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Problem Statement

We are given a rigid-body system consisting of two
bodies, B1 and B2, connected by a revolute joint.
The bodies have masses of m1 and m2, centres of
mass located at the points C1 and C2, and rota-
tional inertias of I1 and I2 about their respective
centres of mass. Both bodies are initially at rest.
The joint’s axis of rotation passes through the point
P in the direction given by s. A system of forces
acts on B1 causing both bodies to accelerate. This
system is equivalent to a single force f acting on a
line passing through C1 together with a couple n.
These forces impart an angular acceleration of ω̇1

to B1 and a linear acceleration of a1 to its centre
of mass. The problem is to express a1 and ω̇1 in
terms of f and n.
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Solution

The key to solving a problem like this is to realise
that the joint introduces one degree of motion free-
dom between the two bodies, but also imposes one
constraint on the forces that can be transmitted
through the joint. The latter can be used to elimi-
nate the former, at which point it becomes possible
to express every force and acceleration in the sys-
tem as a function of ω̇1 and a1. The problem is
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then solved by expressing f and n as functions of
ω̇1 and a1, and then inverting the equations to ex-
press the accelerations in terms of the forces.

Let us introduce the following quantities. Let f1,
n1, f2 and n2 be the net forces and couples acting
on B1 and B2, respectively, where the lines of action
of f1 and f2 pass through C1 and C2, respectively;
let ω̇2 and a2 be the angular acceleration of B2

and the linear acceleration of its centre of mass; let
Pa1,

Pω̇1,
Pa2 and Pω̇2 be the linear and angular

accelerations of B1 and B2 expressed at P ; and let
Pf2,

Pn2,
1f2 and 1n2 be the net force and couple

acting on B2 expressed at P and C1, respectively.
As the system of applied forces acts only on B1,
the net force and couple acting on B2 are also the
net force and couple transmitted through the joint.

Let us also define r1 =
−−→

C1P and r2 =
−−→

C2P , and let
α be the joint acceleration variable.

The equations of motion of the two bodies, ex-
pressed at their centres of mass, are

f1 = m1 a1, (1)

n1 = I1 ω̇1, (2)

f2 = m2 a2 (3)

and

n2 = I2 ω̇2. (4)

(There are no velocity terms because the bodies are
at rest.)

The rules for transferring forces and accelera-
tions (of bodies at rest) from one point to another
provide us with the following relationships between
quantities referred to C1, C2 and P :

Pa1 = a1 − r1 × ω̇1, (5)

Pa2 = a2 − r2 × ω̇2, (6)

Pω̇1 = ω̇1, (7)

Pω̇2 = ω̇2, (8)

1f2 = Pf2 = f2, (9)
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Pn2 = n2 − r2 × f2 (10)

and
1n2 = n2 + (r1 − r2) × f2. (11)

If B1 exerts 1f2 and 1n2 on B2 then B2 exerts
−

1f2 and −
1n2 on B1 (Newton’s 3rd law expressed

at C1); so the net force and couple acting on B1 are

f1 = f −
1f2

n1 = n −
1n2,

from which we get (via Eqs. 9 and 11)

f = f1 + f2 (12)

and
n = n1 + n2 + (r1 − r2) × f2. (13)

The joint allows B2 one degree of motion freedom
relative to B1, and imposes one constraint on the
couple transmitted from B1 to B2. Expressed at P ,
the equations are

Pa2 = Pa1, (14)

Pω̇2 = Pω̇1 + sα (15)

and
sT Pn2 = 0. (16)

(There is no constraint on Pf2. Eq. 16 is sufficient
to ensure that the force and couple transmitted by
the joint perform no work in the direction of relative
motion permitted by the joint.)

We are now ready to solve the problem. Let us
start by calculating a2 and ω̇2 in terms of a1, ω̇1

and α. From Eqs. 8, 15 and 7 we have

ω̇2 = Pω̇2

= Pω̇1 + s α

= ω̇1 + sα, (17)

and from Eqs. 6, 14, 17 and 5 we have

a2 = Pa2 + r2 × ω̇2

= Pa1 + r2 × (ω̇1 + s α)

= a1 − r1 × ω̇1 + r2 × (ω̇1 + s α)

= a1 + (r2 − r1) × ω̇1 + r2 × s α. (18)

Now let us calculate α. From Eqs. 16, 10, 3, 4,
17 and 18 we get

0 = sT Pn2

= sT(n2 − r2 × f2)

= sT(I2 ω̇2 − m2 r2 × a2)

= sT(I2 (ω̇1 + s α) − m2 r2 ×

(a1 + (r2 − r1) × ω̇1 + r2 × sα)).

Collecting terms in α gives

sT(I2 s − m2 r2 × (r2 × s))α + sT(I2 ω̇1

− m2 r2 × (a1 + (r2 − r1) × ω̇1)) = 0,

hence

α = −

sT(I2 ω̇1 − m2 r2 × (a1 + (r2 − r1) × ω̇1))

sT(I2 s − m2 r2 × (r2 × s))
(19)

This equation is only valid if the denominator is
not equal to zero, so we must investigate the neces-
sary conditions for it to be nonzero. This problem
can be solved using the following trick. For any
two vectors u and v, the cross product u × v can
be expressed in the form u × v = ũ v, where ũ is
the skew-symmetric matrix

ũ =





0 −uz uy

uz 0 −ux

−uy ux 0



 .

Using this trick, we can express the denominator in
the form sTJ s where

J = I2 − m2 r̃2 r̃2

= I2 + m2 r̃T

2 r̃2. (20)

J is therefore the sum of an SPD matrix and an
SPSD matrix, hence itself also SPD, so the denom-
inator of Eq. 19 is guaranteed to be strictly greater
than zero. Substituting Eq. 20 into Eq. 19 gives us
the following simplified expression for α:

α = −

sT(J ω̇1 − m2 r2 × (a1 − r1 × ω̇1))

sTJ s
(21)

The next step is to express f and n in terms of
a1, ω̇1 and α, and then to eliminate α using Eq. 21.
Let us start with f . From Eqs. 12, 1, 3 and 18 we
get

f = f1 + f2

= m1 a1 + m2 a2

= m1 a1 + m2(a1 + (r2 − r1) × ω̇1 + r2 × sα)

= (m1 + m2)a1 + m2(r2 − r1) × ω̇1

+ m2 r2 × s α.

Elimitating α using Eq. 21 gives

f = (m1 + m2)a1 + m2(r2 − r1) × ω̇1 −

m2

r2 × s sT(J ω̇1 − m2 r2 × (a1 − r1 × ω̇1))

sTJ s
;
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and collecting terms in a1 and ω̇1 gives

f =

(

m1 + m2 + m2

2

r̃2 s sT r̃2

sTJ s

)

a1 +

(

m2(r̃2 − r̃1) − m2

r̃2 s sT(J + m2 r̃2 r̃1)

sTJ s

)

ω̇1.

(22)

Repeating the procedure for n, Eqs. 13, 2, 3, 4, 17
and 18 give

n = n1 + n2 + (r1 − r2) × f2

= I1 ω̇1 + I2 ω̇2 + m2(r1 − r2) × a2

= I1 ω̇1 + I2(ω̇1 + s α) + m2(r1 − r2) ×

(a1 + (r2 − r1) × ω̇1 + r2 × sα)

= (I1 + I2 − m2(r̃1 − r̃2)
2)ω̇1

+ m2(r̃1 − r̃2)a1 + Ksα, (23)

where

K = I2 + m2(r̃1 − r̃2)r̃2

= J + m2 r̃1 r̃2. (24)

Note that Eq. 21 can now be simplified to

α = −

sT(KTω̇1 − m2 r̃2 a1)

sTJ s
. (25)

Eliminating α from Eq. 23 using Eq. 25 gives

n = (I1 + I2 − m2(r̃1 − r̃2)
2)ω̇1 +

m2(r̃1 − r̃2)a1 −

KssT(KTω̇1 − m2 r̃2 a1)

sTJ s
,

and collecting terms in ω̇1 and a1 gives

n =

(

I1 + I2 − m2(r̃1 − r̃2)
2
−

Ks sTKT

sTJ s

)

ω̇1

+

(

m2(r̃1 − r̃2) + m2

KssTr̃2

sTJ s

)

a1. (26)

The final step is to combine Eqs. 22 and 26 into
a single equation:

[

f

n

]

=

[

A B

C D

] [

a1

ω̇1

]

, (27)

where

A = (m1 + m2)13×3 + m2

2

r̃2 s sT r̃2

sTJ s
, (28)

B = m2(r̃2 − r̃1) − m2

r̃2 s sTKT

sTJ s
, (29)

C = m2(r̃1 − r̃2) + m2

Ks sTr̃2

sTJ s
(30)

and

D = I1 + I2 − m2(r̃1 − r̃2)
2
−

KssTKT

sTJ s
. (31)

(13×3 is an identity matrix.) Notice that A and D

are symmetric, and that B = CT. The solution to
the original problem is then

[

a1

ω̇1

]

=

[

A B

C D

]

−1 [

f

n

]

. (32)

At this point, we should prove that the 6 × 6 coef-
ficient matrix is nonsingular. It is in fact an SPD
matrix, but the easiest way to prove it is to show
that it is identical to the solution obtained using
the 6-D vector approach, which is easily shown to
be an SPD matrix.
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