity

What is it?

Why is it interesting?

What is the main application?
efficient dynamics calculations

a pattern of zeros appearing in the joint−space
inertia matrix (and some other matrices) as a direct
consequence of branches in a kinematic tree

exploiting this sparsity greatly improves the
efficiency of O(n3) dynamics algorithms

τ = Hq + C
..

4

A rigid−body system can be represented by a
connectivity graph in which

one node represents a fixed base, or fixed
reference frame

all other nodes represent bodies

arcs represent joints

this special node is the root node of the graph

If the connectivity graph is a tree, then the system
it represents is a kinematic tree.

Kinematic Trees

5

Example

body 3body 2

body 1

base
joint 1

root node

joint 1

body 1

joint 2

connectivity
graph

body 2 body 3

6

Numbering Scheme

the root node is numbered 0

the other nodes are numbered 1 to N in any order
such that each node has a higher number than its
parent
arcs are numbered such that arc i connects node i
to its parent
bodies and joints have the same numbers as their
nodes and arcs

Examples
4

0

21

3 4

0

12

3 4

0

13

2 2

0

14

3

7

Floating Bases

A mobile robot, or other mobile device, is connected
to a fixed base via a 6DoF joint −− a joint that does not
impose any motion constraints.

The body that is connected directly to the fixed base
is called a floating base.

fixed
base

6DoF joint

legs

legs

floating
basetorso

6DoF
joint

fixed
base

torso

8

Describing Connectivity

κ(i)

λ(i)

µ(i)

ν(i)

−− all the joints between node i and the root

the parent of node i

the children of node i

all the bodies beyond joint i−−

−−

−−

κ(i) µ(i)

ν(i)

λ(i) i

9

Describing Connectivity

0

1

2

3

4

5 6 λ(1) = 0

λ(2) = 1

λ(3) = 2

λ(4) = 1

µ(0) = {1}

µ(1) = {2,4}

µ(2) = {3}

µ(3) = {}

κ(1) = {1}

κ(2) = {1,2}

κ(3) = {1,2,3}

κ(4) = {1,4}

ν(1) = {1,2,3,4,5,6}

ν(2) = {2,3}

ν(3) = {3}

ν(4) = {4,5,6}

10

Describing Connectivity

The parent array, λ, defines both the connectivity and
the numbering scheme.

λ = [λ(1), λ(2), ..., λ(N)]

0

1

2

3

4

5 6

0

1

23

45 6

0

1

52

86 7

4

9

3

λ = [0,1,2,1,4,4] λ=[0,1,1,2,3,2] λ=[0,1,2,0,1,2,5,5,2]

11

Describing Connectivity

λ provides a complete description of the
connectivity; so the sets µ(i), ν(i) and κ(i) can
all be calculated from λ.

Many algorithms rely on the property 0 < λ(i) < i.

Most dynamics algorithms only need λ.

12

Joint−Space Inertia Matrix

The equation of motion of a kinematic tree can be
expressed in the following canonical form:

where

is a vector of joint force variables

is a vector of joint acceleration variables

is the joint−space inertia matrix

is a vector containing Coriolis, centrifugal and
gravity terms

τ

H

C

τ = Hq + C
..

q
..

13

Joint−Space Inertia Matrix

The joint−space inertia matrix of a kinematic tree is
given by the equation

The third case in this equation applies whenever i
and j lie on different branches of the tree. This is the
case that gives rise to branch−induced sparsity.

Hij = 0 if i and j are on different branches

Hij =

Si
T Ii

c Sj

Si
T Ij

c Sj

0 otherwise

if j ν(i)

if i ν(j)

14

Joint−Space Inertia Matrix

The joint−space inertia matrix of a kinematic tree is
given by the equation

The third case in this equation applies whenever i
and j lie on different branches of the tree. This is the
case that gives rise to branch−induced sparsity.

Hij = 0 if i and j are on different branches

in general,
this is a

submatrix

Hij =

Si
T Ii

c Sj

Si
T Ij

c Sj

0 otherwise

if j ν(i)

if i ν(j)

15

Sparsity Patterns

= nonzero submatrix or element

1

2

3

4

1

3

2

4

16

How can we exploit the sparsity?

1. If we factorize H into either LT
L or LT

DL, rather
than the usual LL

T (Cholesky) or LDL
T, then the

sparsity pattern in H is preserved in the factors.

2. Algorithms that perform matrix multiplication and
back−substitution can be modified to iterate over
only the nonzero elements.

3. The more sparsity there is in H, the faster it can
be calculated and factorized.

17

Maximizing Sparsity

Choose a floating base near the middle.

H =

H =

18

Maximizing Sparsity

Choose a branchy spanning tree.

closed−loop
system

spanning tree

H =
good

bad H =

19

(Cholesky)H = LL
T

H = L
T
L

H =

H =

L
T
L Versus LL

T

0

1

2 3

4 5 6 7

H =

20

Innovations Factorization

The LTDL factorization is numerically almost identical
to the innovations factorization of the joint−space
inertia matrix that was discovered by Rodriguez, Jain,
et al. at NASA JPL.

M = (1+HφK) D (1+HφK)*

LT D LH

M−1 = (1−HψK)* D−1 (1−HψK)

L−1 D−1
L−TH−1

21

Sparse Factorization Algorithms

Inputs

Outputs

H

λe

L, D −− factors returned in H
the expanded parent array
the matrix to be factorized

−−
−−

Applicability
H can be any symmetric positive−definite matrix
with the sparsity pattern described by λe. It does
not have to be an inertia matrix.

LTL(H, λe) L

LTDL(H, λe) L, D

22

Expanded Parent Array

λ is an N−element array,
where N is the number of
joints.

λe is an n−element array,
where n is the number of
joint variables.

λ describes the sparsity
pattern in the submatrices
of H.

λe describes the sparsity
pattern in the elements of
H.

λe is obtained from λ by formally replacing each multi−
DoF joint with an equivalent chain of single−DoF joints
and renumbering the nodes and arcs.

H is an N N block matrix H is an n n matrix

23

Expanded Parent Array

0

1

2

3

4 5
6

0

1

4

5

6 7
8

original graph expanded graph

3

2

3 DoF
joint

λ = [0,1,1,2,2,3] λe = [0,1,2,3,1,4,4,5]

24

for k = n to 1 do
i = λe(k)

a = Hki / Hkk

j = i

Hij = Hij − Hkj a

j = λe(j)
end
Hki = a

i = λe(i)
end

end

while j = 0 do

while i = 0 do

function LTDL(H, λe)
loop runs backwards

loops iterate over
ancestors of k

25

How the algorithm works

By iterating only over the ancestors of k, the algorithm
performs the least possible amount of work, e.g. by
updating only 5 elements at k = 7 instead of 27.

upper triangle
never accessed

k = 7

λe(λe(7))

λe(7)

x x x x x x x
x x x x
x x x x
x x x
x x x
x x x
x x x

x = nonzero
 element

26

x = nonzero
 element

How the algorithm works

By iterating only over the ancestors of k, the algorithm
performs the least possible amount of work, e.g. by
updating only 5 elements at k = 7 instead of 27.

upper triangle
never accessed

k = 7

λe(λe(7))

λe(7)

x x x x x x x
x x x x
x x x x
x x x
x x x
x x x
x x x

0

1

2 3

4 5 6 7

27

How the algorithm works

By iterating only over the ancestors of k, the algorithm
performs the least possible amount of work, e.g. by
updating only 5 elements at k = 7 instead of 27.

upper triangle
never accessed

k = 7

λe(λe(7))

λe(7)

x x x x x x x
x x x x
x x x x
x x x
x x x
x x x
x x x

x = nonzero
 element

28

Computational Cost Formulae

di is the depth of node i in the expanded connectivity
graph; and d, m and a are the costs of floating−point
divide, multiply and add/subtract operations.

where

D1 = (di − 1)Σ
i=1

n

and
di = 1 + dλe(i) (d0 = 1)

L
T
DL factorization

back−substitution

D1d + D2(m + a)

nd + 2D1(m + a)

D2 = Σ
i=1

n
di(di−1)

2

29

Computational Complexity

D1 and D2 are bounded by

D1 < n(d − 1) and D2 < nd(d − 1)/2

where d = maxi di is the depth of the expanded
connectivity graph.

The complexity of factorization is therefore O(nd2)

30

Dynamics Calculation Efficiency

O(n) algorithms

O(n3) algorithms

branches substantially improve the efficiency of
these algorithms, and reduce their complexity
from O(n3) to O(nd2).

branches have little effect on these algorithms.

31

Dynamics Calculation Efficiency

A typical O(n3) algorithm performs three steps:

1.

2.

3.

calculate C

calculate H

O(n)

O(n2) O(nd)

O(n3) O(nd2)

Branches accelerate steps 2 and 3, and reduce their
computational complexity.

solve Hq = τ − C
..

32

Calculating H

The composite−rigid−body algorithm (CRBA) is the
best available algorithm for calculating H.

1.

2.

the CRBA implicitly exploits branch−induced
sparsity by calculating only the nonzero elements
of H, and

there are only n + 2D1 nonzero elements in H,
which is O(nd).

Branch−induced sparsity improves the efficiency of
this algorithm, and reduces its complexity to O(nd),
because

33

A Numerical Example

Let us compare the computational cost of forward
dynamics for a 30−DoF unbranched chain and the
30−DoF humanoid (or quadruped) shown below.

6−DoF joint

torso

four 6−DoF limbs

34

A Numerical Example

H =

H contains:

468 nonzero elements
432 zero elements

H is therefore 48% zeros

each is a
6x6 matrix

35

5000 10,000 15,000 20,000 25,000

RNEA CRBA Factor & Solve

ABA

RNEA:

CRBA:

ABA:

Recursive Newton−Euler Algorithm

Composite Rigid Body Algorithm

Articulated−Body Algorithm

(total arithmetic operations)

O(n3)

O(n)

Cost Figures for Unbranched Chain

36 5000 10,000 15,000 20,000 25,000

RNEA CRBA Factor & Solve

RNEA

RNEA

CRBA

CRBA

ABA

Factor & Solve

F&S

CRBA exploits sparsity

new factorization
algorithm

Cost Figures for Humanoid/Quadruped

37

Summary
branches in a kinematic tree cause sparsity in the
joint−space inertia matrix

exploiting this sparsity, using the new factorization
algorithms presented here, greatly improves the
efficiency and computational complexity of O(n3)
dynamics algorithms

Further Reading
R. Featherstone, 2005. Efficient Factorization of the Joint
Space Inertia Matrix for Branched Kinematic Trees. Int. J.
Robotics Research, 24(6):487−500.

R. Featherstone, 2008. Rigid Body Dynamics Algorithms.
New York: Springer.

