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Abstract— 6-D vectors are routinely expressed in Plücker
coordinates; yet there is almost no mention in the literature of
the basis vectors that give rise to these coordinates. This paper
identifies the Plücker basis vectors, and uses them to explain the
following: the relationship between a 6-D vector and its Plücker
coordinates, the relationship between a 6-D vector and the pair of
3-D vectors used to define it, and the correct way to differentiate
a 6-D vector in a moving coordinate system.

I. INTRODUCTION

6-D vectors are used to describe the motions of rigid bodies
and the forces acting upon them. They are therefore useful for
describing the kinematics and dynamics of rigid-body systems
in general, and robot mechanisms in particular. 6-D vectors
come in various forms, such as twists, wrenches, motors, spa-
tial vectors, Lie-algebra elements, and simple concatenations
of pairs of 3-D vectors. For examples, see [1], [2], [3], [4], [6],
[8], [9], [10], [12], [16]. Nearly all such vectors are expressed
using Plücker coordinates—a system of coordinates invented
in the 1860s by J. Plücker [11].

It is a basic tenet of linear algebra that a coordinate system
on a vector space is defined by a basis. It therefore follows that
Plücker coordinates must be defined by a basis. Yet, despite
the widespread use of Plücker coordinates, there appears to be
almost no mention of the basis vectors that give rise to them.
The only example the author could find is the standard basis
described in [4].

The role of a basis is to define the relationship between the
coordinates and the vectors they represent. Without an explicit
definition of the Plücker basis vectors, there is not a clear
description of the relationship between Plücker coordinates
and the 6-D vectors they represent. This has occasionally led
to confusion over the true nature of 6-D vectors, as evidenced
by the recent debate on the definition of the 6-D acceleration
vector [5], [7], [13], [14], [15]. There is a tendency to regard
6-D vectors as being ordered pairs of 3-D vectors, but this
model is inaccurate, as it does not properly take into account
the role of the reference point.

This paper makes the following contributions: it defines the
Plücker basis vectors; it explains the relationship between a
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Plücker coordinate vector and the 6-D vector it represents; it
explains the relationship between a 6-D vector and the two
3-D vectors that define it; and it shows how to differentiate
a 6-D vector in a moving Plücker coordinate system, using
acceleration as an example. For the sake of a concrete expo-
sition, this paper uses the notation and terminology of spatial
vectors; but the results apply generally to any 6-D vector that
is expressed using Plücker coordinates.

The rest of this paper is organized as follows. First, the
Plücker basis vectors are described. Then the topic of dual
coordinate systems is discussed. This is relevant to those 6-D
vector formalisms in which force vectors are deemed to occupy
a different vector space to motion vectors. Next, a convenient
operator notation is introduced, that allows us to express and
manipulate the mappings between coordinate vectors and the
vectors they represent, as determined by the basis vectors. The
paper then proceeds to examine the nature of the relationship
between spatial vectors and the pairs of Euclidean vectors that
are used to define them. Finally, the method of differentiation
in a moving Plücker coordinate system is explained, and the
results used to illuminate the relationship between competing
definitions of 6-D acceleration vectors.

II. PLÜCKER BASIS VECTORS

Different kinds of vector belong to different vector spaces.
We therefore begin by defining the vector spaces E

n and R
n for

n-dimensional Euclidean and coordinate vectors, respectively.
Elements of E

n have properties of magnitude and direction,
while elements of R

n are n-tuples of real numbers.
Spatial vectors are not Euclidean, and therefore do not

belong in E
6. Furthermore, it is useful to maintain a distinction

between those vectors that describe the motions of rigid
bodies and those that describe the forces acting upon them.
We therefore define two vector spaces, M

6 and F
6, one for

spatial motion vectors and one for spatial forces. Elements
of M

6 describe velocities, accelerations, directions of motion
freedom, and so on. Elements of F

6 describe forces, momenta,
impulses, and so on.

Spatial vectors are usually constructed from pairs of 3D
Euclidean vectors. Let us now examine how this is done. In
particular, let us examine the construction of a velocity vector
and a force vector.

Referring to Figure 1, the velocity of a rigid body can be
specified by a pair of vectors, ω, vO ∈ E

3, where ω is the
angular velocity of the body as a whole, and vO is the linear
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Fig. 1. Rigid body velocity

velocity of the body-fixed point that is passing through an
arbitrary given point, O, in the underlying physical space.
The rigid-body velocity described by these two vectors is
the sum of a pure rotation, in which the body rotates with
angular velocity ω about an axis passing through O, and a
pure translation given by vO. This can be seen in the formula

vP = vO + ω ×
−−→
OP , (1)

which gives the velocity of the body-fixed point at P . The
right-hand side is the sum of a component due to the transla-
tion of the whole rigid body by vO, and a component due to
its rotation by ω about an axis passing through O.

Observe how the meanings change as the two vectors are
combined: ω on its own is a disembodied angular velocity that
is the same for any choice of O, and vO on its own refers
specifically to the one point in the body that coincides with O
at the current instant; but when we combine the two, the rigid-
body velocity they describe is the sum of a rotation specifically
about an axis passing through O, and a pure translation in
which every point in the body travels with velocity vO.

Let us introduce a Cartesian coordinate frame, Oxyz, with
its origin at O. This frame defines three mutually perpendicular
directions, x, y and z. These directions allow us to define an
orthonormal basis,

C = {i, j, k} ⊂ E
3 , (2)

in which the unit vectors i, j and k point in the x, y and
z directions, respectively. This basis gives rise to a Cartesian
coordinate system on E

3, such that ω and vO can be expressed
in terms of their Cartesian coordinates:

ω = ωx i + ωy j + ωz k (3)

and
vO = vOx i + vOy j + vOz k . (4)

We can now say that the Euclidean vectors ω and vO are
represented by the coordinate vectors1 ω = [ ωx ωy ωz ]T ∈
R

3 and vO = [ vOx vOy vOz ]T ∈ R
3, respectively, in the

coordinate system defined by the basis C.
It is well known that the six numbers ωx, . . . , vOz are

the Plücker coordinates of a spatial vector,2 v̂ ∈ M
6, that

1Coordinate vectors are underlined to distinguish them from the vectors
they represent.

2Spatial vectors other than basis vectors are marked with a hat. Basis vectors
are left unmarked.
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Fig. 2. Plücker motion basis (a), and example (b)

represents the same rigid-body velocity as the two 3D vectors
ω and vO. To establish the relationship between v̂ and its
coordinates, we define the following basis on M

6:

DO = {dOx, dOy , dOz , dx, dy, dz} ⊂ M
6 , (5)

in which dOx, dOy and dOz are unit rotations about the
directed lines Ox, Oy and Oz (which pass through O in
the x, y and z directions, respectively), and dx, dy and
dz are unit translations in the x, y and z directions (see
Figure 2(a)). Thus, if the body were rotating about Ox with
an angular velocity of magnitude α, then its spatial velocity
would be α dOx. Likewise, if the body were translating with
a linear velocity of vO, then its spatial velocity would be
vOx dx + vOy dy + vOz dz. Note the difference between this
expression and the one in (4): the former is a spatial vector
(i.e., an element of M

6), and the latter a Euclidean vector (an
element of E

3). A third example is shown in Figure 2(b). This
example shows a rotation of magnitude α about an axis that
is parallel to the z axis and passes through the point (0, r, 0).
This motion is represented by the spatial vector αdOz +rαdx.
Observe that the translational component equals the velocity
of a particle at the origin that is rotating about (0, r, 0) with
an angular velocity of α.

It can be seen, by inspection, that the spatial vector

v̂ = ωx dOx + ωy dOy + ωz dOz + vOx dx + vOy dy + vOz dz

(6)
represents the same rigid-body velocity as that described by
the two vectors ω and vO above. We may therefore conclude
that DO is the basis that gives rise to the Plücker coordinate
system in M

6 associated with Oxyz, and that the coordinate
vector

v̂O = [ ωx ωy ωz vOx vOy vOz ]T ∈ R
6 (7)

represents the spatial vector v̂ ∈ M
6 in the Plücker coordinate

system defined by the basis DO . Equation (7) is often written
in the form

v̂O =

[

ω

vO

]

, (8)

in which the right-hand side is the concatenation of the two
coordinate vectors ω and vO.

Observe the pattern of subscripts in (6). Each quantity that
depends on the location of O contains an O in its subscript.
Note, however, that the subscript in dOx refers to the line
Ox, whereas the subscript in vOx is really two subscripts
run together, since vOx is the x coordinate of vO. Although



individual terms may vary, it can be shown that the complete
expression on the right-hand side of (6) is invariant with
respect to both the position and orientation of Oxyz. Thus, v̂

is a genuinely invariant representation of rigid-body velocity.
A spatial force vector is constructed in a similar manner.

Any system of applied forces acting on a single rigid body
is equivalent to a single resultant force vector, f , together
with a moment vector, nO, giving the moment of the force
system about an arbitrary given point, O. Although f itself is
independent of O, the quantity it represents is a force acting
on the rigid body along a line passing through O.

Introducing the coordinate frame Oxyz, and the basis C, we
can express f and nO in terms of their Cartesian coordinates:

f = fx i + fy j + fz k (9)

and
nO = nOx i + nOy j + nOz k . (10)

As before, the six numbers nOx, . . . , fz are the Plücker
coordinates of a spatial force vector, f̂ ∈ F

6, representing the
same force system as f and nO. To establish the relationship
between f̂ and its coordinates, we define the following basis
on F

6:

EO = {ex, ey, ez , eOx, eOy , eOz} ⊂ F
6 , (11)

in which ex, ey and ez are unit couples in the x, y and z
directions, and eOx, eOy and eOz are unit forces along the
lines Ox, Oy and Oz. Again, it can be seen, by inspection,
that the spatial vector

f̂ = nOx ex + nOy ey + nOz ez + fx eOx + fy eOy + fz eOz

(12)
represents the same force system as the two vectors f and nO.
We may therefore conclude that EO is the basis that gives rise
to the Plücker coordinate system in F

6 associated with Oxyz,
and that the coordinate vector

f̂
O

= [ nOx nOy nOz fx fy fz ]T ∈ R
6 (13)

represents the spatial vector f̂ ∈ F
6 in the Plücker coordinate

system defined by the basis EO. Equation (13) can be written
in the form

f̂
O

=

[

nO

f

]

, (14)

in which the right-hand side is the concatenation of the two
coordinate vectors nO and f .

III. DUAL COORDINATE SYSTEMS

Neither M
6 nor F

6 defines an inner product on its elements.
Instead, there is a scalar product that takes one argument from
each space and produces a real number representing work.
Thus, if m̂ ∈ M

6 and f̂ ∈ F
6, then f̂ · m̂ is the work done

by a force f̂ acting on a rigid body moving with motion m̂.
For convenience, we define m̂ · f̂ to mean the same as f̂ · m̂,
but the expressions f̂ · f̂ and m̂ · m̂ are not defined.

Let D = {d1, . . . , d6} be an arbitrary basis on M
6. For any

choice of D, there exists a unique basis E = {e1, . . . , e6} on
F

6 with the property that

di · ej =

{

1 if i = j
0 otherwise.

(15)

E is the dual (or reciprocal) basis to D, and vice versa. The
pair (D, E) can be called a dual basis pair, or simply a dual
basis. It defines a dual coordinate system encompassing both
M

6 and F
6, in which elements of M

6 are expressed via D
and elements of F

6 via E . A dual coordinate system is the
spatial-vector equivalent of a Cartesian coordinate system in
a Euclidean vector space.

In any dual coordinate system, the following equations hold:

m̂ · f̂ = m̂
T

f̂ , (16)

ei · m̂ = mi (17)

and
di · f̂ = fi , (18)

where m̂ and f̂ are the coordinate vectors representing m̂ ∈

M
6 and f̂ ∈ F

6 in bases D and E , respectively, and mi and
fi are the individual coordinates. These results follow directly
from (15). If A and B are any two dual coordinate systems,
and BXM

A is the coordinate transformation matrix from A
to B coordinates for motion vectors, then the corresponding
transformation matrix for force vectors is

BXF

A = (BXM

A )−T . (19)

This equation follows from the invariance property of the
scalar product, which can be expressed as

m̂
T
A f̂

A
= m̂

T
B f̂

B
(20)

for all m̂, f̂, A and B.
The Plücker bases in (5) and (11) satisfy (15), so the basis

pair (DO, EO) defines a dual coordinate system on M
6 and F

6.
It is possible to write the elements of DO in a different order,

provided one does the same to EO . The result is a reordering
of the cordinates in the coordinate vectors. For example, we
could rewrite DO and EO as

DO = {dx, dy, dz , dOx, dOy, dOz}

and
EO = {eOx, eOy, eOz , ex, ey, ez} ,

in which case the coordinate vectors representing v̂ and f̂

would be
v̂O = [ vOx vOy vOz ωx ωy ωz ]T

and
f̂

O
= [ fx fy fz nOx nOy nOz ]T .

Some authors prefer this linear-before-angular ordering to the
angular-before-linear ordering in (7) and (13). With the aid of
Plücker bases, it is immediately obvious that the difference
between these two orderings is purely cosmetic—they both
represent the same spatial vectors.



IV. BASIS MAPPINGS

Suppose B = {b1, . . . , bn} is a basis on a vector space U .
Given B, we can express any vector u ∈ U in the form

u =

n
∑

i=1

bi ui ,

where ui are the coordinates of u in B. This equation can also
be written in the form

u =
[

b1 · · · bn

]







u1

...
un






= B u , (21)

where B is the operator that maps coordinate vectors to the
vectors they represent in the basis B. We therefore call B the
basis mapping associated with B. Formally, B is a mapping
from R

n to U defined as follows:

B : R
n 7→ U :







u1

...
un






7→

n
∑

i=1

bi ui . (22)

If B is written as a 1 × n array of basis vectors, as shown
in (21), then the action of B on u can be understood as the
result of a formal matrix multiplication between the two.

B is a 1 : 1 mapping, and is therefore invertible; so there
must exist an inverse mapping, B

−1, that satisfies u = B
−1 u.

A formal expression for B
−1 can be stated as

B
−1 =







b∗
1
·

...
b∗n·






, (23)

where {b∗
1
, . . . , b∗n} is the dual basis to B, and b∗

i · is the
operator that maps any vector u ∈ U to the scalar b∗

i · u.
Expanding B

−1
B gives

B
−1

B =







b∗
1
·

...
b∗n·







[

b1 · · · bn

]

=







b∗
1

· b1 · · · b∗

1
· bn

...
. . .

...
b∗n · b1 · · · b∗n · bn







which equates to the identity matrix because of the reciprocity
condition (15). Special cases of interest are:

C
−1 =





i·

j·

k·



 , (24)

D
−1

O =







ex·

...
eOz·






(25)

and

E
−1

O =







dOx·

...
dz·






. (26)

Basis mappings provide a simple but powerful tool for
expressing the relationships between vectors. To illustrate their

use, consider the task of formulating the transformation matrix
between two coordinate systems, A and B. Let uA and uB

be the coordinate vectors representing the vector u ∈ U in A
and B coordinates. If BXA is the coordinate transformation
matrix from A to B, then we have

uB = BXA uA .

However, if BA and BB are the basis maps for A and B, then
we also have

uB = B
−1

B u = B
−1

B BA uA ,

so
BXA = B

−1

B BA .

Expanding this equation gives
BXA = B

−1

B

[

bA1 · · · bAn

]

=
[

B
−1

B bA1 · · · B
−1

B bAn

]

;

but B
−1

B bAi is just the coordinate vector representing bAi in B
coordinates, so we may conclude that BXA is a square matrix
whose columns are the coordinates of the old basis vectors
in the new coordinate system. (This is a standard result. The
point is simply the speed with which it can be obtained.)

V. RELATIONSHIP BETWEEN SPATIAL AND EUCLIDEAN
VECTORS

Let us examine the relationship between a spatial vector and
the pair of Euclidean vectors that are used to define it. If we
partition DO into two sub-bases, D rot

O = {dOx, dOy, dOz} and
D lin

O = {dx, dy, dz}, then (6) can be written as follows:

v̂ = D
rot
O ω + D

lin
O vO

= D
rot
O C

−1 ω + D
lin
O C

−1 vO

= RotM

O ω + LinM vO , (27)

where

RotM

O = D
rot
O C

−1 = dOx i· + dOy j· + dOz k· (28)

and
LinM = D

lin
O C

−1 = dx i· + dy j· + dz k· . (29)

Expressions like dOx i· are dyads that map Euclidean vectors
to spatial motion vectors. dOx i· maps any vector v ∈ E

3

to dOx (i · v) = dOx vx ∈ M
6, and so on. The operators

RotM

O and LinM are therefore both dyadics (sums of dyads).
RotM

O maps Euclidean vectors to the set of pure rotations
about axes passing through O; and LinM maps Euclidean
vectors to the set of pure translations. It can be shown that
both RotM

O and LinM are independent of the orientation of
the coordinate frame, Oxyz, that gave rise to the bases C and
DO. Furthermore, LinM is also independent of the position
of O. Therefore, LinM is an invariant tensor, while RotM

O

depends only on the position of O.
A similar analysis can be performed for force vectors:

f̂ = E
rot
O nO + E

lin
O f

= E
rot
O C

−1 nO + E
lin
O C

−1 f

= RotF nO + LinF

O f , (30)



where
RotF = ex i· + ey j· + ez k· (31)

and
LinF

O = eOx i· + eOy j· + eOz k· . (32)

It is not accurate to describe ω, vO , nO and f as being
the angular and linear components of v̂ and f̂. However, it is
possible to regard them as the vector-valued coordinates of v̂

and f̂ in the coordinate systems defined by the basis tensors
RotM

O , LinM, RotF and LinF

O.
In summary, the mapping from E

3 × E
3 to either M

6 or
F

6 is accomplished by a pair of dyadic tensors, one of which
is invariant, while the other is a function of the location of
the reference point, O, that was used when specifying the two
Euclidean vectors.

VI. DIFFERENTIATION

Let u(t) be a vector-valued, differentiable function of a
real variable t. The derivative of u with respect to t is itself
a vector, and is given by

d

dt
u(t) = lim

δt→0

u(t + δt) − u(t)

δt
. (33)

This equation is valid for any variable t; but we will assume
below that t denotes time, and we will use the standard dot
notation for time derivatives (du/dt = u̇, etc.).

Equation (33) applies to all vectors, including coordinate
vectors. It therefore follows that the derivative of a coordinate
vector is its component-wise derivative:

d

dt







u1(t)
...

un(t)






= lim

δt→0

1

δt







u1(t + δt) − u1(t)
...

un(t + δt) − un(t)






=







u̇1

...
u̇n






.

(34)
Let B be a basis on U , and let u be the coordinate vector that

represents the vector u ∈ U in B coordinates. The derivatives
of u and u are u̇ and u̇, respectively, but the coordinate vector
that represents u̇ in B is B

−1 u̇. The relationship between u̇

and B
−1 u̇ is given by

B
−1 u̇ = B

−1 (
d

dt
(B u))

= B
−1 (B u̇ + Ḃ u)

= u̇ + B
−1

Ḃ u . (35)

This is the general formula for differentiation in a moving
coordinate system. If the coordinate system is stationary then
Ḃ = 0 and B

−1 u̇ = u̇.
Expanding the term B

−1
Ḃ gives

B
−1

Ḃ = B
−1

[

ḃ1 · · · ḃn

]

=
[

B
−1 ḃ1 · · · B

−1 ḃn

]

,

which is a square matrix whose columns are the coordinates
of the derivatives of the basis vectors. Three special cases are
of particular interest. If C, DO and EO are the orthonormal
and Plücker bases derived from a coordinate frame Oxyz

that is moving with a velocity of v̂ (coordinate vector v̂O =
[ ωT vT

O ]T ), then
C
−1

Ċ = ω× , (36)

D
−1

O ḊO = v̂O× =

[

ω× 0

vO× ω×

]

(37)

and

E
−1

O ĖO = v̂O×
∗ =

[

ω× vO×
0 ω×

]

, (38)

where ω× is the 3×3 matrix that maps a 3D coordinate vector,
u, to the cross product ω × u, and v̂O× and v̂O×

∗ are the
analogous spatial-vector operators. v̂O× maps a motion vector
to a motion vector, while v̂O×∗ maps a force to a force. ω×
is given by the formula





ωx

ωy

ωz



× =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 . (39)

For the three special cases above, (35) becomes

C
−1 v̇ = v̇ + ω × v , (40)

D
−1

O
˙̂m = ˙̂m + v̂O × m̂ (41)

and
E
−1

O

˙̂
f =

˙̂
f + v̂O ×∗ f̂ , (42)

where v, m̂ and f̂ denote general elements of E
3, M

6 and
F

6, respectively. Except for the use of basis-mapping notation,
(40) is a standard result that can be found in many textbooks.
Observe that we have been able to treat this subject using only
one kind of differential operator, instead of the usual two. This
is because the basis-mapping notation gives us a symbol for
“the coordinate vector that represents. . . ”.

VII. ACCELERATION

Nothing has yet been said about the velocity of O. The
role of O is to specify a point where something is measured,
or a point through which something passes. Thus, quantities
like vO , nO, dOx, etc., all depend on the position of O,
but not its velocity. It is therefore possible to assign any
desired velocity to O without affecting the definitions of
spatial vectors. However, if the velocity of O is nonzero, then
DO and EO are moving bases, and this must be taken into
account when differentiating a spatial vector.

Referring back to Figure 1, suppose we make O track a
point in the moving body, so that the two points coincide
permanently. The body’s velocity would still be characterized
by the two Euclidean vectors ω and vO ; it would still have a
spatial velocity of v̂, as defined in (6); and v̂ would still be
represented in DO coordinates by its coordinate vector, v̂O,
as defined in (7) and (8). However, O itself would now have
a velocity of vO , and so would Oxyz.

Let v̂Oxyz denote the spatial velocity of the coordinate
frame, and let v̂Oxyz be the coordinate vector representing
v̂Oxyz in DO coordinates. If we set the angular velocity of
the coordinate frame to zero, then v̂Oxyz = [0T vT

O ]T .



The acceleration of a rigid body is simply the time-
derivative of its velocity. The spatial acceleration of the
body in Figure 1 is therefore ˙̂v, and the coordinate vector
representing its acceleration in DO coordinates is D

−1

O
˙̂v. We

can obtain an expression for D
−1

O
˙̂v directly from (41) as

follows:

D
−1

O
˙̂v = ˙̂vO + v̂Oxyz × v̂O

=

[

ω̇

v̇O

]

+

[

0

vO

]

×

[

ω

vO

]

=

[

ω̇

v̇O

]

+

[

0

vO × ω

]

. (43)

In the classical textbook treatment, the acceleration of a
rigid body is usually defined by an angular acceleration vector,
ω̇, and the linear acceleration, r̈, of a chosen body-fixed point
whose position is given by r. If we define r to be the position
of O relative to some fixed datum, then vO = ṙ and v̇O = r̈,
and (43) becomes

D
−1

O
˙̂v =

[

ω̇

r̈

]

+

[

0

ṙ × ω

]

. (44)

The first term on the right-hand side is the concatenation of
the two vectors used in the classical description of rigid-
body acceleration. For this reason, it is sometimes called
the classical, or conventional, acceleration vector, so as to
distinguish it from spatial acceleration. As can be seen from
(43) and (44), the classical acceleration vector differs from the
spatial acceleration by the term [0T (vO × ω)T ]T , which is
attributable to the linear velocity of the frame Oxyz. Further-
more, the classical acceleration vector is the component-wise
derivative of the spatial velocity vector in a Plücker coordinate
system that is moving with a velocity of [0T vT

O ]T . This is
essentially the same result as reported in [5].

Without the aid of Plücker bases, it is possible to make the
following erroneous argument: “The Euclidean vectors ω and
ṙ define the velocity of the rigid body; the coordinate vectors
ω and ṙ express ω and ṙ in the basis C = {i, j, k}, which
is invariant (because Oxyz is not rotating); therefore ω̇ and
r̈ are the coordinate vectors that represent the derivatives of
ω and ṙ; so [ ω̇T r̈T ]T is the coordinate vector representing
the acceleration.” The flaw in this argument becomes apparent
as soon as we introduce the Plücker basis: the mapping from
Plücker coordinates to the spatial velocity vector is defined
by the basis DO, not C, and if the velocity of O is not zero,

then DO is a time-varying coordinate system, and this must
be taken into account when performing the differentiation.

VIII. CONCLUSION

This paper has introduced the concept of Plücker bases, and
an operator notation to express explicitly how a basis maps
a coordinate vector to the vector it represents. Using these
tools, the paper explains the following: the precise relationship
between spatial vectors and the pairs of 3-D vectors that
define them; the correct way to differentiate a spatial vector
in a moving Plücker coordinate system; and why the classical
description of rigid-body acceleration is not the derivative of
spatial velocity.

Although this paper has been written in the language of spa-
tial vectors, the results reported here are applicable generally
to any 6-D vector that is represented in Plücker coordinates.
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