A Short Course on

Spatial Vector Algebra

The Easy Way to do Rigid Body Dynamics

Roy Featherstone
Dept. Information Engineering, RSISE
The Australian National University

Spatial vector algebra is a concise vector notation for describing rigid-body velocity, acceleration, inertia, etc., using 6D vectors and tensors.

- fewer quantities
- fewer equations
- less effort
- fewer mistakes

Mathematical Structure

spatial vectors inhabit two vector spaces:
$M^{6} \quad$ - motion vectors
F^{6} - force vectors
with a scalar product defined between them

$$
\begin{aligned}
& \boldsymbol{m} \cdot \boldsymbol{f}=\text { work } \\
& \quad \bullet " \cdot: M^{6} \times F^{6} \mapsto R
\end{aligned}
$$

Bases

A coordinate vector $\underline{\boldsymbol{m}}=\left[m_{1}, \ldots, m_{6}\right]^{\mathrm{T}}$ represents a motion vector \boldsymbol{m} in a basis $\left\{\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{6}\right\}$ on M^{6} if

$$
\boldsymbol{m}=\sum_{i=1}^{6} m_{i} \boldsymbol{d}_{i}
$$

Likewise, a coordinate vector $\boldsymbol{f}=\left[f_{1}, \ldots, f_{6}\right]^{T}$ represents a force vector f in a basis $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{6}\right\}$ on F^{6} if

$$
\boldsymbol{f}=\sum_{i=1}^{6} f_{i} \boldsymbol{e}_{i}
$$

Bases

If $\left\{\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{6}\right\}$ is an arbitrary basis on M^{6} then there exists a unique reciprocal basis $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{6}\right\}$ on F^{6} satisfying

$$
\boldsymbol{d}_{i} \cdot \boldsymbol{e}_{j}=\left\{\begin{array}{l}
0: i \neq j \\
1: i=j
\end{array}\right.
$$

With these bases, the scalar product of two coordinate vectors is

$$
\boldsymbol{m} \cdot \boldsymbol{f}=\underline{\boldsymbol{m}}^{\mathrm{T}} \underline{\boldsymbol{f}}
$$

Velocity

The velocity of a rigid body can be described by

1. choosing a point, P, in the body
2. specifying the linear velocity, \boldsymbol{v}_{P}, of that point, and
3. specifying the angular velocity, ω, of the body as a whole

Velocity

The body is then deemed to be
 translating with a linear velocity \boldsymbol{v}_{P}
while simultaneously
rotating with an angular velocity ω about an axis passing through P

Define \boldsymbol{v}_{o} to be the velocity of the body-fixed point that coincides with O at the current instant

$$
\boldsymbol{v}_{o}=\boldsymbol{v}_{P}+\overrightarrow{O P} \times \omega
$$

Introduce the unit vectors $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k} pointing in the x, y and z directions.
ω and \boldsymbol{v}_{o} can now be
 expressed in terms of their Cartesian coordinates:

$$
\underline{\omega}=\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \underline{\boldsymbol{v}}_{o}=\left[\begin{array}{l}
v_{O x} \\
v_{O_{y}} \\
v_{O z}
\end{array}\right] \quad \begin{gathered}
\omega=\omega_{x} \boldsymbol{i}+\omega_{y} \boldsymbol{j}+\omega_{z} \boldsymbol{k} \\
\boldsymbol{v}_{O}=v_{O_{x}} \boldsymbol{i}+v_{O_{y}} \boldsymbol{j}+v_{O z} \boldsymbol{k}
\end{gathered}
$$

coordinate vectors
what they represent

The motion of the body can now be expressed as the sum of six elementary motions:
a linear velocity of $v_{0 x}$ in the x direction

+ a linear velocity of $v_{O y}$ in the y direction
+ a linear velocity of $v_{O z}$ in the z direction
+ an angular velocity of ω_{x} about the line $O x$
+ an angular velocity of ω_{y} about the line $O y$
+ an angular velocity of ω_{z} about the line $O z$

Define the following Plücker basis on M^{6} :
$d_{O x}$ unit angular motion about the line $O x$ $\boldsymbol{d}_{O y}$ unit angular motion about the line $O y$ $\boldsymbol{d}_{O z}$ unit angular motion about the line Oz \boldsymbol{d}_{x} unit linear motion in the x direction
\boldsymbol{d}_{y} unit linear motion in the y direction
\boldsymbol{d}_{z} unit linear motion in the z direction
 can now be expressed as

$$
\begin{aligned}
\hat{\boldsymbol{v}}= & \omega_{x} \boldsymbol{d}_{O x}+\omega_{y} \boldsymbol{d}_{O y}+\omega_{z} \boldsymbol{d}_{O z}+ \\
& +v_{O x} \boldsymbol{d}_{x}+v_{O y} \boldsymbol{d}_{y}+v_{O z} \boldsymbol{d}_{z}
\end{aligned}
$$

The six scalars $\omega_{x}, \omega_{y}, \ldots, v_{o z}$ are the Plücker coordinates of $\hat{\boldsymbol{v}}$ in the coordinate system defined by the frame $O x y z$

Now try question set A

Force

A general force acting on a rigid body can be expressed as the sum of

- a linear force \boldsymbol{f} acting along a line passing through any chosen point P, and
- a couple, \boldsymbol{n}_{P}

Force
If we choose a different point, O, then the force can be expressed as the sum of

- a linear force \boldsymbol{f} acting along a line passing through the new point O, and

- a couple \boldsymbol{n}_{O}, where $\boldsymbol{n}_{O}=\boldsymbol{n}_{P}+\overrightarrow{O P} \times \boldsymbol{f}$

Force

Now place a coordinate frame at O and introduce unit vectors $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k}, as before, so that

$$
\begin{aligned}
& \boldsymbol{n}_{O}=n_{O x} \boldsymbol{i}+n_{O y} \boldsymbol{j}+n_{O z} \boldsymbol{k} \\
& \boldsymbol{f}=f_{x} \boldsymbol{i}+f_{y} \boldsymbol{j}+f_{z} \boldsymbol{k} \\
& \underline{\boldsymbol{n}}_{O}=\left[\begin{array}{l}
n_{O x} \\
n_{O y} \\
n_{O z}
\end{array}\right] \quad \underline{\boldsymbol{f}}=\left[\begin{array}{l}
f_{x} \\
f_{y} \\
f_{z}
\end{array}\right]
\end{aligned}
$$

The total force acting on the body can now be expressed as the sum of six elementary forces:
a moment of $n_{O x}$ in the x direction

+ a moment of $n_{O y}$ in the y direction
+ a moment of $n_{O z}$ in the z direction
+ a linear force of f_{x} acting along the line $O x$
+ a linear force of f_{y} acting along the line $O y$
+ a linear force of f_{z} acting along the line $O z$

Define the following Plücker basis on F^{6} :

\boldsymbol{e}_{x} unit couple in the x direction
\boldsymbol{e}_{y} unit couple in the y direction
\boldsymbol{e}_{z} unit couple in the z direction
$\boldsymbol{e}_{O x}$ unit linear force along the line $O x$
$\boldsymbol{e}_{O y}$ unit linear force along the line $O y$
$\boldsymbol{e}_{O z}$ unit linear force along the line $O z$

Force

The spatial force acting on the body can now be expressed as

$$
\begin{aligned}
\hat{\boldsymbol{f}}= & n_{O x} \boldsymbol{e}_{x}+n_{O y} \boldsymbol{e}_{y}+n_{O z} \boldsymbol{e}_{z} \\
& +f_{x} \boldsymbol{e}_{O x}+f_{y} \boldsymbol{e}_{O y}+f_{z} \boldsymbol{e}_{O z}
\end{aligned}
$$

This single quantity provides a complete description of the forces acting on the body, and it is invariant with respect to the location of the coordinate frame

Force
The six scalars $n_{O X}$, $n_{0 y}, \ldots, f_{z}$ are the Plücker coordinates of $\hat{\boldsymbol{f}}$ in the coordinate system defined by the frame $O x y z$
coordinate vector: $\quad \underline{\boldsymbol{f}}_{o}=\left[\begin{array}{c}\underline{\boldsymbol{n}} \\ \underline{\boldsymbol{f}}\end{array}\right]=\left[\begin{array}{c}n_{O_{z}} \\ f_{x} \\ f_{y} \\ f_{z}\end{array}\right]$

Plücker Coordinates

- Plücker coordinates are the standard coordinate system for spatial vectors
- a Plücker coordinate system is defined by the position and orientation of a single Cartesian frame
- a Plücker coordinate system has a total of twelve basis vectors, and covers both vector spaces (M^{6} and F^{6})

Plücker Coordinates

- the Plücker basis $\boldsymbol{e}_{x}, \boldsymbol{e}_{y}, \ldots, \boldsymbol{e}_{O z}$ on F^{6} is reciprocal to $\boldsymbol{d}_{o x}, \boldsymbol{d}_{O y}, \ldots, \boldsymbol{d}_{z}$ on M^{6}
- so the scalar product between a motion vector and a force vector can be expressed in Plücker coordinates as

$$
\hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{f}}=\underline{\hat{\boldsymbol{v}}}_{O}^{\mathrm{T}} \underline{\hat{\boldsymbol{f}}}_{O}
$$

which is invariant with respect to the location of the coordinate frame

Coordinate Transforms

transform from A to B
 for motion vectors:

$$
{ }^{B} \boldsymbol{X}_{A}=\left[\begin{array}{cc}
\boldsymbol{E} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{E}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\tilde{\boldsymbol{r}}^{\mathrm{T}} & \mathbf{1}
\end{array}\right]
$$

$$
\text { where } \tilde{\boldsymbol{r}}=\left[\begin{array}{ccc}
0 & -r_{z} & r_{y} \\
r_{z} & 0 & -r_{x} \\
-r_{y} & r_{x} & 0
\end{array}\right]
$$

corresponding transform for force vectors:

$$
{ }^{B} \boldsymbol{X}_{A}^{*}=\left({ }^{B} \boldsymbol{X}_{A}\right)^{-\mathrm{T}}
$$

Basic Operations with Spatial Vectors

- Relative velocity

If bodies A and B have velocities of \boldsymbol{v}_{A} and \boldsymbol{v}_{B}, then the relative velocity of B with respect to A is

$$
\boldsymbol{v}_{\mathrm{rel}}=\boldsymbol{v}_{B}-\boldsymbol{v}_{A}
$$

- Rigid Connection

If two bodies are rigidly connected then their velocities are the same

- Summation of Forces

If forces \boldsymbol{f}_{1} and \boldsymbol{f}_{2} both act on the same body, then they are equivalent to a single force $\boldsymbol{f}_{\text {tot }}$ given by

$$
\boldsymbol{f}_{\mathrm{tot}}=\boldsymbol{f}_{1}+\boldsymbol{f}_{2}
$$

- Action and Reaction

If body A exerts a force \boldsymbol{f} on body B, then body B exerts a force -fon body A
(Newton's 3rd law)

- Scalar Product

If a force \boldsymbol{f} acts on a body with velocity \boldsymbol{v}, then the power delivered by that force is

$$
\text { power }=\boldsymbol{v} \cdot \boldsymbol{f}
$$

- Scalar Multiples

A velocity of $\alpha \boldsymbol{v}$ causes the same movement in 1 second as a velocity of v in α seconds. A force of $\beta \boldsymbol{f}$ delivers β times as much power as a force of \boldsymbol{f}

Now try question set B

Spatial Cross Products

There are two cross product operations: one for motion vectors and one for forces
$\hat{\boldsymbol{v}}_{O} \times \hat{\boldsymbol{m}}_{O}=\left[\begin{array}{c}\omega \\ \boldsymbol{v}_{O}\end{array}\right] \times\left[\begin{array}{c}\boldsymbol{m} \\ \boldsymbol{m}_{O}\end{array}\right]=\left[\begin{array}{c}\omega \times \boldsymbol{m} \\ \omega \times \boldsymbol{m}_{O}+\boldsymbol{v}_{O} \times \boldsymbol{m}\end{array}\right]$
$\hat{\boldsymbol{v}}_{O} \times \hat{\boldsymbol{f}}_{O}=\left[\begin{array}{c}\omega \\ \boldsymbol{v}_{O}\end{array}\right] \times\left[\begin{array}{c}\boldsymbol{n}_{O} \\ \boldsymbol{f}\end{array}\right]=\left[\begin{array}{c}\omega \times \boldsymbol{n}_{O}+\boldsymbol{v}_{o} \times \boldsymbol{f} \\ \omega \times \boldsymbol{f}\end{array}\right]$
where $\hat{\boldsymbol{v}}_{O}$ and $\hat{\boldsymbol{m}}_{O}$ are motion vectors, and $\hat{\boldsymbol{f}}$ is a force.

Differentiation

- The derivative of a spatial vector is itself a spatial vector
- in general, $\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{s}=\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{s}(t+\delta t)-\boldsymbol{s}(t)}{\delta t}$
- The derivative of a spatial vector that is fixed in a body moving with velocity \boldsymbol{v} is

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{s}= \begin{cases}\boldsymbol{v} \times \boldsymbol{s} & \text { if } \boldsymbol{s} \in \mathrm{M}^{6} \\ \boldsymbol{v} \times * & \text { if } \boldsymbol{s} \in \mathrm{F}^{6}\end{cases}
$$

Differentiation in Moving Coordinates

$$
\underbrace{\left[\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{s}\right]_{O}=} \underbrace{\begin{array}{l}
\text { velocity of coordinate } \\
\text { frame } \\
\text { componentwise }
\end{array}}_{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{s}_{O}+\boldsymbol{v}_{O} \times \boldsymbol{s}_{O}
\end{array} \text { or } \times * \text { if } \boldsymbol{s} \in \mathrm{F}^{6}} \begin{aligned}
& \begin{array}{l}
\text { derivative of coordinate } \\
\text { vector } \boldsymbol{s}_{O}
\end{array} \\
& \begin{array}{l}
\text { coordinate vector } \\
\text { representing } \mathrm{d} \boldsymbol{s} / \mathrm{d} t
\end{array}
\end{aligned}
$$

Acceleration

. . . is the rate of change of velocity:

$$
\hat{\boldsymbol{a}}=\frac{\mathrm{d}}{\mathrm{~d} t} \hat{\boldsymbol{v}}=\left[\begin{array}{c}
\dot{\boldsymbol{\omega}} \\
\dot{\dot{\boldsymbol{v}}}_{0}
\end{array}\right]
$$

but this is not the linear acceleration of any point in the body!

Acceleration

- O is a fixed point in space,
- and $v_{O}(t)$ is the velocity of the body-fixed point that coincides with O at time t,
- so \boldsymbol{v}_{O} is the velocity at which body-fixed points are streaming through O.
- $\dot{\boldsymbol{v}}_{O}$ is therefore the rate of change of stream velocity

Acceleration Example

\leftarrow fixed axis
If a body rotates with constant angular velocity about a fixed axis, then its spatial velocity is constant and its spatial acceleration is zero; but each body-fixed point is following a circular path, and is therefore accelerating.

Acceleration Formula

Let \boldsymbol{r} be the 3D vector giving the position of the body-fixed point that coincides with O at the current instant, measured relative to any fixed point in space

$$
\text { we then have } \hat{\boldsymbol{v}}=\left[\begin{array}{l}
\omega \\
\boldsymbol{v}_{o}
\end{array}\right]=\left[\begin{array}{c}
\omega \\
\dot{\boldsymbol{r}}
\end{array}\right]
$$

$$
\text { but } \quad \hat{\boldsymbol{a}}=\left[\begin{array}{c}
\dot{\omega} \\
\dot{\boldsymbol{v}}_{0}
\end{array}\right]=\left[\begin{array}{c}
\dot{\omega} \\
\ddot{\boldsymbol{r}}-\omega \times \dot{\boldsymbol{r}}
\end{array}\right]
$$

Basic Properties of Acceleration

- Acceleration is the time-derivative of velocity
- Acceleration is a true vector, and has the same general algebraic properties as velocity
- Acceleration formulae are the derivatives of velocity formulae

$$
\text { If } \boldsymbol{v}_{\mathrm{tot}}=\boldsymbol{v}_{1}+\boldsymbol{v}_{2} \text { then } \boldsymbol{a}_{\mathrm{tot}}=\boldsymbol{a}_{1}+\boldsymbol{a}_{2}
$$

(Look, no Coriolis term!)

Now try question set C

Rigid Body Inertia

spatial inertia tensor: $\hat{\boldsymbol{I}}_{O}=\left[\begin{array}{cc}\boldsymbol{I}_{O} & m \widetilde{\boldsymbol{c}} \\ m \tilde{\boldsymbol{c}}^{\mathrm{T}} & m \mathbf{1}\end{array}\right]$
where $\boldsymbol{I}_{O}=\boldsymbol{I}_{C}-m \tilde{\boldsymbol{c}} \widetilde{\boldsymbol{c}}$

Basic Operations with Inertias

- Composition

If two bodies with inertias \boldsymbol{I}_{A} and \boldsymbol{I}_{B} are joined together then the inertia of the composite body is

$$
\boldsymbol{I}_{\mathrm{tot}}=\boldsymbol{I}_{A}+\boldsymbol{I}_{B}
$$

- Coordinate transformation formula

$$
\boldsymbol{I}_{B}={ }^{B} \boldsymbol{X}_{A}^{*} \boldsymbol{I}_{A}{ }^{A} \boldsymbol{X}_{B}=\left({ }^{A} \boldsymbol{X}_{B}\right){ }^{\mathrm{T}} \boldsymbol{I}_{A}{ }^{A} \boldsymbol{X}_{B}
$$

Equation of Motion

$$
\boldsymbol{f}=\frac{\mathrm{d}}{\mathrm{~d} t}(\boldsymbol{I} \boldsymbol{v})=\boldsymbol{I} \boldsymbol{a}+\boldsymbol{v} \times \boldsymbol{I} \boldsymbol{v}
$$

$f=$ net force acting on a rigid body
$\boldsymbol{I}=$ inertia of rigid body
$\boldsymbol{v}=$ velocity of rigid body
$\boldsymbol{I} \boldsymbol{v}=$ momentum of rigid body
$\boldsymbol{a}=$ acceleration of rigid body

Motion Constraints

If a rigid body's motion is constrained, then its velocity is an element of a subspace, $S \subset \mathrm{M}^{6}$, called the motion subspace
degree of (motion) freedom: $\operatorname{dim}(S)$ degree of constraint:
$6-\operatorname{dim}(S)$
S can vary with time

Motion Constraints

Motion constraints are caused by constraint forces, which have the following property:

> A constraint force does no work against any motion allowed by the motion constraint

(D'Alembert's principle of virtual work, and Jourdain's principle of virtual power)

Motion Constraints

Constraint forces are therefore elements of a constraint-force subspace, $T \subset \mathrm{~F}^{6}$, defined as follows:

$$
T=\{\boldsymbol{f} \mid \boldsymbol{f} \cdot \boldsymbol{v}=0 \forall \boldsymbol{v} \in S\}
$$

This subspace has the property

$$
\operatorname{dim}(T)=6-\operatorname{dim}(S)
$$

Matrix Representation

- The subspace S can be represented by any $6 \times \operatorname{dim}(S)$ matrix \boldsymbol{S} satisfying range $(\mathbf{S})=S$
- Likewise, the subspace T can be represented by any $6 \times \operatorname{dim}(T)$ matrix \boldsymbol{T} satisfying range $(\boldsymbol{T})=T$

Properties

- any vectors $\boldsymbol{v} \in S$ and $\boldsymbol{f} \in T$ can be expressed as $\boldsymbol{v}=\boldsymbol{S} \alpha$ and $\boldsymbol{f}=\boldsymbol{T} \lambda$, where α and λ are $\operatorname{dim}(S) \times 1$ and $\operatorname{dim}(T) \times 1$ coordinate vectors
- $\boldsymbol{S}^{\mathrm{T}} \boldsymbol{T}=\mathbf{0}$, which implies . . .
- $\boldsymbol{S}^{\mathrm{T}} \boldsymbol{f}=\mathbf{0}$ and $\boldsymbol{T}^{\mathrm{T}} \boldsymbol{v}=\mathbf{0}$ for all $\boldsymbol{f} \in T$ and $\boldsymbol{v} \in S$

Constrained Motion Analysis

An Example:

A force, \boldsymbol{f}, is applied to a
 body that is constrained to move in a subspace $S=\operatorname{range}(\boldsymbol{S})$ of M^{6}.
The body has an inertia of \boldsymbol{I}, and it is initially at rest. What is its acceleration?
relevant equations:

$$
\begin{aligned}
& \boldsymbol{v}=\boldsymbol{S} \alpha \\
& \boldsymbol{a}=\boldsymbol{S} \dot{\alpha}+\dot{\boldsymbol{S}} \alpha \\
& \boldsymbol{S}^{\mathrm{T}} \boldsymbol{f}_{c}=\mathbf{0}
\end{aligned}
$$

$$
\boldsymbol{f}+\boldsymbol{f}_{c}=\boldsymbol{I} \boldsymbol{a}+\boldsymbol{v} \times * \boldsymbol{I} \boldsymbol{v}
$$

$$
\begin{aligned}
& \boldsymbol{v}=\mathbf{0} \text { implies } \\
& \alpha=\mathbf{0} \\
& \boldsymbol{a}=\boldsymbol{S} \dot{\alpha} \\
& \boldsymbol{f}+\boldsymbol{f}_{c}=\boldsymbol{I} \boldsymbol{a}
\end{aligned}
$$

solution:
$\boldsymbol{f}+\boldsymbol{f}_{c}=\boldsymbol{I} \mathbf{S} \dot{\alpha}$
$\boldsymbol{S}^{\mathrm{T}} \boldsymbol{f}=\boldsymbol{S}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{S} \dot{\alpha}$
$\dot{\alpha}=\left(\boldsymbol{S}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{S}\right)^{-1} \boldsymbol{S}^{\mathrm{T}} \boldsymbol{f}$
$\boldsymbol{a}=\boldsymbol{S}\left(\boldsymbol{S}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{S}\right)^{-1} \boldsymbol{S}^{\mathrm{T}} \boldsymbol{f}$

Now try question set D

Inverse Dynamics

$\dot{q}_{i}, \ddot{q}_{i}, \boldsymbol{s}_{i}$ joint velocity, acceleration \& axis $\boldsymbol{v}_{i}, \boldsymbol{a}_{i} \quad$ link velocity and acceleration
f_{i} force transmitted from link $i-1$ to i
τ_{i} joint force variable
$I_{i} \quad$ link inertia

- velocity of link i is the velocity of link $i-1$ plus the velocity across joint i

$$
\boldsymbol{v}_{i}=\boldsymbol{v}_{i-1}+\boldsymbol{s}_{i} \dot{q}_{i}
$$

- acceleration is the derivative of velocity

$$
\boldsymbol{a}_{i}=\boldsymbol{a}_{i-1}+\dot{\boldsymbol{s}}_{i} \dot{q}_{i}+\boldsymbol{s}_{i} \ddot{q}_{i}
$$

- equation of motion

$$
\boldsymbol{f}_{i}-\boldsymbol{f}_{i+1}=\boldsymbol{I}_{i} \boldsymbol{a}_{i}+\boldsymbol{v}_{i \times} \times^{*} \boldsymbol{I}_{i} \boldsymbol{v}_{i}
$$

- active joint force

$$
\tau_{i}=\boldsymbol{s}_{i}^{\mathrm{T}} \boldsymbol{f}_{i}
$$

The Recursive Newton-Euler Algorithm

(Calculate the joint torques τ_{i} that will produce the desired joint accelerations \ddot{q}_{i}.)

$$
\begin{array}{ll}
\boldsymbol{v}_{i}=\boldsymbol{v}_{i-1}+\boldsymbol{s}_{i} \dot{q}_{i} & \left(\boldsymbol{v}_{0}=\mathbf{0}\right) \\
\boldsymbol{a}_{i}=\boldsymbol{a}_{i-1}+\dot{\boldsymbol{s}}_{i} \dot{q}_{i}+\boldsymbol{s}_{i} \ddot{q}_{i} & \left(\boldsymbol{a}_{0}=\mathbf{0}\right) \\
\boldsymbol{f}_{i}=\boldsymbol{f}_{i+1}+\boldsymbol{I}_{i} \boldsymbol{a}_{i}+\boldsymbol{v}_{i} \times{ }^{*} \boldsymbol{I}_{i} \boldsymbol{v}_{i} & \left(\boldsymbol{f}_{n+1}=\boldsymbol{f}_{e e}\right) \\
\tau_{i}=\boldsymbol{s}_{i}^{\mathrm{T}} \boldsymbol{f}_{i} &
\end{array}
$$

