
Quality of Solutions to IPC5 Problems
– Preliminary Results and Observations

P@trik Haslum

NICTA & ANU

ICAPS’07 Workshop on the Planning Competition

NICTAMotivation

Plan Quality, Rovers MSP:
All planners are roughly equal
– but are they equally good or
equally bad?

5th IPC: emphasis on plan
quality in evaluation.
But: optimal solutions (or
good bounds) not known, so
only relative quality
compared.
Find optimal solutions
and/or good quality bounds,
using domain-specific
methods, for some IPC-5
domains.

NICTADomains Considered

IPC5 Classification
Propositional:

Openstacks

Metric/Temporal:

Openstacks Time
Openstacks
MetricTime

Simple Preferences:

Openstacks SP
Rovers MSP

Qualitative Preferences:

Openstacks QP
Rovers QP

Classification by Objective Fn.
Plan cost (1-objective):

Openstacks (# actions)
Openstacks Time (makespan)

Plan cost (2-objective trade-off):

Openstacks MetricTime

End-state value (“soft goals”):

Openstacks SP

Plan cost/goal-value trade-off:

Openstacks QP
Rovers MSP

Trajectory preferences:

Rovers QP

NICTAConclusions

1 There isn’t enough data to support that many conclusions.
2 The quality of plans produced by (some) competitors appears

somewhat “accidental”.
3 Domain and problem hardness:

1 2-objective trade-off functions appear more difficult to
optimise.

2 Relative plan quality does not appear to correlate with
planner run-time.

NICTACompeting Planners by Domain

Openstacks Rovers
P SP QP T MT MSP QP

Downward’04-SA
√

FDP
√

HPlan-P
√ √

IPPLAN-G1SC
√

MaxPlan
√

MIPS-BDD
√

MIPS-XXL
√ √ √ √ √ √ √

SGPlan5
√ √ √ √ √ √ √

YochanPS (
√

)
√ √

NICTAConclusions

1 There isn’t enough data to support that many conclusions.
2 The quality of plans produced by (some) competitors appears

somewhat “accidental”.
3 Domain and problem hardness:

1 2-objective trade-off functions appear more difficult to
optimise.

2 Relative plan quality does not appear to correlate with
planner run-time.

NICTAThe “Min Max Open Stacks” Problem

Set of products to be made in sequence.
Set of orders, each requesting a subset of products.
An order is open from when the first requested product is
made to when the last requested product is made: during this
time, it uses a stack.
Objective: sequence making of products to minimise the
maximum number of stacks in use at any point.
Trivial upper bound: # orders (one stack per order).
Problem is NP-hard, and equivalent to several graph theory
problems (e.g., pathwidth).
Constraint Modelling Challenge 2005 problem:

Large library of problem instances.
Several solvers, and data on their performance.

NICTAOpenstacks: Example

sequence: 2 3 4 5 1 | 1 2 3 5 4
order 1 ({1, 2}): X – – – X | X X
order 2 ({1, 3}): X – – X | X – X
order 3 ({2, 4}): X – X | X – – X
order 4 ({3, 5}): X – X | X X
order 5 ({4, 5}): X X | X X
open stacks: 2 4 5 4 2 | 2 3 3 3 2

NICTAThe Openstacks Domain

PDDL encoding of the open stacks problem.
Actions (make-product p), (start-order o) and
(ship-order o) must each be done exactly once:

(start-order o) before (make-product p)
when o includes p,
(make-product p) before (ship-order o)
when o includes p.

How to count current/max number of stacks in use?
Stacks are a resource: start-order takes 1,
ship-order returns 1...
4 different formulations (only 1 used in IPC5).

Problem set: 25 selected – for variety – from CMC library,
plus 5 trivially small instances.

NICTAThe Openstacks Domain

“Plain” Formulation:
Propositional counter for # free stacks.
((stacks-avail n0), (stacks-avail n1), ...)
Action open-new-stack creates one (free) stack.
max # stacks in use

= # open-new-stack actions in plan
= plan length − (problem-dependent) constant.

“Sequenced” Formulation (IPC5 Propositional):
However, min # actions objective can’t be specified in
“propositional PDDL”; default is “(total-time)”.
Forced sequentiality: # actions equals # “time steps”.
Larger plan length constant.

NICTAThe Openstacks Domain

“Numeric” Formulation:
Fluents track current and max # stacks in use:
(and (increase (stacks-in-use) 1)

(when (>= (stacks-in-use) (max-in-use))
(increase (max-in-use) 1)))

(:metric minimize (max-in-use))

“Preferences” Formulation:
Propositional counter for current # stacks in use.
PDDL3 trajectory preferences:
(and (preference p1

(always (not (stacks-in-use n1))))
(preference p2
(always (not (stacks-in-use n2)))) ...)

(:metric minimize (+ (is-violated p1) ...))

NICTAOpenstacks: Plan Quality

Competitor plans (◦), best known
(—) and upper bounds (- -). A star
indicates solution is optimal.

Plans found by SGPlan5 on different
domain formulations.

NICTAThe Openstacks SP Domain

Like Openstacks, but max # stacks in use is fixed and goals
are soft: orders may be shipped without all requested
products, but incur a penalty for missing products.
Objective: minimise total penalty.
Two formulations:

With conditional effects (used in IPC5):
If p made while o is open, then p is “delivered” to o.
Without conditional effects:
Explicit action (deliver p o) must take place while o
is open and p is made (split make-product action).

Problem instances:
Based on 20 selected CMC problems.
Max # stacks fixed slightly below the (believed-to-be)
minimum, to force selection of requests to satisfy.

NICTAOpenstacks SP: Plan Quality

Closeup of “lower” region of
the graph.

In IPC5 formulation (with c.e.), SGPlan5 consistently best.
In non-c.e. formulation, SGPlan5 consistently finds plans of
worst possible quality!

NICTAConclusions

1 There isn’t enough data to support that many conclusions.
2 The quality of plans produced by (some) competitors appears

somewhat “accidental”.
3 Domain and problem hardness:

1 2-objective trade-off functions appear more difficult to
optimise.

2 Relative plan quality does not appear to correlate with
planner run-time.

NICTAThe Openstacks QP Domain

Combines the objectives of the Openstacks and Openstacks
SP domains: minimise sum of

penalty for unsatisfied product requests, plus
max # stacks used times (problem-specific) price / stack.

IPC5 formulation uses:
conditional effects (as in Openstacks SP),
trajectory preferences to track max # stacks used.

Aimed to set price / stack so “extreme” plans have equal
value...

however, turned out stacks are somewhat “overpriced”;
a simple, greedy single-stack construction finds plans of
quality close to best known – and often better than
competitors’ – plans.

NICTAOpenstacks QP: Plan Quality

Closeup of “lower” region of
the graph.

Competitor plans (◦), best known (—), upper (- -) and lower (· · ·) bounds.

NICTAConclusions

1 There isn’t enough data to support that many conclusions.
2 The quality of plans produced by (some) competitors appears

somewhat “accidental”.
3 Domain and problem hardness:

1 2-objective trade-off functions appear more difficult to
optimise.

2 Relative plan quality does not appear to correlate with
planner run-time.

NICTARovers MSP: CPU Time vs. Plan Quality

CPU time taken by planners in
the competition.

Competitor plans (◦), best known (—),
upper (- -) and lower (· · ·) bounds. A
star indicates solution is optimal.

NICTALessons Learned

A lot of work (and CPU time!) invested, for questionable
“science return”...
Specifics of problem instances matter!

Properties / “biases” of optimal solutions
(e.g., “overpriced” stacks in Openstacks QP).
Instances with unintended “flaws”
(e.g., Openstacks SP p15–p18).

Encourage coverage!
Offer domains in different formulations.
Make coverage part of competition evaluation criteria.

NICTAAll Results & Additional Resources

http://users.rsise.anu.edu.au/∼patrik/ipc5.html

http://users.rsise.anu.edu.au/~patrik/ipc5.html

