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Abstract A challenging problem in human action un-

derstanding is to jointly segment and recognize human

actions from an unseen video sequence, where one per-

son performs a sequence of continuous actions.

In this paper, we propose a discriminative semi-

Markov model approach, and define a set of features

over boundary frames, segments as well as neighbor-

ing segments. This enable us to conveniently capture

a combination of local and global features that best

represent a specific action type. To efficiently solve the

inference problem of simultaneously segmentation and

recognition, we devise a Viterbi-like dynamic program-

ming algorithm, which is able to process 20 frames per

second in practice. Moreover, the model is discrimina-

tively learned from large margin principle, and is for-

mulated as an optimization problem with exponentially

many constraints. To solve it efficiently, we present two

different optimization algorithms, namely cutting plane

method and bundle method, and demonstrate that each

can be alternatively deployed in a “plug and play” fash-

ion. From its theoretical aspect, we also analyze the

generalization error of the proposed approach and pro-

vide a PAC-Bayes bound.

A preliminary version has been published at [28].
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The proposed approach is evaluated on a variety of

datasets, and is shown to perform competitively to the

state-of-the-art methods. For example, on KTH dataset,

it achieves 95%± 0.01 recognition accuracy, where the

best known result on this dataset is 92%± 0.03 [8].
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1 Introduction

A challenging problem in human action understanding

is to recognize a sequence of continuous actions, that

is, to segment and recognize elementary actions such as

running, walking and drawing on board, from a video

sequence where one person performs a sequence of such

actions. This has a wide range of applications in e.g.

surveillance, video retrieval and intelligent interface. It

is nevertheless challenging due to the high variability of

appearances, shapes and possible occlusions. Things are

further complicated for continuous action recognition

since it is also necessary to segment the sequence of

actions.

This problem could however be addressed by consid-

ering the proper temporal context of each elementary

action. Motivated by this observation, in this paper,

we consider a discriminative learning approach that is

capable of incorporating both local and long-range in-

formation. To better motivate our proposed model, we

will describe in turn three categories of statistical mod-

els that can be used to represent human actions (illus-

trated from top to bottom panels in Figure 1).

Figure 1 (a) depicts the first category of models:

By simply ignoring the temporal dependencies among

video frames, each frame is assumed to be independent

of the rest. Models such as support vector machines
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(SVMs), naive Bayes classifier, nearest neighbor classi-

fier (KNNs) fall into this category. There is however a

significant limitation in their prediction abilities when

analyzing action sequences. this limitation is partially

circumvented in [21, 27, 36], where their feature descrip-

tors utilize the spatial-temporal characteristics of each

type of actions, and a variant of the first model is ap-

plied in this feature space to decide to which category a

new action sequence belongs. They nevertheless require

a pre-segmentation of the continuous action sequence

into elementary segments, a tedious manual operation.

The second category of models is the Markov chain

models delineated in Figure 1 (b) (include e.g. hidden

Markov models (HMMs) [2, 16], conditional random

fields (CRFs) [30] or SVM-HMMs [34]) that consider

statistical dependencies over adjacent frames and show

good performance on pre-segmented datasets. We ar-

gue that these models are not well suited to the problem

considered in this paper. First, continuous action recog-

nition inherently has a segmentation problem, where

each action starts, lasts for a varying period of frames

and then transits to another action. This is however

difficult to be dealt with by Markov chain models. Sec-

ond, although Markov chain models utilize local inter-

action between adjacent frames, it does not have access

to long-range or global characteristics, such as the du-

ration of one action segment, or interactions between

adjacent segments.

1.1 Our Model

The third and the model we consider is a semi-Markov

model (SMM) [5, 23], shown in Figure 1 (c). Essentially,

it is an extension of HMM by allowing the underlying

process to be a semi-Markov chain with a variable du-

ration for each state. In particular, this enables the ex-

ploitation of the segmentation nature of our problem,

where the modeling emphasis now shifts more towards

segment-wise properties involving individual segments

of variable length as well as adjacent segments.

Inspired by [5], we propose a discriminative SMM

model, and define a set of distinct features at our dis-

posal, which includes (a) the boundary frames of each

segment, (b) the content characteristics of segments,

and (c) the interactions between neighboring segments.

This allows us to conveniently capture a combination of

local as well as longer-range features that best represent

a specific action type. It turns out that our discrimi-

native SMM approach recovers the first two categories

of models (i.e. multiclass SVM, SVM-HMM) as special

cases, by properly setting the maximum segment length

M and the feature function Φ that can be decomposed

into (φ1, φ2, φ3). They are depicted in Figure 1 (c), us-

ing (red, blue, purple) color, respectively. To efficiently

solve the inference problem involving simultaneously

segmentation and recognition, we devise a Viterbi-like

dynamic programming algorithm that is able to process

20 frames per second in practice. This model is dis-

criminatively learned from large margin principle, and

is formulated as an optimization problem with expo-

nentially many constraints. To solve the learning prob-

lem efficiently, we present two optimization algorithms,

namely cutting plane method and bundle method, and

demonstrate that each can be alternatively deployed in

a “plug and play” fashion. From its theoretical aspect,

we also analyze the generalization error of the proposed

approach and provide a PAC-Bayes bound. Empirical

simulations, presented in section 6, support that the

proposed discriminative SMM approach is indeed well-

suited to the problem of segmenting and recognizing

human action sequences.

1.2 Related Literature

There exists a wealth of literature on topics related to

human action recognition. As it is beyond the scope of

this paper to review these existing literature, interested

readers may refer to e.g. Gavrila [6] or Moeslund et

al. [20] for a survey of the field. Here we instead focus

our discussions only on closely related work.

Traditionally generative statistical approaches, es-

pecially the Markov models [2, 9, 16, 38] have been

in wide use to model and analyze human actions, e.g.

HMMs and its variants such as coupled HMMs [2, 38].

Recently, large margin based discriminative learning
schemes [35] are extended to cases where there are struc-

tured dependencies among the outputs [25, 32, 34] (e.g.

SVM-HMM where the output could be time series se-

quences), and encouraging results are obtained in bio-

informatics and natural language processing related ap-

plications [25]. As far as we are aware, there is not much

work along this line conducted in the field of video

action analysis. The most relevant work is [25] where

a SMM approach is proposed for gene structure pre-

diction applications. They propose a two-stage learn-

ing algorithm where binary SVM classifiers are firstly

used to identify segment boundaries and the content

of each segment is recognized separately in the second

stage. This sequential procedure is quite different from

the unified approach we propose in section 3 where ac-

tion segmentation and recognition can be dealt with si-

multaneously. We note in the passing that conditional

random field (CRF), as a discriminative model that

deals with structured outputs, has recently been applied

to human action understanding where the underlining
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model is a Markov Chain model [30, 36]. Learning in

CRF is approached by solving an induced optimization

problem, which is closely related to that of SVM-HMM,

but with a different loss function.

(a) An iid model where each frame label is independent
from others.

(b) A frame-wise Markov chain model where each frame label
depends on its adjacent frame labels.

(c) The proposed semi-Markov model where frames in one seg-
ment share one label, and this label depends on its adjacent seg-

ment labels.

Fig. 1: We compare three categories of statistical mod-

els on the continuous action sequence prediction prob-

lem. The Markovian dependency in each model is illus-

trated as green arcs. It turns out that our discriminative

SMM approach recovers the first two models (i.e. mul-

ticlass SVM, SVM-HMM) as special cases, by properly

setting the maximum segment length M and the fea-

ture function Φ that can be decomposed into (φ1, φ2,

φ3) and depicted in (red, blue, purple) color, respec-

tively.

1.3 Paper Outline

The remaining sections are organized as follows: In sec-

tion 2 we give a probabilistic account of the proposed

discriminative approach. To solve the induced optimiza-

tion problem, in section 3 we introduce efficient learn-

ing and inference algorithms. We proceed to provide

details of the feature representation scheme in section

4, and analyze from theoretical viewpoint the general-

ization property of our approach in section 5. In sec-

tion 6, extensive experiments are conducted on stan-

dard testbeds, where our approach is compared against

state-of-the-art methods. This is followed by a summary

as well as future directions in section 7.

2 Our Semi-Markov Model

Define the set of action labels as C = {1, · · · , C}, and

the set of persons I = {1, · · · , I}. Without loss of gen-

erality, we assume that there is exactly one person P in

a given video sequence X performing actions Y . In this

paper, we formulate the human action analysis prob-

lem as solving a convex optimization problem over a

probabilistic semi-Markov model.

Semi-Markov Model (SMM): Consider a graph

defined on the action sequence label Y for person P ∈ I.

More precisely we consider a semi-Markov model, where

each node in this graph corresponds to a segment of

video frames having the same action label, and each

edge captures the statistical dependency between adja-

cent segments. Given a video sequence of length m as

X = {xk}m−1k=0 , we attach a dummy node xm to this

sequence to denoate the end of the sequeunce. Let l de-

note the number of segments, and define a set of seg-

ment boundaries {nk}l−1k=0 with nk−1 < nk < nk+1,∀k.

Fix n0 = 0, nl = m to satisfy boundary conditions.

As a consequence, the first segment is [0, n1), and the

last segment is [nl−1,m). Its action sequence label can

be equivalently represented as Y = {(nk, ck)}l−1k=0, where

each pair (nk, ck) denotes the starting position and the

corresponding action label for the kth segment [nk, nk+1).

During training we have access to a set of T video

sequences X = {Xt}Tt=1, as well as corresponding labels

Y = {Yt}Tt=1, accordingly. We further assume that the

conditional distribution over the labels Y given the ob-

servation sequence X = Xt can be written as a log-linear

model,

log p(Y |X,W ) = 〈W,Φ(X,Y )〉 −AW (X). (1)

Therefore, the joint conditional probability over train-

ing sequences is p(Y|X ,W ) =
∏

t p(Yt|Xt,W ), since all ac-

tion sequences are statistically independent. Here AW (X)

is the normalization constant to ensure p(Y |X,W ) re-

spects a valid probability distribution, with W ∈ W be-

ing the parameter vector. Φ(X,Y ) is a feature map over

the joint input-output space, which can be decomposed

with respect to the SMM graph structure of Figure 1

(c) as

Φ(X,Y ) =

( l−1∑
i=0

φ1(X,ni, ci),

l−1∑
i=0

φ2(X,ni, ni+1, ci),

l−1∑
i=0

φ3(X,ni, ni+1, ci, ci+1)

)
. (2)
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As indicated in the beginning of this paper, φ1 and φ2
capture the observation-label dependency in the current

action segment: φ1 concentrates on a segment’s bound-

ary frame, and φ2 takes care of global characteristics of

the segment. The interaction between two neighboring

segments is encoded in φ3. In the same manner, W can

as well be decomposed.

For an unseen video sequence X, its action sequence

is optimally labeled as maximum likelihood decoding of

the conditional probability

Y ∗ = arg max
Y

log p(Y |X,W ) = arg max
Y

F (X,Y ;W ),

(3)

where F (X,Y ;W ) , 〈W,Φ(X,Y )〉 is the discriminant func-

tion. Therefore the optimal sequence label Y ∗ amounts

to the one attaining the maximum vale of the discrim-

inant function.

Learning in our discriminative SMM approach is ac-

complished, similar to that of [32, 34], by solving a reg-

ularized optimization problem with respect to the pa-

rameter W : We would like W to be bounded to avoid

over-fitting, meanwhile maximize the minimum log ra-

tio of the conditional probabilities

min
W

‖W‖2

2
s.t. log

p(Yt|Xt,W )

p(Y |Xt,W )
≥ ∆(Yt, Y ) ∀t, Y

(4)

for the set of video sequences {t : t ∈ 1, · · · , T}. Here

the margin is ∆(Yt, Y ), the label loss between the two

feasible label assignments Yt and Y . Now, we invoke (1),

and add the non-negative slack variables ξ to account

for the non-separable case. As the normalization terms

cancel out, the optimization problem becomes

min
W,ξ

‖W‖2

2
+
η

T

∑
t

ξt (5)

s.t. 〈W,4Φ(Xt, Y )〉 ≥ ∆(Yt, Y )− ξt ∀t, Y,

where 4Φ(Xt, Y ) := Φ(Xt, Yt) − Φ(Xt, Y ). This opti-

mization problem is highly intuitive: The margin∆(Yt, Y )

reflects the magnitude of mis-predicted assignment Y

w.r.t. the truth Yt. We would like to safeguard ourselves

mostly against those mis-predictions Y which incur a

large label loss. The non-negative ξt in the constraints

relaxes the hard inequality by allowing few violations

while penalizing these violations in the objective func-

tion by the extra cost 1
T

∑
t ξt.

For the sake of completeness, we also present here

the corresponding dual program

max
α

∑
t,Y

αt,Y∆(Yt, Y )−η
2

∥∥∥∥∥∥
∑
t,Y

αt,Y4Φ(Xt, Y )

∥∥∥∥∥∥
2

(6)

s.t. αt,Y ∈M ∀t,

where M denotes the probability simplex constraints.

Applying the Representer theorem [11] directly yields

a dual representation of the discriminant function,

F (X,Y ;W ) =
∑
t,Y ′

αtY ′ 〈4Φ(Xt, Y
′), Φ(X,Y )〉 .

Following those of W and Φ, F can also be decomposed

into three components fi(X,Y ) = 〈wi, φi(X,Y )〉 ,∀i =

{1, 2, 3} as

l−1∑
i=0

(
f1(X,ni, ci) + f2(X,ni, ni+1, ci)

+ f3(X,ni, ni+1, ci, ci+1)

)
.

An important aspect of the proposed discrimina-

tive SMM model is its generality, where the other two

categories of models can be recovered as its special

cases: LetM ≥ 1 upper-bound the maximum number of

frames a segment would last. By fixing M = 1 (which

implies φ1 = φ2) and using only features φ1 and φ2
(i.e., setting φ3 = 0), we recover the multi-class SVM

model as displayed in Figure 1 (a). By fixing M = 1

and utilizing all three features, we obtain the discrim-

inative HMM model (includes e.g. SVM-HMM [34]) as

illustrated in Figure 1 (b).

3 Efficient Algorithms For Learning and

Inference

One standing issue is that both the primal (5) and the

dual problem (6) are practically intractable: Since the
configuration space of Y is in the order of T ×Cm, the

number of constraints grows exponentially as the length

of training sequences increases. Even for videos of mod-

erate length, its optimization problem would come with

an astronomical amount of constraints. Nevertheless, as

we show next, this problem can be solved approximately

up to precision ε by optimization techniques such as the

cutting plane [34] or the bundle method [33] in a “plug

and play” manner.

3.1 Learning: the Cutting Plane vs. the Bundle

Method

The main procedure of the cutting plane method is to

find the most violated constraint using current solution

of (5), then iteratively add these constraints to the op-

timization problem. This is guaranteed to converge to

the the optimal solution [34], while it approximates the

optimal solution to precision ε in a polynomial number
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Algorithm 1 Cutting Plane Method

Input: sequence Xt and true label Yt for example t, sample

size T , precision ε > 0
Initialize the constraint set Rt = ∅ for every t.

repeat

for t = 1 to T do
Y ∗ = argmaxY ∆(Yt, Y ) + F (Xt, Y ;W )

ξt = max{0,maxY ∈Rt ∆(Yt, Y ) + F (Xt, Y ;W ) −
F (Xt, Yt;W )}
if ∆(Yt, Y ∗) + F (Xt, Y ∗;W ) − F (Xt, Yt;W ) > ξt + ε

then

Add this constraint into Rt ← Rt ∪ {Y ∗}
Optimize (6) using only αtY where Y ∈ Rt.

end if

end for
until R = {R1, · · · , RT } has not changed in this iteration

of iterations. By adapting to our context, the cutting

plane method is presented in Algorithm 1.

The bundle methods can be viewed as a quadratic

counterpart of the cutting plane algorithm using line

search. Both of they attempt to decrease the true ob-

jective function at every iteration. While the cutting

plane algorithm relies on the monotonicity of the ap-

proximating function to guarantee convergence to an

optimal solution, the bundle method directly attempts

to decrease the true objective function. Recently, a bun-

dle method solver BMRM is proposed in [31, 33] for

solving general non-smooth convex optimization prob-

lems. Similar to the cutting plane method, we need to

compute Y ∗ which can be efficiently obtained by the in-

ference procedure. In addition, it requires as input two

other quantities: the empirical loss

Remp(W ) :=
1

T

∑
t

∆(Yt, Y
∗
t )− 〈W,4Φ(Xt, Y

∗
t )〉 , (7)

as well as its gradient with respect to W that yields

− 1

T

∑
t

4Φ(Xt, Y
∗
t ). (8)

Algorithm 2 Bundle Method

Input: sequence Xt and true label Yt for example t, sample
size T , precision ε > 0

Initialize W = 0
repeat

Obtain current W from BMRM

for t = 1 to T do

Y ∗t = argmaxY ∆(Yt, Y ) + F (Xt, Y ;W )
Compute the empirical loss ∆(Yt, Y ∗t )−〈W,4Φ(Xt, Y ∗t )〉
Compute the gradient −4Φ(Xt, Y ∗t )

end for
Report (7) and (8) to BMRM

until Remp(W ) ≤ ε

Empirical studies in Section 6 show that the bun-

dle method often delivers superior results to those of

the cutting plane method. This observation aligns with

those that have been reported in [31, 33].

3.2 Viterbi-Like Inference

For both learning algorithms, we need to solve in our

context an assignment problem

Y ∗ = argmax
Y ∈Y

∆(Yt, Y ) + F (Xt, Y ;W ). (9)

It is easy to see that the result Y ∗ corresponds to the

most violated constraint in (5) as long as Y ∗ 6= Yt.

For this purpose, we devise a Viterbi-like dynamic pro-

gramming procedure, which is presented in Algorithm

3. Besides, we use the Hamming distance to measure the

label loss ∆(Y, Y ′) between alternative action sequence

labels as

m−1∑
k=0

(1− δ(yk = y′k)),

where δ(x) is the indicator function.

Algorithm 3 Viterbi-Like Inference

Input: sequence Xt of length m, its true label Yt,

and maximum length of a segment M

Output: score s, optimal label Y ∗

Initialize matrices S ∈ Rm×C, J ∈ Zm, and L ∈ Zm

to 0, Y ∗ = ∅
for i = 1 to m do

for ci = 1 to C do

(Ji, Li) = argmax
j,cj

S(j, cj) + g(j, i, cj , ci)

S(i, ci) = S(j∗, c∗j∗) + g(j∗, i, c∗j∗ , ci)

end for

end for

c∗m = argmax
cm

S(m, cm)

s = S(m, c∗m)

Y ∗ ← {(m, c∗m)}
i← m

repeat

Y ∗ ← {(Ji, Li), Y ∗}
i← Ji

until i = 0

For any segment i, we denote its related boundaries

as n− , ni−1 and n , ni. Similarly the related labels

are c− , ci−1 and c , ci. Now, we maintain a partial

score S(X,n, c) that sums up to segment i (i.e., starts

at position 0 and ends with the segment [n−, n) with
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labels c− (for n−) and c (for n), respectively), and it is

defined as

max
c−,max{0,n−M}≤n−<n

{
S(X,n−, c−) + g(X,n−, n, c−, c)

}
.

(10)

Here the increment g(X,n−, n, c−, c) equals to

f1(X,n−, c−) + f2(X,n−, n, c−)

+ f3(X,n−, n, c−, c) + 1−
n−1∑
k=n−

δ(yk = c−).

It is easy to verify that in the end, the sum of two

terms in the RHS of (9) amounts to S(m, cm). This

algorithm, after minor modification, is also used to solve

the Maximum Likelihood assignment problem of (3) in

the prediction phase.

This inference algorithm is very efficient: Its time

complexity is O(mMC2), linear with respect to the se-

quence length m; Its memory complexity is O(m(C +

2)). Our C++ implementation1 processes the video se-

quences at 20 frames per second (FPS), an average

speed obtained throughout our experiments. In terms

of hardware, the desktop we use comes with an Intel

Pentium 4 3.0GHz processor and 512M memory.

4 Feature Representation

Neuro-psychological findings such as [24] suggest that

the visual and motor cortices of human perception sys-

tem are more responsible than the semantic ones for

retrieval and recognition of visual action patterns. This

motivates us to represent action features Φ of (2) by a

set of local features that capture the salient aspect of

spatial and temporal video gradients.

The foreground object in each image is obtained

using an efficient background subtraction method [3].

By applying the SIFT [15] key points detector, the ob-

ject is represented as a set of key feature points ex-

tracted from the foreground with each point having a

128-dimensional feature vector. Importantly, SIFT fea-

tures bear these properties that are critical in our con-

text, as being relatively invariant to illumination and

view-angle changes, as well as being insensitive to the

objects’ color appearance by capturing local image tex-

tures in the gradient domain. In addition, from each fea-

ture point, we construct an additional 60-dimensional

shape context [1] features that roughly encode how each

point “sees” the remaining points. The two sets of fea-

tures are then concatenated with proper scaling to form

1 Source code can be downloaded from

http://users.rsise.anu.edu.au/˜qshi/code/smm release.tgz.

a 188-dimensional vector. This point-set object repre-

sentation are further transformed into a 50-dimensional

codebook using K-means, similar to the visual vocab-

ulary approach of [29]. Therefore, once a new frame is

presented, each of the key points is projected into this

codebook space with a cluster assignment. Thus the ob-

ject is now represented as a 50-dimensional histogram

vector h. Typical results of this codebook representa-

tion are illustrated in Figure 5 bottom row, where we

randomly choose four codebook clusters and impose the

assigned feature point locations on individual images.

This convincingly shows that each cluster is able to pick

up reasonably similar patches over time and across peo-

ple.

Equipped with this codebook representation, we con-

struct feature functions φ1, φ2 and φ3 as follows.

Boundary Frame Features φ1(X,ni, ci) = ψ1(X,ni) ⊗
ci, where ⊗ denotes a tensor product. ψ1 is a concate-

nation of two features. The first is a constant 1 which

acts as the bias term. The second part is obtained from

a sliding window of size ws centered on the boundary

frame. When ws = 1 it becomes the single histogram

vector hni
.

Node Features on Segment Node features are devised to

capture the characteristics of the segment. φ2 is defined

as φ2(X,ni, ni+1, ci) = ψ2(X,ni, ni+1)⊗ci. ψ2(X,ni, ni+1)

contains three components: the length of this segment,

the mean and the variance of the histogram vector of

the segment (i.e., over frames from ni to ni+1 − 1).

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

Levels of difficulties

A
cc

ur
ac

y

SVM−SMM
BMRM−SMM
SVM−HMM
SVM
1NN
3NN
5NN

Fig. 2: Comparing seven methods for action recognition

on the synthetic dataset. See text for details.
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Edge Features on Neighboring Segments As in practice

we do have prior knowledge about how long a segment

would at least last, we define the minimum duration

of a segment as d. Similarly φ3(X,ni, ni+1, ci, ci+1) =

ψ3(X,ni, ni+1) ⊗ ci ⊗ ci+1, and it is a concatenation

of the following components: (1) the mean of the his-

togram vector from frames ni to ni+1−1, and (2) from

frames ni+1 to ni+1 + d, as well as (3) the variance of

the histogram vector from ni to ni+1 − 1, and (4) from

ni+1 to ni+1 + d.

Before carrying on to conduct simulations, we would

like to pause for a moment, and investigate from theo-

retical viewpoint to understand how the proposed ap-

proach would generalize on unseen test action sequences.

5 Generalization Error

Our generalization analysis of the proposed approach is

based on the PAC-Bayes theory introduced by McAllester

and co-workers [12, 17–19]. Germain et al. [7] recently

show a simplified PAC-Bayes generalization proof tech-

nique for linear classifiers in a more general setting.

We start by adopting the PAC setting where an

instance-label pair (X,Y ) is drawn from a fixed but

unknown distribution D over the input-output space.

For any discriminant function F (X,Y ;W ), let Y ∗ =

maxY ′ 6=Y F (X,Y ′;W ), and define its difference

M(X,Y ;W ) := F (X,Y ;W )− F (X,Y ∗;W ). (11)

Assume for now Y is the true label of X, then we would

enforce the margin constraint M(X,Y ;W ) ≥ γ, where

the margin is γ ≥ 0 to ensure the separability of an

input-output pair by applying the discriminant func-

tions. A soft constraint M(X,Y ;W ) ≥ γ − ξ is then

adopted to allow the existence of outliers. Here ξ ≥ 0.

This can be further extended when W is sampled from

a posterior Q over W [7],

M(X,Y ;Q) = max
Y ′ 6=Y

EQ [F (X,Y ;W )− F (X,Y ′;W )] .

(12)

In addition, we define the true risk

R(D) = P(X,Y )∼D

(
argmax
Y ′∈Y

{F (X,Y ′;W )} 6= Y

)
,

and the γ-empirical risk over the training set S w.r.t.

Q as

RQ(S, γ) = P(X,Y )∼D (M(X,Y ;Q) ≤ γ) .

With the above setup, the generalization ability of

our proposed approach can be upper-bounded by the

following theorem:

Theorem 1 (PAC-Bayes Risk Bound) Let δ ∈ (0, 1],

assume F (X,Y ;W ) ∈ F is bounded, and the parameter

W ∈ W with W being a measurable parameter space.

Then, with probability at least 1−δ, for a sample S with

m instance-label pairs drawn from data distribution D,

for any prior P and posterior Q over W , and for any

margin γ > 0, we have

R(D) ≤ RQ(S, γ)

+O

(√
1
2 (γ)−2(||W ||2) ln(m| Y |) + lnm+ ln 1

δ + 2

m

)
.

We omitted the detailed proof as it essentially follows

Theorem 5 of [13], as well as Lemma 4.2 of [14], to deal

with structured output. Notice that this generalization

error depends not on the dimensionality of the feature

space, rather it depends on the size of the observation

sample S and the margin γ: As we increase the sample

size m and margin γ, the risk bound becomes tighter.

In particular, with high probability, the empirical risk

deviates from the true risk with an additive term that

diminishes quickly as m goes to infinity.

6 Experiments

During the follow-up experiments, the proposed dis-

criminative SMM approach is compared against three

other algorithms: KNN (where K=1, 3, 5), SVM mul-

ticlass and SVM-HMM [34]. In particular, two variants

of discriminative SMM are considered, namely the one

with cutting plane method (SVM-SMM) and the one

with bundle method (BMRM-SMM).

By default, we fix ε = 1e − 4, M = 3, and ws = 3.

The trade-off parameter η of each method (SVM mul-

ticlass, SVM-HMM, SVM-SMM and BMRM-SMM) is

tuned separately using cross-validation. Moreover, we

evaluate the action recognition and segmentation per-

formance separately: A frame-wise recognition rate is

utilized to benchmark the recognition performance for

each of the comparison algorithms. To measure segmen-

tation performance, we adopted the F1-score, which is

often used in information retrieval tasks, and is given

by (2× Precision× Recall)/(Precision + Recall).

6.1 Synthetic dataset

We start with a controlled setting where we are able to

quantitatively measure the performance of comparison

algorithms by varying the difficulty level of problems

from easy to difficult. We do this by constructing a two-

person two-action synthetic dataset consisting of five

trials, where each trial has a set of ten sequences and



8

Fig. 3: Sample frames of one person engaging in six

types of actions in the KTH dataset.

corresponds to a certain level of difficulty 2. Here each

person P equals to one semi-Markov model containing

its own Gaussian emission probabilities N (µc,P , σc,P )

and duration parameters λc,P for the two actions c =

1, 2, respectively. Each sequence of length 150 frames

is generated by sampling from a SMM model, and as a

result contains continuous actions. Now, we build five

trials as follows: For each trial, five sequences are gen-

erated from each person’s model, and in the end we

have ten sequences. Across trials, we vary the level of

difficulty by moving µ2 toward µ1 and fixing other pa-

rameters of the models.

Figure 2 displays the action recognition results on

this dataset, where 5-fold cross-validation are utilized.

Here both discriminative SMM variants consistently out-

perform others: In fact, both SVM-SMM and BMRM-

SMM gives almost the same recognition accuracy re-

gardless the levels of difficulty. They are followed by

SVM-HMM while the rest methods (namely SVM and

KNNs) have inferior performance. This clearly shows

that as we further exploiting the contextual information

from neighboring nodes up to neighboring segments, the

gains in term of recognition rate become more signifi-

cant.

6.2 KTH dataset

The KTH dataset [27] contains 25 individuals perform-

ing six activities: running, walking, jogging, boxing, hand-

clapping and handwaving, where each sequence contains

single action with multiple action cycles. Figure 3 dis-

plays exemplar frames of one person taking each of the

six activities.

To make direct comparisons to existing methods in

literature presented in Table 1, in this experiment we

2 This dataset can be downloaded at

http://users.rsise.anu.edu.au/˜qshi/code/smm release.tgz.

Fig. 4: Sample frames of subjects each performs one of the four
actions: slow walk, fast walk, incline walk and walk with a ball,

in an action sequence of the CMU MoBo dataset.

adopt a “cuboid” [4] feature (instead of SIFT) that

captures the local spatio-temporal characteristics using

Gabor filters. More specifically, this detector is tuned to

fire whenever variations in local image intensities con-

tain distinguishing spatio-temporal characteristics. At

each detected interest point location, a 3D cuboid is

then extracted and represented as a flattened vector

that contains the spatio-temporal windowed informa-

tion including normalized pixel values, brightness gra-

dient and windowed optical flow.

Table 1 shows the results of our methods averaged

over 5-fold cross-validation. Our SVM baseline is com-

parable to similar methods (e.g. SVM of [4, 22, 37] ) re-

ported in literature, while our BMRM-SMM performs

favorably comparing to these state-of-the-art methods.

We attribute it to the contextual information that we

are able to exploit through the usage of φ2 features in

our SMM framework. Tables 2 displays the confusion

matrix of the BMRM-SMM method, where handwaving

action can be perfectly identified from the rest actions.

On the other hand, there are a few mistakes among the

three easy-to-be-confused categories: walking, jogging,
and running.

6.3 CMU MoBo dataset

This dataset [26] contains 24 individuals3 walking on a

treadmill. As illustrated in Figure 4, each subject per-

forms in a video clip one of the four different actions:

slow walk, fast walk, incline walk and slow walk with a

ball. Each sequence has been pre-processed to contain

several cycles of a single action and we additionally

manually label the boundary positions of these cycles.

The task on this dataset is to automatically partition

a sequence into atomic action cycles, as well as predict

the action label of this sequence.

Table 3 presents the results averaged over 6-fold

cross-validation. The results of 3NN and 5NN are omit-

3 The dataset originally consists of 25 subjects. We drop the
last person since we experienced technical problems obtaining the

sequences of this individual walking with balls.
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Method Brief Description Accuracy

Ke et al. [10] ICCV’05 cascade classifier, spatio-temporal volumetric features, feature selection 0.63

Schuldt et al. [27] ICPR’04 SVM, local space time features 0.72

Dollar et al. [4] VSPETS’05 SVM, “cuboid” features 0.88 ± 0.02

Wong et al. [37] CVPR’07 pLSA-ISM, “cuboid” features 0.84

Jhuang et al. [8] ICCV’07 SVM, GrC2 sparse features, feature selection 0.92 ± 0.03

Nowozin et al. [22] ICCV’07 baseline SVM linear kernel, “cuboid” features 0.83

subsequence boosting, “cuboid” features 0.85

Our SVM baseline SVM, “cuboid” features 0.85 ± 0.04
Our BMRM-SVM discriminative SMM, “cuboid” features 0.95 ± 0.01

Table 1: Comparisons of action recognition rates on KTH dataset.

truth vs. predict boxing handclapping handwaving jogging running walking

boxing 0.91 0.09 0.00 0.00 0.00 0.00

handclapping 0.00 0.96 0.00 0.00 0.04 0.00

handwaving 0.00 0.00 1.00 0.00 0.00 0.00

jogging 0.00 0.00 0.00 0.89 0.00 0.11

running 0.00 0.00 0.00 0.08 0.92 0.00

walking 0.00 0.00 0.00 0.12 0.00 0.88

Table 2: Confusion matrix of BMRM-SMM on the KTH dataset for action recognition.

1NN SVM HMM SVM-HMM SVM-SMM BMRM-SMM

Act. 0.65 ± 0.02 0.67 ± 0.03 0.68 ± 0.08 0.75 ± 0.06 0.75 ± 0.03 0.78 ± 0.07

Seg. 0.16 ± 0.05 0.15 ± 0.03 n/a ± n/a 0.43 ± 0.01 0.59 ± 0.03 0.59 ± 0.03

Table 3: Comparison on CMU MoBo dataset. The first row presents action recognition rate,while the second row

gives F1-score for segmentation measurement. See text for details.

ted here as they are very similar to 1NN. We also exper-

iment with generative HMM on the task of solely action

recognition (predicting action label for each sequence),

where one HMM is trained for each action type us-

ing BaumWelch algorithm. It performs slightly better

than the baseline methods including KNN (K=1,3,5)

and SVM, but is still inferior to SVM-HMM [34], its

discriminative counterpart. Note that both SMM vari-

ants (SVM-SMM and BMRM-SMM) significantly out-

performs the other methods including SVM-HMM on

action label prediction as well as on segmentation of

action cycles.

6.4 WBD: A Dataset of Continuous Actions

In addition to the existing datasets (such as the MoBo

and the KTH datasets), where each sequence contains

exactly one type of action, we construct a Walk-Bend-

Draw (WBD) dataset of continuous actions. Some ex-

emplar frames are displayed in Figure 5. This is an in-

door video dataset contains three subjects, each per-

forms six action sequences at 30 FPS at a resolution of

720× 480, and each sequence consists of three continu-

ous actions: slow walk, bend body and draw on board,

and on average each action lasts about 2.5 seconds. We

cluster Bcluster A cluster C cluster D

Fig. 5: A Walk-Bend-Draw (WBD) dataset. Top shows some

sample frames of the dataset . Bottom displays the assignments
of image feature points on four randomly chosen codebook clus-

ters over time and across person.

subsample each sequence to obtain 30 key frames, and

manually label the ground truth actions.

The comparison results, obtained using 6-fold cross-

validation, are summarized in table 4. Both discrimina-

tive SMM variants consistently deliver the best results,

while here BMRM-SMM slightly outperforms SVM-SMM.

Similar to the results presented for the synthetic dataset,
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1NN 3NN 5NN SVM SVM-HMM SVM-SMM BMRM-SMM

Action Recognition 0.82 ± 0.02 0.80 ± 0.03 0.77 ± 0.03 0.84 ± 0.03 0.87 ± 0.02 0.91± 0.02 0.94± 0.01

Table 4: A summary of the action recognition methods performed on the WBD dataset.

truth vs. predict walk bend draw

walk 0.93 0.07 0.00

bend 0.05 0.93 0.01

draw 0.02 0.09 0.89

Table 5: Confusion matrix of SVM-SMM applied on the WBD

dataset for action recognition.

truth vs. predict walk bend draw

walk 0.91 0.09 0.00

bend 0.02 0.93 0.04

draw 0.00 0.04 0.96

Table 6: Confusion matrix of BMRM-SMM applied on the WBD

dataset for action recognition.

they are then followed by SVM-HMM, SVM, and the

KNN methods. Furthermore, Tables 5 and 6 display

the confusion matrices of the two SMM variants: SVM-

SMM vs. BMRM-SMM. where the two actions – walk

and draw – seem to be rarely confused with each other,

nevertheless both sometimes are mis-interpreted as bend.

This is to be expected, as although walk and draw ap-

pear to be more similar to human observer in isolated

images, it nevertheless can be learned by discriminative

SMM methods that walk, bend and draw are usually

conducted in order.

7 Outlook and Future Work

We present a novel discriminative semi-Markov approach

to human action analysis, where we intend to simulta-

neously segment and recognize continuous action se-

quences. We then devise a Viterbi-like dynamic pro-

gramming algorithm that is able to efficiently solve the

inference problem, and show the induced learning prob-

lem can be casted as a convex optimization problem

with many constraints, that can be subsequently solved

and we present two such solvers. We also analyze the

generalization error of the proposed approach and pro-

vide a PAC-Bayes bound. Empirical simulations demon-

strate that our approach is competitive to and often

outperforms the state-of-the-art methods.

Our approach can be extended in several directions.

It is promising to explore the dual representation in

order to incorporate matching cost between point sets.

On future work we also plan to apply this approach

to closely related problems, such as detecting unusual

actions from a large video dataset.
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