ISER 2004

Improving the Speed of Shape Memory Alloy (SMA) Actuators by Faster Electrical Heating

Roy Featherstone and Yee Harn Teh Dept. Systems Engineering, ANU

© 2004 R. Featherstone, Y. H. Teh

Long Term Objective:

to obtain fast, accurate, controlled motions and forces from SMA actuators, so that we can build and experiment with low-inertia robots.

This work takes us one step in that direction, with a simple method for rapid heating of SMA.

SMA Actuators

- Convert heat into mechanical work
- Usually heated electrically
- Problems:
 slow
 inefficient
 hysteresis

SMA wires are easily stretched when cool

but recover their original length when heated

3

Why Focus on Heating?

Excerpt from Flexinol (tm) data sheet:

Diameter (mm)	Current (mA)	Contraction Time (sec)	Off Time 70C	Off Time 90C
0.050	50	1	0.3	0.1
0.075	100	1	0.5	0.2
0.100	180	1	0.8	0.4

If we use the recommended safe heating currents then, for a thin wire, heating takes longer than cooling.

- Measure the temperature of the wire
- If temperature is below threshold value then allow large heating current else set heating current to zero

Our Method

- Measure the resistance of the wire
- Calculate a maximum safe heating current as a function of measured resistance
- Set the heating current to the minimum of
 - the maximum safe heating current
 - the current requested by the control system

Heating Power (proxy for temperature)

Selecting Threshold Resistance

9

Motion Controller

- Currently using Grant's two-stage relay controller
 - Starting to experiment with other control laws, like this modified proportional controller

Power vs. Error

Tracking Response

 $I_h <= I_{safe}$

 $I_h <= I_{max}(R_{meas})$

13

Power to Each Actuator

Conclusion

- Electrical resistance provides an indication of SMA temperature that is sufficient for preventing overheating.
- Rapid heating via the proposed method yields a substantial increase in speed, without changing the cooling regime.
- Next step: A better motion controller.