
Abstraction Heuristics in Planning
ICAPS 2008 —

Abstraction & Search

Abstraction Heuristics for Planning

A Brief History

References

ICAPS 2008 1 / 31

Abstraction Heuristics in Planning

Patrik Haslum & Malte Helmert

...from various places...

ICAPS 2008

ICAPS 2008 2 / 31

Abstraction & Search

Introduction

◮ Admissible heuristics are (often) defined as optimal solutions
to a problem relaxation, that is easier to solve than the
original problem.

◮ Here, we’ll consider heuristics where:

The relaxed problem is an abstraction of the original.
The relaxed problem is solved by search (mostly).

◮ Canonical example: Pattern Databases

ICAPS 2008 3 / 31

Abstraction & Search

What’s an Abstraction? A Classic Example

ICAPS 2008 4 / 31

Abstraction & Search

What’s an Abstraction? A Formal Definition

◮ Definition: A state space, S, is a directed graph with
labelled & weighted edges.

Vertices represent states.
Edges represent state transitions.
The edge label is an action/transition name.
The edge weight is the action/transition cost.

◮ A search problem consists of a state space, S, an initial state,
sI , and a set of goal states G.

Find a minimum-cost path through S from sI to some
sG ∈ G, or prove that none exists.

◮ Definition: h∗
S(s) denotes the cost of cheapest path through

S from s to some sG ∈ G (∞ if no path exists).

ICAPS 2008 5 / 31

Abstraction & Search

◮ Definition: An abstraction is a mapping, ϕ, from (states of)
S to some abstract space AS, which preserves labelled paths
and goal states.

If s
a:c
−→ s′ in S, then ϕ(s)

a:c′
−→ ϕ(s′) in AS, with c′ ≤ c.

If s ∈ GS , then ϕ(s) ∈ GAS .

◮ ϕ is a homomorphism iff AS has no transitions or goal states
other than those required by the above.

◮ Definition: The corresponding abstraction heuristic is

hϕ(s) = h∗
AS(ϕ(s)).

ICAPS 2008 6 / 31

Abstraction & Search

◮ Theorem: hϕ is admissible.
Proof: Every s-to-goal path in S exists also in AS, and leads
to a goal. Thus, least cost-to-goal from ϕ(s) in AS can not
be greater than in S.

◮ Theorem: hϕ is consistent/monotone.

Proof: If s
a:c
−→ s′ in S, then ϕ(s)

a:c′
−→ ϕ(s′) in AS.

Therefore h∗
AS(s) ≤ c′ + h∗

AS(s′), which implies
hϕ(s) ≤ c′ + hϕ(s′) ≤ c + hϕ(s′).

ICAPS 2008 7 / 31

Abstraction & Search

Example: Logistics (Original State Space)

ICAPS 2008 8 / 31

Abstraction & Search

Example: Logistics (Abstract State Space 1)

ICAPS 2008 9 / 31

Abstraction & Search

Example: Logistics (Abstract State Space 2)

ICAPS 2008 10 / 31

Abstraction & Search

Valtorta’s Theorem (Generalised)

Theorem: Let S be a state space, sI and G the initial and
goal states, AS = ϕ(S) an abstraction, hϕ(s) the abstraction
heuristic computed by blind search in AS.

If an sI–G-path in S is found by A* using hϕ as the
heuristic, for any state s necessarily expanded by a blind
search in S, either s is expanded by A* or ϕ(s) is expanded
while computing hϕ.

(Holte, Perez, Zimmer & MacDonald, 1995).

ICAPS 2008 11 / 31

Abstraction & Search

How to Beat It?

◮ Use memory: compute each h∗
AS-value only once.

Exhaustive reverse exploration, using |AS| memory, only
expands each state in AS once.
But memory is limited.

◮ Map many states in S to one in AS.
|S|/|AS| hϕ-values for every computed h∗

AS-value, on
average.
But the smaller |AS|, the less accurate is hϕ:
hϕ ≈ logb(|AS|).

◮ Don’t use search to compute hϕ.

Choose ϕ so that ϕ(S) has structure that can be exploited
to compute h∗

ϕ(S) more efficiently.

ICAPS 2008 12 / 31

Abstraction & Search

The t ≈ n/m Conjecture

Graph copied from Hernádvölgyi (2004).

Point: Average over 1000 instances.

0 5 10 15 20 25 30

2e
+

04
5e

+
04

1e
+

05
2e

+
05

5e
+

05
1e

+
06

15−Puzzle

Instance (sorted by median)

N

od
es

 E
xp

an
de

d

Point: Max/min for 1
instance.

◮ Korf (1997) conjectured t ≈ n/m, for IDA* search.

◮ Holds on average, but large variation among abstractions and
across instances.

ICAPS 2008 13 / 31

Abstraction Heuristics for Planning

Abstraction Heuristics Applied to Planning

◮ In planning, we’re given a description, in some formal
language (STRIPS, PDDL, SAS+, etc.) of S.

Domain-independent: Can’t assume any more about S than
what must hold for any problem expressible in the input
language.
Automatic: No human ingenuity should be required beyond
writing the problem description.

◮ Focus on solving one instance (in domain-specific search,
often many instances with same state space & goal).

Need to consider also precomputation in heuristic
cost-accuracy trade-off.

ICAPS 2008 14 / 31

Abstraction Heuristics for Planning

◮ Abstraction heuristics have attractive properties for
domain-independent planning:

They’re general: Abstractions exist for every planning
domain/instance.
They’re largely automatic: Once ϕ chosen, heuristic
computation can be done by generic, automatic procedure.

◮ But applying them to planning also presents particular
challenges:

Typically many possible abstractions: How to choose a
good one – automatically?
Many planning domains generate search spaces different
from those typically considered in domain-specific search
E.g., counting problems vs. permutation problems.

ICAPS 2008 15 / 31

Abstraction Heuristics for Planning

Representations of Planning Problems

◮ Planning problem representations are normally factored:

States are assignments to set V of state variables.
Transitions defined by set of actions, each with an
applicability condition and an effect on subset of V .
Goal states defined by condition on V ′ ⊆ V .

◮ We’ll assume a SAS-style representation:

More compact (important for memory-based heuristics).
Clearer structure.

◮ Automatic STRIPS-to-SAS+ conversion is possible.

◮ Cave: STRIPS problem may have several SAS+ encodings,
not all equally good.

ICAPS 2008 16 / 31

Abstraction Heuristics for Planning

The SAS+ Representation

Definition: A SAS+ representation of a planning problem
consists of

◮ A set of state variables, V .

◮ For each Vi ∈ V , a finite domain of values, dom(Vi).

◮ A set of actions: each action a has:

A unique name (a).
A precondition, pre(a): a partial assignment to V
(i.e. a conjunction of assignments “variable = value”, for
some subset of variables).
An effect, eff(a): also a partial assignment.
A cost, cost(a).

◮ An initial state, I: a complete assignment to V .

◮ A goal, G: a partial assignment.

ICAPS 2008 17 / 31

Abstraction Heuristics for Planning

Definition: The representation induces a search space:

◮ States assign a value in dom(Vi) to Vi, for each Vi ∈ V .

“s[Vi]”: the value of Vi in state s.

◮ Transitions induced by actions: s
a:cost(a)
−→ s′ iff

s[Vi] = pre(a)[Vi] for all Vi mentioned in pre(a).
s′[Vi] = eff(a)[Vi] for all Vi mentioned in eff(a).
s′[Vi] = s[Vi] for all other Vi.

◮ Initial state: The (unique) state satisfying I.

◮ Goal: Set of states satisfying G.

ICAPS 2008 18 / 31

Abstraction Heuristics for Planning

Abstracting Transformations on Planning Problems

◮ Ignore one or more state variables.

E.g., ignoring T1 & T2 yields abstract
state space 1.

◮ Merge values in domain of a variable.

E.g., merge InT1 and InT2 in dom(P1).
unload P1 from T2 at L
pre: P1=InT1-or-InT2, T2=AtL

eff: P1=AtL

SAS Encoding
P1: {AtA, AtB, InT1, InT2}
P2: {AtA, AtB, InT1, InT2}
T1: {AtA, AtB}
T2: {AtA, AtB}

load Pi in Tj at L

pre: Pi=AtL, Tj=AtL

eff: Pi=InTj

unload Pi in Tj at L

pre: Pi=InTj, Tj=AtL

eff: Pi=AtL

drive Tj L -> L′

pre: Tj=AtL

eff: Tj=AtL′

ICAPS 2008 19 / 31

Abstraction Heuristics for Planning

◮ Replace individual variables by counters.

E.g., replace P1 and P2 with #{Pi=AtA},
#{Pi=AtB}, #{Pi=InT1} & #{Pi=InT2}.
unload Pi from T2 at L
pre: T2=AtL

eff: #{Pi=InT2}-=1, #{Pi=AtL}+=1

◮ Reduce the cost of one or more actions.

E.g, set cost of drive to zero.
Abstract state space same as original,
but has cheaper paths.

SAS Encoding
P1: {AtA, AtB, InT1, InT2}
P2: {AtA, AtB, InT1, InT2}
T1: {AtA, AtB}
T2: {AtA, AtB}

load Pi in Tj at L

pre: Pi=AtL, Tj=AtL

eff: Pi=InTj

unload Pi in Tj at L

pre: Pi=InTj, Tj=AtL

eff: Pi=AtL

drive Tj L -> L′

pre: Tj=AtL

eff: Tj=AtL′

ICAPS 2008 20 / 31

A Brief History

A Brief (and Very Selective) History of Abstraction
Heuristics

◮ Prieditis (1993)

Catalog of abstracting problem transformations.
Automatic search for “abstractions that can be sped up”.

◮ Culberson & Schaeffer (1996, 1998)

Pattern Database heuristic for the 15-Puzzle.

◮ Korf & Taylor (1996)
Korf (1997)

Reconstruction of Manhattan distance as PDB & extension
to dynamic additive 2-tile PDBs.
The t ≈ n/m conjecture.

ICAPS 2008 21 / 31

A Brief History

◮ Holte & Hernádvölgyi (1999, 2000)
Hernádvölgyi (PhD 2004)

Applied PDBs to several search problems.
Experimental test/validation of theory, including the
t ≈ n/m conjecture.
Pattern selection by local search for SOP.

◮ Holte et al. (1995, 2005)

Hierarchical A* & IDA*: recursive on-the-fly search in
abstract state spaces.

◮ Edelkamp (2001, 2002)

Applied PDBs to planning, using multi-valued state variable
(“SAS+”) representation.
Sufficient condition for additivity.
Symbolic representation of PDBs using BDDs.

ICAPS 2008 22 / 31

A Brief History

◮ Haslum, Bonet & Geffner (2005)

Constrained abstraction.
Conflict-directed pattern selection.

◮ Edelkamp (2006)
Haslum, Bonet, Helmert, Botea & Koenig (2007)

Pattern selection by local search for planning.

◮ Dräger, Finkbeiner, Podelski (2006)
Helmert, Hoffman, Haslum (2007)

Automatic construction of general explicit-state
abstractions.

◮ Katz & Domshlak (2008)

Structural pattern heuristics.

ICAPS 2008 23 / 31

References

References I

Ball, M., and Holte, R. 2007.

The compression power of symbolic pattern databases.

In ICAPS 2008.

Brafman, R., and Domshlak, C. 2003.

Structure and complexity of planning with unary operators.

Journal of AI Research 18:315–349.

Culberson, J., and Schaeffer, J. 1996.

Searching with pattern databases.

In Canadian Conference on AI, LNCS vol. 1081, 402–416.

Culberson, J., and Schaeffer, J. 1998.

Pattern databases.

Computational Intelligence 14(3):318–334.

ICAPS 2008 24 / 31

References

References II

Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006.

Directed model checking with distance-preserving abstractions.

In International SPIN Workshop 2006, LNCS vol. 3925, 19–34.

Edelkamp, S. 2001.

Planning with pattern databases.

In ECP 2001, 13–24.

Edelkamp, S. 2002.

Symbolic pattern databases in heuristic search planning.

In AIPS’02, 274–283.

Edelkamp, S. 2006.

Automated creation of pattern database search heuristics.

In 4th Workshop on Model Checking and Artificial Intelligence
(MoChArt’06).

ICAPS 2008 25 / 31

References

References III

Edelkamp, S. 2007.

Symbolic shortest paths planning.

In ICAPS’07 Workshop on Heuristics.

Felner, A.; Korf, R.E.; Meshulam, R.; and Holte, R.C. 2005.

Compressed pattern databases.

Journal of AI Research 30:213–247.

Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R.C. 2005.

Dual lookups in pattern databases.

In IJCAI’05.

Haslum, P.; Helmert, M.; Bonet, B.; Botea, A.; and Koenig, S.
2007.

Domain-independent construction of pattern database heuristics
for cost-optimal planning.

In Proc. AAAI’07, 1007 – 1012.

ICAPS 2008 26 / 31

References

References IV

Haslum, P.; Bonet, B.; and Geffner, H. 2005.

New admissible heuristics for domain-independent planning.

In AAAI’05, 1163–1168.

Helmert, M., and Mattmüller, R. 2008.

Accuracy of admissible heuristic functions in selected planning
domains.

In AAAI’08, 938–943.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007.

Flexible abstraction heuristics for optimal sequential planning.

In ICAPS’07, 176 – 183.

ICAPS 2008 27 / 31

References

References V

Hernádvölgyi, I., and Holte, R. 2000.

Experiments with automatically created memory-based heuristics.

In 4th International Symposium on Abstraction, Reformulation,
and Approximation (SARA 2000), 281–290.

Hernádvölgyi, I. 2004.

Automatically Generated Lowe Bounds for Search.

Ph.D. Dissertation, University of Ottawa.

Holte, R., and Hernádvölgyi, I. 1999.

A space-time tradeoff for memory-based heuristics.

In AAAI’99, 704–709.

ICAPS 2008 28 / 31

References

References VI

Holte, R.; Perez, M. B.; Zimmer, R. M.; and MacDonald, A. J.
1995.

Hierarchical A*: Searching abstraction hierarchies efficiently.

Technical Report TR-95-18, University of Ottawa.

Holte, R.; Perez, M. B.; Zimmer, R. M.; and MacDonald, A. J.
1996.

Hierarchical A*: Searching abstraction hierarchies efficiently.

In AAAI’96, 530–535.

Holte, R.; Grajkowski, J.; and Tanner, B. 2005.

Hierarchical heuristic search revisited.

In 6th International Symposium on Abstraction, Reformulation,
and Approximation, (SARA 2005), 121–133.

ICAPS 2008 29 / 31

References

References VII

Jonsson, P., and Bäckström, C. 1998.

State-variable planning under structural restrictions: Algorithms
and complexity.

Artificial Intelligence 100(1-2):125–176.

Katz, M., and Domshlak, C. 2007a.

Optimal additive composition of abstraction-based admissible
heuristics.

In ICAPS’08.

Katz, M., and Domshlak, C. 2007b.

Structural patterns heuristics via fork decomposition.

In ICAPS’08.

Korf, R., and Taylor, L. 1996.

Finding optimal solutions to the twenty-four puzzle.

In AAAI’96, 1202–1207.

ICAPS 2008 30 / 31

References

References VIII

Korf, R. 1997.

Finding optimal solutions to rubik’s cube using pattern
databases.

In AAAI’97, 700–705.

Linares Lopéz, C. 2008.

Multi-valued pattern databases.

In ECAI’08, 540–544.

Prieditis, A. E. 1993.

Machine discovery of effective admissible heuristics.

Machine Learning 12:117–141.

ICAPS 2008 31 / 31

Abstraction Heuristics in Planning
ICAPS 2008 —

Pattern Database Heuristics

Pattern Selection

Symbolic Representation of PDBs

ICAPS 2008 1 / 41

Abstraction Heuristics in Planning

Patrik Haslum & Malte Helmert

...from various places...

ICAPS 2008

ICAPS 2008 2 / 41

Pattern Database Heuristics

Pattern Database Heuristics

◮ Pattern databases (PDBs) are memory-based abstraction
heuristics, in which the abstraction is typically a projection.

h∗
AS precomputed and stored for every abstract state.

hϕ(s) computed by looking up the value for ϕ(s).

◮ Let V ′ ⊂ V be a subset of state variables: ϕ is a projection

on V ′ iff ϕ(s) = ϕ(s′) iff s and s′ agree on the value of every
variable in V ′.

Equivalent to ignoring variables not in V ′.
Projecting transformation: Remove conditions & effects on
variables not in V ′ from actions & goal.
N.B. This is an over-approximation (ϕ not necessarily a
homomorphism).

◮ The kept variable set, V ′, is called the pattern.

ICAPS 2008 3 / 41

Pattern Database Heuristics

◮ How to store h∗
AS & compute hϕ?

Map every abstract state s ∈ AS to a unique index
(perfect hash function).
w.l.o.g. dom(Vi) = {0, . . . , |dom(Vi)| − 1}: variable-value
assignment is a number in an “uneven” base.

E.g., V ′ = {V2, V5}: index(s) = (s(V2) · |dom(V5)|)+ s(V5).
Store h∗

AS values in table, indexed by index(s).
More compact storage possible for certain state spaces
(e.g., permutations).

◮ How to compute h∗
AS?

Exhaustive, “cost-first” search in reverse through AS.
hϕ for forward search: backwards from goal states in AS.
hϕ for regression search: forwards from initial state in AS.

ICAPS 2008 4 / 41

Pattern Database Heuristics

Example: Logistics

◮ 2 Packages (P1,P2), 2 Trucks (T1, T2), 2
locations (A and B).

◮ Projection on {T1,P1} (abstract space):

SAS Encoding
P1: {AtA, AtB, InT1, InT2}
P2: {AtA, AtB, InT1, InT2}
T1: {AtA, AtB}
T2: {AtA, AtB}

load Pi in Tj at L

pre: Pi=AtL, Tj=AtL

eff: Pi=InTj

unload Pi in Tj at L

pre: Pi=InTj, Tj=AtL

eff: Pi=AtL

drive Tj L -> L′

pre: Tj=AtL

eff: Tj=AtL′

ICAPS 2008 5 / 41

Pattern Database Heuristics

Progression PDB

index(s): s h(s) index(s): s h(s)

0: T1=AtA, P1=AtA 2 4: T1=AtB, P1=AtA 2
1: T1=AtA, P1=AtB 0 5: T1=AtB, P1=AtB 0
2: T1=AtA, P1=InT1 2 6: T1=AtB, P1=InT1 1
3: T1=AtA, P1=InT2 1 7: T1=AtB, P1=InT2 1

ICAPS 2008 6 / 41

Pattern Database Heuristics

A Note on PDBs for Regression

◮ In regression, a search state is a condition to achieve.

Conditions may be partial.
Need to extend dom(V) with a “don’t care” value (∗).

◮ “Regression in reverse” 6= Forward action application!

◮ regress(c, a) = (c − eff(a)) ∪ pre(a)
if eff(a) contributes part of c and eff(a) doesn’t contradict c.

◮ In reverse: (pre(a) ∪ x)
a

−→ (x ∪ y ∪ z),
where (x ∪ y ∩ z) ∩ eff(a) = ∅, y ⊆ eff(a), y 6= ∅, z ⊆ pre(a),
x ∩ pre(a) = ∅, x ∩ y = y ∩ z = x ∩ z = ∅.

ICAPS 2008 7 / 41

Pattern Database Heuristics

◮ Another way to compute a regression PDB:

For complete s ∈ AS, compute h∗
AS(s) (distance from

ϕ(sI)) by standard forward exploration.
For partial s ∈ AS, h∗

AS(s) = mins′ h
∗
AS(s′) over all

completions s′ of s.

◮ For the kind of projection we’ve considered so far, both
methods yield same hϕ(s) for all s.

◮ But, for constrained projection, this is not necessarily true
– may yield an inconsistent heuristic.

ICAPS 2008 8 / 41

Pattern Database Heuristics

Regression PDB

index(s): s h(s) index(s): s h(s)

1: T1=*, P1=AtA 0 2: T1=*, P1=AtB 2
...

...
6: T1=AtA, P1=AtA 1 11: T1=AtB, P1=AtA 0
7: T1=AtA, P1=AtB 3 12: T1=AtB, P1=AtB 2

...
...

ICAPS 2008 9 / 41

Pattern Database Heuristics

Combining PDB Heuristics

◮ If A ⊂ B, hA(s) ≤ hB(s) ∀s (hB dominates hA).

◮ max(hA, hB) is admissible & consistent.

◮ Patterns A and B are additive if no action has an effect on
variables in both.

◮ If A and B are additive, hA + hB is admissible.

Proof: Least cost solution paths in ϕA(S) and ϕB(S) have
no action in common.

◮ N.B. This is a sufficient condition only.

◮ max(hA(s), hB(s)) ≤ hA(s) + hB(s) ≤ hA∪B(s).

Additivity implies no “positive” interaction between
abstract plans in ϕA(S) and ϕB(S), but there can still be
“negative” interactions.

ICAPS 2008 10 / 41

Pattern Database Heuristics

The Canonical Heuristic Function

◮ Let C = {P1, . . . , Pm} be a collection of patterns.

◮ The canonical heuristic, hC , is defined as

hC(s) = max
C′∈m.a.s.(C)

∑

P∈C′

hP (s)

where m.a.s.(C) is the set of maximal additive subsets of C.

|m.a.s.(C)| can be exponential in |C|.

◮ E.g., if C = {{P1, T1, T2}, {P2, T1, T2}, {P1}, {P2}},

hC =max(h{P1,T1,T2} +h{P2}, h{P2,T1,T2} +h{P1}, h{P1} +h{P2})
(h{P1} + h{P2} dominated by first two, can be left out).

◮ hC is admissible & consistent, and dominates every other

combination of hP for P ∈ C under same condition for
additivity.

ICAPS 2008 11 / 41

Pattern Database Heuristics

Combining PDB Heuristics: A Special Case

◮ Consider the 15-Puzzle, and a pattern collection containing
all pairs of tiles and single tiles:
C = {{T1, T2}, {T1, T3}, . . . , {T14}, {T15}}.

210 PDBs with 256 states, 15 PDBs with 16 states.
225225 admissible sums (each of 7 pairs and 1 single).

◮ How efficiently find maximum admissible sum for state s?

Make a complete graph over tiles with edge Ti–Tj weight
equal to h{Ti,Tj}(s).
Solve weighted matching problem, in time O(n3).

(Korf & Taylor 1996)

◮ Not specific to (n2 − 1)-Puzzles.

Applicable to any set of mutually additive variables.
But tractable only for collection of patterns of size 2

(hypergraph matching is intractable).

ICAPS 2008 12 / 41

Pattern Database Heuristics

Generalised Additivity: Cost Distribution

◮ hϕ1 + hϕ2 is admissible when no action may appear in
optimal solution in both abstractions ϕ1(S) and ϕ2(S).

◮ 1st Generalisation: hϕ1 + hϕ2 is admissible when no action
contributes to the cost of optimal solution in both
abstractions ϕ1(S) and ϕ2(S).

If every action that has an effect in both patterns A and B

is given zero cost in either ϕA(S) or ϕB(S), hA + hB is
admissible.

◮ 2nd Generalisation: hϕ1 + hϕ2 is admissible if for every action
a, the sum of its contributions to the cost of optimal solution
in ϕ1(S) and ϕ2(S) does not exceed its cost in S.

∀a costϕ1
(a) + costϕ2

(a) ≤ cost(a).

ICAPS 2008 13 / 41

Pattern Database Heuristics

Optimal Cost Distribution over Abstractions

◮ Cost of reaching sG ∈ G from s

in ϕ(S) can be formulated as an
LP, of size O(|ϕ(S)|), in which
action costs are variables.

◮ Heuristic value of s for the
optimal cost distribution over
abstractions ϕ1(S), . . ., ϕk(S)
can also be formulated as an LP:
“union” of LPs for each ϕi(S),
plus admissibility constraint.

(Katz & Domshlak 2008)

max x(s)
s.t. x(s) ≤ y(a1) + x(s1)

x(s) ≤ y(a2) + x(s2)
x(s2) ≤ y(a3) + x(s3)
x(s2) ≤ y(a4) + x(s4)
x(s3) = 0
. . .

0 ≤ y(a1) ≤ cost(a1)
0 ≤ y(a2) ≤ cost(a2)
. . .

ICAPS 2008 14 / 41

Pattern Database Heuristics

Constrained Projection

◮ The projecting transformation, “ignore variables not in P”,
can be more relaxed than the abstraction ϕP (S).

Abstract state s′ can be reachable in the transformed
problem even if no s such that ϕP (s) = s′ reachable in S.
(“spurious states”).
Transition s′

a
−→ t′ can be allowed in the transformed

problem even if for no s ∈ S such that ϕ(s) = s′, pre(a)
holds in s.

◮ This results in weaker PDB heuristics.

◮ Projection can be strengthened by enforcing state constraints

valid in original space in the abstract space.
(Haslum, Bonet & Geffner 2005)

ICAPS 2008 15 / 41

Pattern Database Heuristics

Example: 8-Puzzle

8 7 6

4 1

2 5 3

1 2

3 4 5

6 7 8

Init Goal

SAS Encoding

Ti: {<1,1>, ..., <3,3>} (<col,row>)

Blank: {<1,1>, ..., <3,3>}

move T1 <1,1> -> <1,2> (down)

pre: T1=<1,1>, Blank=<1,2>

eff: T1=<1,2>, Blank=<1,1>

move T1 <1,1> -> <2,1> (right)

pre: T1=<1,1>, Blank=<2,1>

eff: T1=<2,1>, Blank=<1,1>

...

◮ Projection onto Ti yields Manhattan distance for tile i.

◮ Abstractions are additive: sum over all but blank yields
standard MD heuristic.

ICAPS 2008 16 / 41

Pattern Database Heuristics

7

4 4

7

Init Goal

◮ Tiles 7 and 4 are in linear

conflict.

◮ But projection onto {T4,T7} still
yields only 2 – same as
h{T4} + h{T7}.

◮ Short-cut through an “impossible” abstract state!

ICAPS 2008 17 / 41

Pattern Database Heuristics

Solutions to the Problem?

◮ Include Blank variable in abstraction:

Larger PDB.
Projection onto disjoint tile-sets not additive
(unless Blank-only moves given zero cost).

◮ Encode the problem in a different way:
move T1 <1,1> -> <1,2>

pre: T1=<1,1>, T2=/=<1,2>, T3=/=<1,2>, ...,

T7=/=<1,2>, T8=/=<1,2>

eff: T1=<1,2>

How to find right (re-)formulation automatically?

◮ Enforce constraints of original problem in abstract space.

ICAPS 2008 18 / 41

Pattern Database Heuristics

Constrained Projection

◮ Let C be a collection of state invariants that hold in S.

E.g., permanent mutexes (¬T7=<2,2> ∨ ¬T4=<2,2>).

◮ In the constrained projection ϕP
C(S), action a applies in state

ϕP
C(s) iff pre(a) and s agree on variables in P and pre(a) ∪ s

does not violate any invariant in C.

◮ h
ϕ
C(s) = h∗

ϕC(S)(s) is admissible and consistent.

Proof: ϕC(S) is a subgraph of ϕ(S). Any edge in ϕ(S) not
in ϕC(S) can not be part of any sI -G-path in S (action not
applicable, or applied in an unreachable state).

ICAPS 2008 19 / 41

Pattern Database Heuristics

h
{T4,T7}
C = 4

ICAPS 2008 20 / 41

Pattern Selection

Pattern Selection for PDB Heuristics

◮ We can combine any collection of patterns, but not all yield
equally good heuristics.

◮ More and/or larger PDBs are often better (and never worse)
but memory is limited – how make best use of it?

Maxing several smaller PDBs often better than one large.
Exploit additivity: memory required for hA∪B is product of
that for hA and hB.
Recall: max(hA(s), hB(s)) ≤ hA(s) + hB(s) ≤ hA∪B(s).

◮ Require automatic (and not too costly) selection.

◮ Some approaches in planning literature:

Bin-packing.
Conflict-directed construction.
Local search.

◮ Problem representation may affect heuristic quality.

ICAPS 2008 21 / 41

Pattern Selection

Example: Blocksworld (3op)

SAS Encoding 1:
below(?X): {A, B, C, D, Table}
clear(?X): {true, false}

move ?X : ?X -> ?Z

pre: below(?X)=?Y, clear(?X)=true, clear(?Z)=true

eff: below(?X)=?Z, clear(?Y)=true, clear(?Z)=false

move ?X : ?Y -> Table

pre: below(?X)=?Y, clear(?X)=true

eff: below(?X)=Table, clear(?Y)=true

...

SAS Encoding 2:
above(?X): {A, B, C, D, None}
ontable(?X): {true, false}

move ?X : ?X -> ?Z

pre: above(?Y)=?X, above(?X)=None, above(?Z)=None

eff: above(?Z)=?X, above(?Y)=None

move ?X : ?Y -> Table

pre: above(?Y)=?X, above(?X)=None

eff: above(?Y)=None, ontable(?X)=true

...

ICAPS 2008 22 / 41

Pattern Selection

h{below(C),below(D)} = 1 h
{below(C),below(D)}
C = 2

ICAPS 2008 23 / 41

Pattern Selection

h{above(C),above(D)} = 4

ICAPS 2008 24 / 41

Pattern Selection

Encoding 1 Encoding 2

◮ h
{below(C),below(D)}
C and h

{below(A),below(B)}
C are additive.

◮ h{above(C),above(D)} and h{above(A),above(B)} are not
– can only take max.

ICAPS 2008 25 / 41

Pattern Selection

h
{below(C),below(D)}
C +

h
{below(A),below(B)}
C = 5

max(h{above(C),above(D)},

h{above(A),above(B)}) = 4

h
{below(C),below(D)}
C +

h
{below(A),below(B)}
C = 4

max(h{above(C),above(D)},

h{above(A),above(B)}) = 3

ICAPS 2008 26 / 41

Pattern Selection

Bin-Packing Construction

◮ Given limit L on the size of any
single PDB, partition V1, . . . , Vn

into smallest number of patterns

s.t.
∏

Vj∈Pi
|dom(Vj)| ≤ L.

Bin-packing problem
(if log-transformed).
NP-hard, but approximable.

◮ Ignores additivity.

◮ Ignores relative usefulness of
placing Vi and Vj in same pattern.

0 5 10 15 20 25 30

2e
+

04
5e

+
04

1e
+

05
2e

+
05

5e
+

05
1e

+
06

15−Puzzle

Instance (sorted by median)

N

od
es

 E
xp

an
de

d

5 10 15

10
0

20
0

50
0

10
00

20
00

50
00

20
00

0
50

00
0

Blocksworld

Instance (sorted by median)

N

od
es

 E
xp

an
de

d

ICAPS 2008 27 / 41

Pattern Selection

Conflict-Directed Construction

◮ For additive patterns A and B, when is hA∪B more
informative than hA + hB?

From a PDB, we can extract not only the cost of an optimal
solution to the abstract problem, but also the abstract plan.
If there exists abstract plans for s in ϕA(S) and ϕB(S) that
have no conflict, hA∪B(s) = hA(s) + hB(s).
Conflict iff no interleaving of plans valid in ϕA∪B(S).

◮ Can’t check every interleaving of every pair of abstract plans.

Pick one arbitrary abstract plan.
Ignore plan in ϕB(S): check plan in ϕA(S) for
dependencies on / mutexes with some V ′ ∈ B.

ICAPS 2008 28 / 41

Pattern Selection

Example: Blocksworld (3op)

{below(A)}: ()

{below(B)}: (B:C->D)

{below(C)}: ()

{below(D)}: (D:Table->C)

◮ Plan (B:C->D) conflicts with plan () for {below(A)}: prec.
clear(B) mutex with below(A) = B always true.

◮ Plan (B:C->D) conflicts with plan () for {below(C)}: prec.
clear(D) mutex with below(C) = D always true.

◮ Plan (D:Table->C) conflicts with plan () for {below(C)}:
prec. clear(D) mutex with below(C) = D always true.

ICAPS 2008 29 / 41

Pattern Selection

Conflict-Directed Construction

◮ Given additive variables, V1, . . . , Vn:

Initialise collection C with pattern {Vi} for each Vi with
goal value.
Compute PDB for each pattern in C, analyse abstract plans
for conflicts.
Merge patterns with most conflicts, if resulting pattern not
too large (limit L on PDB size).
Repeat until no conflicts or no feasible mergers.

ICAPS 2008 30 / 41

Pattern Selection

{below(A), below(B)}:
(A:B->Table, B:C->D, A:Table->B)

{below(C)}: ()

{below(D)}: (D:Table->C)

◮ Plan (A:B->Table, B:C->D, A:Table->B) conflicts with empty
plan for {below(C)}: prec. clear(D) mutex with
below(C) = D always true.

◮ Plan (D:Table->C) conflicts with plan () for {below(C)}:
prec. clear(D) mutex with below(C) = D always true.

ICAPS 2008 31 / 41

Pattern Selection

A Little Theory: How Useful is Heuristic h?

◮ Eh(c): # nodes expanded by tree search to
depth (cost bound) d with heuristic h; i.e., #
nodes with g(s) + h(s) ≤ d.

◮ Blind search: E0(d) ≈ bd.

◮ Eh(d) ≈ bd−h

h: expected value of h(s).
But many more s with high g(s) & small

h(s) encountered in search.

◮ Eh(d) ≈
∑

k=0,...,d Nd−kPh(k)

Ni: # nodes with acc. cost (g-value) i.
Ph(k): probability that h(s) ≤ k, for s

drawn uniformly at random from the search
tree. (Korf, Reid & Edelkamp 2001)

Graph copied from Holte,

Felner, Newton, Meshulam

& Furcy (2006).

ICAPS 2008 32 / 41

Pattern Selection

Pattern Selection by Local Search

◮ Perform a (local) search in the space of pattern collections.

◮ How compare/rank collections? By estimate of Eh(d).

◮ Instances of this scheme in planning literature:

Evolutionary algorithm over bounded-size collections,
ranking by h. (Edelkamp 2006).
Hill-climbing search over “growing” collections, ranking by
estimated reduction in search effort.

(Haslum, Bonet, Helmert, Botea & Koenig 2007).

ICAPS 2008 33 / 41

Pattern Selection

Hill-Climbing Pattern Search

◮ Hill-climbing search.

◮ Initial pattern collection: C = {{V } |V in goal}.

◮ Neighbourhood of C: C′ = C ∪ {P ∪ {V }}, for any P ∈ C
and V 6∈ P , unless P ∪ {V } or C′ too large.

◮ Neighbourhood extends C with one new pattern P ′, which
extends a pattern P ∈ C with one new variable.

◮ Neighbourhood ranking: by estimated reduction in search
effort: EhC − EhC′ .

ICAPS 2008 34 / 41

Pattern Selection

◮ Estimating EhC − EhC′ :

Recall: EhC(d) ≈
∑

k=0,...,d Nd−kPhC(k).

Effort saved by hC′
over hC :

∑
k Nd−k(PhC(k) − PhC′ (k))

Estimate (m samples): 1
m

∑
ni

∑
hC(ni)6k<hC′ (ni)

Nd−k.

Simplified estimate: 1
m
|{ni |h

C(ni) < hC′
(ni)}| =

probability that hC′
(n) > hC(n) for node n drawn uniformly

at random from tree.

◮ Testing hC(ni) < hC′
(ni):

Sample states by random walk (to depth ≈ w · hC(sI)).
Compute hC′

(s) for each sampled state – cost-effectively.
C′ has only one new pattern P ′ = P ∪ {V }: compute
hP ′

(s) by search in abstract state space of P ′ using hP as
heuristic.

ICAPS 2008 35 / 41

Pattern Selection

Additional Trix

◮ Consider patterns over spanning subset S of state variables

Assignment to variables in S plus mutex constraints
determines values of all variables.
Select S to minimise |S| and maximise additivity in S.

◮ Static: Add V to pattern P only if V causally connected to
some variable in P – if not, hP∪{V } is never better than
hP + h{V }.

◮ Statistical: After each “epoch” of m
k

samples, calculate
confidence interval [li, ui] for improvement of C′

i: if ui < lj ,
C′

i is very unlikely to be better than C′
j , so stop evaluating

C′
i.

◮ Stopping condition: No more patterns fit within size limits, or
improvement of best new pattern too small (e.g., ≤ 1%).

ICAPS 2008 36 / 41

Pattern Selection

◮ No accurate absolute prediction of EhC − EhC′ .

Simplified formula (disregards weight Nd−k).
Formula for Eh(d) measures tree search effort – not
necessarily same as graph search effort.

– but sufficiently good measure of relative merit of PDB
heuristics in pattern search neighbourhood.

◮ Neighbourhood evaluation is computationally expensive.

◮ Neighbourhood may not contain any improving pattern.

E.g., Logistics with 2 Trucks: h{P1}(sI) = 2,
h{P1,T1}(sI) = 2, h{P1,T2}(sI) = 2, but h{P1,T1,T2}(sI) = 4.
General problem with “disjunctive resources”.

ICAPS 2008 37 / 41

Symbolic Representation of PDBs

Symbolic Representations

◮ “Symbolic” refers to use of decision diagrams to compactly
represent functions.

◮ Binary Decision Diagrams (BDDs) represent boolean

functions of binary arguments.

Can represent a set of bit vectors: α(b1, . . . , bn) = 1 iff
(b1, . . . , bn) ∈ set.
Set operations (∪, ∩, = ∅, etc) can be performed on
(ordered) BDDs.
Key to efficient set-based search algorithms.

◮ Algebraic Decision Diagrams (ADDs) represent (partial)
mappings from bit vectors to arbitrary domain.

◮ Decision diagrams can be much more compact than a tabular
representation – but no guarantee.

ICAPS 2008 38 / 41

Symbolic Representation of PDBs

Example: Logistics

◮ Encode state as bit vector by writing values
in binary.

P1 P2 T1 T2

Bit: b0 b1 b2 b3 b4 b5

= AtA 0 0 0 0 0 0
= AtB 0 1 0 1 1 1
= InT1 1 0 1 0
= InT2 1 1 1 1

◮ Example BDD encoding set of goal states G.

b0

b1

0

b2

b3

1

ICAPS 2008 39 / 41

Symbolic Representation of PDBs

How to Represent a PDB With a BDD

◮ Array of BDDs: A[i] holds
set of states with h(s) = i.

h = 0 h = 1 h = 2

b0

b1

01

b0

b1

0

b4

1

b0

b1 b1

01

b4

◮ Fast extraction of set of

states with h = i

– important operation in
some symbolic heuristic
search algorithms.

◮ But finding h(s) for a single

state s requires linear scan.

◮ Direct construction by
symbolic breadth-first search
in abstract space.

(Edelkamp 2002, 2007)

◮ Alternative: Single BDD holding set of pairs (s, h(s)), with h(s)
encoded in binary.

ICAPS 2008 40 / 41

Symbolic Representation of PDBs

How to Represent a PDB With an ADD

◮ Map states to PDB values.

◮ Fast look-up of h(s) for a single

state s.

◮ Probably most compact
representation: up to 103 times

smaller than corresponding PDB
table in some planning domains.

(Ball & Holte, 2008)

◮ But not always smaller.

b0

b1

b1

0 2

b4

1

ICAPS 2008 41 / 41

Abstraction Heuristics in Planning
ICAPS 2008 —

Limits on the Power of PDB Heuristics

General Explicit-State Abstractions

Structural Abstraction Heuristics

Hierarchical A∗ & IDA∗

Summary & Conclusions

ICAPS 2008 1 / 32

Abstraction Heuristics in Planning

Malte Helmert & Patrik Haslum

...from various places...

ICAPS 2008

ICAPS 2008 2 / 32

Limits on the Power of PDB Heuristics

Limits on the Power of PDB Heuristics

◮ The power of PDB heuristics depends on available memory.

If memory not bounded, a PDB could contain all of S.
But time to compute the PDB also linear in PDB size.

◮ Consider search spaces of increasing size, Sn defined over
variables V1, . . . , Vn, with h∗(sI) ≈ O(|G|) ≈ O(n).

E.g., instances of growing size in a planning domain.
Plan length grows with size in all interesting domains.

◮ Examine the asymptotic accuracy, h(sI)/h∗(sI) in the limit

of large n.

ICAPS 2008 3 / 32

Limits on the Power of PDB Heuristics

◮ Requirement: PDB size (and computation time) is
polynomial in n.

Consequence: Each pattern P can contain at most
O(log(n)) variables.
hP (sI)/h∗(sI) → 0 as n → ∞: hP can be arbitrarily
inaccurate.

◮ Does exploiting additivity help?

Can use O(p(n)) PDBs with O(log(n)) variables each.
There are planning domains where additive PDBs achieve
(reasonably) good accuracy also for large n.
There are also planning domains where additive PDBs do
not achieve better accuracy, in the limit of large n.

ICAPS 2008 4 / 32

Limits on the Power of PDB Heuristics

Example: Gripper

◮ Move n balls from A to B:

◮ h∗(sI) = 2n + n (n × pick up &
put down + 1/2n × 2 × go).

◮ h{Bi1,...,Bik} counts k × pick up &
put down.

◮ h{B1}(sI) + . . . + h{Bn}(sI) = 2n ≥
2/3h∗(sI).

◮ h
{Bi1,...,Bik,Robot}
C counts k × pick up &

put down + 1/2k × 2 × go.

◮ Additive only if at most one pattern
includes Robot.

◮ At most log(n) of n go counted by any
sum: hC(sI) → 2/3n as n → ∞.

SAS Encoding
Robot: {AtA, AtB}
RGrip: {empty, full}
LGrip: {empty, full}
Bi: {AtA, AtB, InR, InL}

pick up Bi with Right at X

pre: Robot=AtX, Bi=AtX,

RGrip=empty

eff: Bi=InR, RGrip=full

...

put down Bi with Left at X

pre: Robot=AtX, Bi=InL,

LGrip=full

eff: Bi=AtX, LGrip=empty

go X -> Y

pre: Robot=AtX

eff: Robot=AtY

ICAPS 2008 5 / 32

Limits on the Power of PDB Heuristics

Example: Blocksworld (3op)

B1

.

.

.
Bn−2

Bn−1

Bn

B1

.

.

.
Bn−2

Bn

Bn−1

◮ Swap blocks at base in tower
of n blocks.

◮ h∗(sI) = 2n − 2.

◮ Only below(Bn−2), below(Bn−1) and below(Bn) differ
between sI and sG (resp. only above(Bn−1) & above(Bn)).

◮ hPi(sI) > 0 for at most three patterns Pi.

◮ Any sum hPi1 + hPi2 + hPi3 can consider at most 3 · log(n)
variables, requiring no more than 6 · log(n) moves:
hC(sI)/h∗(sI) → 0 as n → ∞.

ICAPS 2008 6 / 32

General Explicit-State Abstractions

General Memory-Based Abstraction Heuristics

◮ To yield an informative heuristic, abstraction must preserve

relevant state distinctions.

◮ To fit in memory, abstraction must have a small

representation:

Can’t have too many abstract states (|ϕ(S)| ≤ N).
Succinct encoding of abstraction mapping, ϕ.

◮ PDBs can use a very compact encoding of the abstraction
mapping (|PDB(P)| = O(|ϕP (S)|)).

◮ But there may be more informative abstractions with N
states that are not projections.

E.g., Logistics, with 1 Package & m Trucks in 1 City:
h{P1} = 2 = h{P1}∪P , for any P ⊂ {T1, . . . , Tm}.

◮ Instead of preserving a few variables perfectly, it may be
better to preserve some information about all variables.

ICAPS 2008 7 / 32

General Explicit-State Abstractions

◮ Definition: The synchronised product of two state spaces,
S1 and S2, with same action sets, is denoted S1 ⊗ S2 and
defined as:

States in AS1 ⊗ AS2: (s1, s2), s.t. s1 ∈ AS1, s2 ∈ AS2.
(s1, s2)

a
−→ (s′

1
, s′

2
) in AS1 ⊗ AS2 iff s1

a
−→ s′

1
in AS1 and

s2

a
−→ s′

2
in AS2.

(s1, s2) ∈ GAS1⊗AS2
iff s1 ∈ GAS1

and s1 ∈ GAS2
.

◮ If AS1 = ϕ1(S) and AS2 = ϕ2(S) are abstractions of the
same state space S, AS1 ⊗ AS2 is also an abstraction of S
which combines the information in both.

ϕ1,2(s) = (ϕ1(s), ϕ2(s)).

ICAPS 2008 8 / 32

General Explicit-State Abstractions

◮ The state space S induced by a SAS+ problem over variables
V1, . . . , Vn can be reconstructed as

AS{V1} ⊗ . . . ⊗ AS{Vn},

where AS{Vi} = ϕ{V1}(S) is the projection on {Vi}.

◮ If ϕ(AS{V1} ⊗ . . . ⊗ AS{Vk}) is an abstraction of
AS{V1} ⊗ . . . ⊗ AS{Vk}, then

ϕ(AS{V1} ⊗ . . . ⊗ AS{Vk}) ⊗ AS{Vk+1} ⊗ . . . ⊗ AS{Vn}

is also an abstraction of S.

◮ Too large intermediate abstractions can be shrunk by
explicitly merging some abstract states.

ICAPS 2008 9 / 32

General Explicit-State Abstractions

Example: Logistics (A Perfect Abstraction)

ICAPS 2008 10 / 32

General Explicit-State Abstractions

ICAPS 2008 11 / 32

General Explicit-State Abstractions

Example: Logistics (A Less Perfect Abstraction)

◮ But still better than h{P1}!

◮ And better than h{P1,T1} and
h{P1,T2}.

ICAPS 2008 12 / 32

General Explicit-State Abstractions

Constructing General Abstractions

Algorithm for Constructing a General Abstraction
abs := all atomic projections AS{Vi} (Vi ∈ V).

while abs contains more than one abstraction:
select AS1, AS2 from abs
shrink AS1 and/or AS2 until |AS1 ⊗ AS2| ≤ N
abs := abs \ {AS1, AS2} ∪ {AS1 ⊗ AS2}

return the remaining abstraction

◮ Algorithm schema, to be instantiated with:

A strategy for selecting which pair of abstractions in the
current pool to merge.
A strategy for how to shrink an abstraction.
A size bound N .

◮ Crucial to have good merging and shrinking strategies.

ICAPS 2008 13 / 32

General Explicit-State Abstractions

Merging Strategy

◮ Linear merging strategy: In each iteration after the first,
choose the abstraction computed in the previous iteration as
AS1 and an atomic projection as AS2.

Strategy defined by an ordering of atomic projections.
Maintains only one complex (non-atomic) abstraction.
Size of abstraction mapping (in “decision graph” form)
bounded by |V | · N .

◮ How to order atomic projections?

Start with a goal variable.
Add variables that appear in preconditions of operators
affecting previous variables.
If that is not possible, add a goal variable.

ICAPS 2008 14 / 32

General Explicit-State Abstractions

Shrinking Strategy

◮ Construct AS′ = ϕ(AS) by selecting pairs of abstract states
in AS to “collapse” (i.e., map to same in AS′).

◮ The mapping ϕ / the selection strategy is

h-preserving if it only collapses abstract states with equal
distance-to-goal (h-value);
g-preserving if it only collapses abstract states with equal
distance-from-init (g-value);
f -preserving if it is h- and g-preserving.

◮ If ϕ is h-preserving, h∗
AS(s) = h∗

AS′(s) for all s – no loss of
heuristic value.

◮ But some information relevant to variables merged in later
may be lost.

ICAPS 2008 15 / 32

General Explicit-State Abstractions

◮ Shrink AS1 until |AS1| · |AS2| ≤ N .

Never represents an abstraction with more than N states.
May preserve unimportant state distinctions in AS2 at the
expense of important state distinctions in AS1.

◮ Use f -preserving abstraction as long as possible.

◮ If can’t be f -preserving (# f -values > N/|AS2|), prefer
merging states with high f -values and small f -difference.

States with high f -values less likely to be explored.

◮ Tie-breaking: Prefer to preserve distinctions between states
with small h-values.

ICAPS 2008 16 / 32

General Explicit-State Abstractions

Representational Power of General (Linear-Merge)
Abstractions

◮ At least as powerful as PDBs.

Projection on P ⊂ V is a special case.
O(|V | · N) overhead for general mapping representation.

◮ Captures additivity.

If P1 and P2 are additive patterns, for any h-preserving
abstraction AS1 = ϕ1(ASP1

) and AS2 = ϕ2(ASP2
), the

heuristic for AS1 ⊗ AS2 dominates hP1 + hP2 .
But |AS1 ⊗ AS2| may be O(|ASP1

| · |ASP2
|).

If ∀a cost(a) = 1, there is an h-preserving abstraction ϕ
such that |ϕ(AS1 ⊗ AS2)| = O(|ASP1

| + |ASP2
|), but it

may not be linear-merge constructible.

ICAPS 2008 17 / 32

General Explicit-State Abstractions

Representational Power of General (Linear-Merge)
Abstractions

◮ Can construct perfect heuristics with polynomial-size

abstractions in some planning domains:

Gripper
Schedule
Two Promela variants.

◮ PDBs have unbounded error in these domains.

ICAPS 2008 18 / 32

General Explicit-State Abstractions

Example: Gripper

◮ 2n−1 · (n2 + n + 4) reachable states.

◮ (3n − 3) · 2 state “classes” characterised
by (#Bi=A,#Bi=B,#Bi=InX, Robot)
– all states in each class have same
distance-to-goal.

◮ Linear construction:

Add Robot, RGrip & LGrip, without
abstraction.
Add each Bi in turn, merging abstract
states that agree on number of balls in
A, B and in grippers.

SAS Encoding
Robot: {AtA, AtB}
RGrip: {empty, full}
LGrip: {empty, full}
Bi: {AtA, AtB, InR, InL}

pick up Bi with Right at X

pre: Robot=AtX, Bi=AtX,

RGrip=empty

eff: Bi=InR, RGrip=full

...

put down Bi with Left at X

pre: Robot=AtX, Bi=InL,

LGrip=full

eff: Bi=AtX, LGrip=empty

go X -> Y

pre: Robot=AtX

eff: Robot=AtY

ICAPS 2008 19 / 32

Structural Abstraction Heuristics

Structural Abstraction Heuristics

◮ PDBs & memory-based abstraction heurstics in general rely
on blind search to compute h∗

AS : efficient only if the size of
the abstract space is small.

◮ Alternative: Choose ϕ so that ϕ(S) has a structure that
permits computing h∗

AS by some more effective method than
search.

E.g., choose ϕ so that ϕ(S) falls into a known class of
tractable optimal planning problems.
hϕ still has all properties of abstraction heuristics:
admissibility, monotonicity, condition for additivity, etc.

ICAPS 2008 20 / 32

Structural Abstraction Heuristics

◮ But there aren’t many known tractable optimal planning
classes.

◮ Some examples:

SAS+-IAO (if actions have unit cost).
(Jonsson & Bäckström 1998)

SAS+-UB with polytree causal graph of bounded in-degree.
(Brafman & Domshlak 2003)
SAS+ with “fork” and “inverted fork” causal graphs, under
various additional restrictions.

(Katz & Domshlak 2008)

◮ These problem classes are severely restricted: Do any usefull

abstractions fall in them?

ICAPS 2008 21 / 32

Structural Abstraction Heuristics

Quick Reminder: The Causal and Domain Transition
Graphs

Definition:

◮ The causal graph is a graph over
the variables of a SAS+ problem.

◮ Edge from Vi to Vj iff there exists
an action a with an effect on Vj

and precondition or effect on Vi.

Definition:

◮ The domain transition graph

(DTG) is a graph over the values of
one variable V .

◮ Edge from x to y iff there exists an
action a with V = x in pre(a) and
V = y in eff(a).

ICAPS 2008 22 / 32

Structural Abstraction Heuristics

Tractable Classes With Fork-Shaped Causal Graphs

◮ Cost-optimal planning is tractable if

1 The causal graph is a fork; and
2(a) |dom(Vr)| = 2 for the root variable;

or
2(b) |dom(Vi)| is bounded by a constant

for every non-root variable.

◮ Projections inducing fork-shaped
causal graphs found in many planning
domains (n variables depending on 1).

◮ Domain-size restrictions can be
achieved by merging values.

Projection on
{B1, . . . , Bn, Robot}

ICAPS 2008 23 / 32

Structural Abstraction Heuristics

Tractable Classes With “Inverse Fork”-Shaped Causal
Graphs

◮ Cost-optimal planning is tractable if

1 The causal graph is an inverted fork;
and

2 the domain of the (single) leaf
variable Vl is bounded by a constant;
and

3 each action affecting Vl has a
precondition on at most one other
variable.

◮ Projections inducing inverse
fork-shaped causal graphs also found in
many planning domains
(1 variable depending on n).

Projection on
{P1, T1, T2, Airplane}

ICAPS 2008 24 / 32

Structural Abstraction Heuristics

The SAS+-IAO Class

◮ A SAS+ planning problem is

Interference-safe (I) iff every non-unary action a is
irreplaceable (removing the edge associated with a splits
the DTG of every variable affected by a in separate
components).
Acyclic w.r.t. requestable values (A) iff for every variable
Vi, and for the set of requestable values R ⊂ dom(Vi)
(values that appear in eff(a) for non-unary a or in pre(a)
for a not affecting Vi), the transitive closure of its DTG
restricted to R is acyclic.
Prevail-order preserving (O) iff for every variable Vi and
x, y ∈ dom(Vi), X ⊂ R(Vi), the shortest path from x to y
passing each value in X also has minimal
(subsequence-wise) conditions on other variables.

ICAPS 2008 25 / 32

Structural Abstraction Heuristics

◮ Minimal-length planning for SAS+-IAO is tractable.

◮ N.B. The SAS+-IAO class contains problems with arbitrary

causal graphs.

◮ The projection on a single variable satisfies the IAO
restrictions (by definition).

◮ But there doesn’t seem to be any non-trivial larger
projections that do so in standard planning domains.

Many domains are symmetric: fail
acyclicity and/or interference-safety
restrictions.

Many domains have alternative DTG

paths: fail interference-safety and/or
prevail-order restrictions.

ICAPS 2008 26 / 32

Hierarchical A∗ & IDA∗

Hierarchical Abstraction Search

◮ PDBs precompute h∗
AS(s) for every abstract state s.

◮ In solving a single problem, typically only a small fraction of
PDB entries are used (may be < 0.1%).

◮ Alternative: Compute h∗
AS(ϕ(s)) on “need to know basis”,

i.e., only when hϕ(s) evaluated.

Still using search to compute h∗
AS(ϕ(s)).

But not using blind search: a hierarchy of abstractions
provides heuristics for search in AS.
Still using memory to avoid recomputing h∗

AS(ϕ(s)).

ICAPS 2008 27 / 32

Hierarchical A∗ & IDA∗

Caching in Hierarchical Abstraction Search

◮ Abstraction hierarchy: AS1 = ϕ1(S), AS2 = ϕ2(AS1), . . .

◮ What to store?

When an s–G-path in ASi is found, we know h∗
ASi

for
every state on this path.
When an s–G-path in ASi is found, we know that
h∗

ASi
(s′) ≥ h∗

ASi
(s) − g(s′) for every s′ explored in that

search.

◮ How to use it?

Use stored h∗
ASi

(s) whenever evaluating hϕi(s′) for
s′ ∈ ASi−1 such that ϕi(s

′) = s.
Use stored lower bounds on h∗

ASi
to focus search in ASi.

When search in ASi reaches s such that h∗
ASi

(s) is known,
short-cut the search.

ICAPS 2008 28 / 32

Hierarchical A∗ & IDA∗

How Effective Is It?

◮ The total size of hierarchy of abstract spaces,
|AS1| + . . . + |ASn| may be much larger than |S|.

◮ With above caching strategies and suitable abstractions:

Hierarcical A∗ beats blind search in S in ≥ 50% of
instances across several domains.
But never in 100% of instances.

(Holte, Perez, Zimmer & MacDonald, 1995).

◮ PDB computation searches only AS1, but does so
exhaustively.

ICAPS 2008 29 / 32

Summary & Conclusions

Summary & Conclusions

◮ We’ve talked mostly about memory-based abstraction

heuristics:

Using projections (PDBs).
Using more general explicit-state abstractions.

◮ These heuristics have been shown to be very effective in
many domain-specific search applications.

◮ And they can be effective for domain-independent planning

too, in spite of the fact that

we must include heuristic construction (precomputation)
time in cost-benefit trade-off; and
we need automatic and domain-independent methods for
selecting good abstractions.

ICAPS 2008 30 / 32

Summary & Conclusions

Some Open Questions

◮ For memory-based abstraction heuristics,

we don’t know how to trade off precomputation time
against the value of heuristic information;
the pattern selection problem is not solved.

◮ There are alternatives to memory-based abstraction
heuristics:

Hierarchical abstraction search
– search abstract spaces only when needed.
Structural pattern heuristics
– solve abstract problem by better method than search.

◮ But these have not been much explored in planning.

We don’t know which is most the effective way, for which
classes of problems.

ICAPS 2008 31 / 32

Summary & Conclusions

Some Things We Haven’t Talked About

◮ Many improvements to PDB heuristics in domain-specific
search:

Dual look-up & exploiting problem symmetries.
(Felner, Zahavi, Schaeffer & Holte 2005)

Storing “increment over base heuristic” in PDB.
Compressed PDBs. (Felner, Korf, Meshulam & Holte 2007)
Combining PDBs with perimeter search.

(Linares Lopéz 2008)

◮ Non-heuristic uses of abstraction:

Problem simplification, safe abstraction & heirarchical
planning.
The use of abstractions to prove unreachability, common in
model checking.

ICAPS 2008 32 / 32

	Abstraction & Search
	Abstraction Heuristics for Planning
	A Brief History
	References
	Pattern Database Heuristics
	Pattern Selection
	Symbolic Representation of PDBs
	Limits on the Power of PDB Heuristics
	General Explicit-State Abstractions
	Structural Abstraction Heuristics
	Hierarchical A* & IDA*
	Summary & Conclusions

