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Introduction

» Admissible heuristics are (often) defined as optimal solutions
to a problem relaxation, that is easier to solve than the
original problem.

» Here, we'll consider heuristics where:

@ The relaxed problem is an abstraction of the original.
@ The relaxed problem is solved by search (mostly).

» Canonical example: Pattern Databases
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Abstraction & Search

What's an Abstraction? A Formal Definition

» Definition: A state space, S, is a directed graph with
labelled & weighted edges.
@ Vertices represent states.

Edges represent state transitions.

The edge label is an action/transition name.

The edge weight is the action/transition cost.

» A search problem consists of a state space, .S, an initial state,
sy, and a set of goal states G.

@ Find a minimum-cost path through S from s; to some
sg € G, or prove that none exists.

» Definition: h§(s) denotes the cost of cheapest path through
S from s to some sg € G (oo if no path exists).
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» Definition: An abstraction is a mapping, ¢, from (states of)
S to some abstract space AS, which preserves labelled paths
and goal states.

o If s %% 5" in S, then (s) LA o(s') in AS, with ¢ <ec.
e If s € Gg, then p(s) € Gas.

> ¢ is a homomorphism iff AS has no transitions or goal states
other than those required by the above.

» Definition: The corresponding abstraction heuristic is

h#(s) = has(p(s))-
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» Theorem: h¥ is admissible.
Proof: Every s-to-goal path in S exists also in AS, and leads
to a goal. Thus, least cost-to-goal from ¢(s) in AS can not
be greater than in S.

» Theorem: h¥ is consistent/monotone.
Proof: If s =% ' in S, then o(s) ad, @(s') in AS.
Therefore h¥ ¢(s) < ¢ + hY4(s’), which implies

h?(s) < + h?(s') < c+ h# ().
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Example: Logistics (Original State Space)

T2=ATB, TI=A,

| oA, Pi=A

/ Pop
/| To=am. Ti=Am.
4 i1, Pi=nTi

Pr-
T2, TIZAB,
PR=AA, PI=AA

T2=AIAL TIZAIA.
P2=AB.PI=InT2
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Example: Logistics (Abstract State Space 1)

P2=AIA, PI=AIb
P2-AIA PI-InT2 Jg PkInTZ,P]:InTZ P2=1nT2, PI=AIB

—'A—E o
P2=AtA, P1=InT1 ‘ ._
— e — e, ]
2 | P2=A(B, PI=InT2
a2

P2=AtA, P1=AtA

P2=InT2, P1=AtA YA

."ﬂ-n |

P2=InTI1, P1=At P2=AtB, P1=InTI

- i

P2=AtB, P1=AtA
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Example: Logistics (Abstract State Space 2)
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Valtorta's Theorem (Generalised)

Theorem: Let S be a state space, sy and G the initial and
goal states, AS = ¢(.S) an abstraction, h¥(s) the abstraction
heuristic computed by blind search in AS.

If an s;—G-path in S is found by A* using h?¥ as the
heuristic, for any state s necessarily expanded by a blind
search in S, either s is expanded by A* or ¢(s) is expanded
while computing h?.

(Holte, Perez, Zimmer & MacDonald, 1995).
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How to Beat It?

» Use memory: compute each h’; -value only once.
e Exhaustive reverse exploration, using |AS| memory, only
expands each state in AS once.
o But memory is limited.
» Map many states in S to one in AS.
o I5l/|As| h¥-values for every computed h% ¢-value, on
average.
o But the smaller |AS], the less accurate is h%:
h# = log, (|AS|).
» Don't use search to compute h®.

@ Choose ¢ so that ¢(S) has structure that can be exploited
to compute h;(s) more efficiently.
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The t &~ 7/m Conjecture
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Graph copied from Hernadvolgyi (2004). Point: MaX/min for 1
Point: Average over 1000 instances. instance.

» Korf (1997) conjectured t ~ n/m, for IDA* search.

» Holds on average, but large variation among abstractions and
across instances.
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Abstraction Heuristics Applied to Planning

» In planning, we're given a description, in some formal

language (STRIPS, PDDL, SAS+, etc.) of S.

@ Domain-independent: Can't assume any more about S than
what must hold for any problem expressible in the input
language.

@ Automatic: No human ingenuity should be required beyond
writing the problem description.

» Focus on solving one instance (in domain-specific search,
often many instances with same state space & goal).

@ Need to consider also precomputation in heuristic
cost-accuracy trade-off.
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» Abstraction heuristics have attractive properties for
domain-independent planning:
@ They're general: Abstractions exist for every planning
domain/instance.
@ They're largely automatic: Once ¢ chosen, heuristic
computation can be done by generic, automatic procedure.

» But applying them to planning also presents particular
challenges:

o Typically many possible abstractions: How to choose a
good one — automatically?

@ Many planning domains generate search spaces different
from those typically considered in domain-specific search

e E.g., counting problems vs. permutation problems.
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Representations of Planning Problems

» Planning problem representations are normally factored:
@ States are assignments to set V' of state variables.
@ Transitions defined by set of actions, each with an

applicability condition and an effect on subset of V.

o Goal states defined by condition on V/ C V.

» We'll assume a SAS-style representation:
@ More compact (important for memory-based heuristics).
o Clearer structure.

» Automatic STRIPS-to-SAS+ conversion is possible.

» Cave: STRIPS problem may have several SAS+ encodings,
not all equally good.

ICAPS 2008

16 / 31
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The SAS+ Representation

Definition: A SAS+ representation of a planning problem
consists of

» A set of state variables, V.
» For each V; € V, a finite domain of values, dom(V}).
» A set of actions: each action a has:

e A unique name (a).

e A precondition, pre(a): a partial assignment to V/
(i.e. a conjunction of assignments “variable = value’, for
some subset of variables).

o An effect, eff(a): also a partial assignment.

@ A cost, cost(a).

» An initial state, I: a complete assignment to V.
> A goal, G: a partial assignment.
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Definition: The representation induces a search space:

» States assign a value in dom(V;) to V;, for each V; € V.

e “s[V;]": the value of V} in state s.

.. . . : t
» Transitions induced by actions: s a-cost(a)

e s[Vi] = pre(a)[V;] for all V; mentioned in pre(a).
e §'[Vi] = effla)[V}] for all V; mentioned in eff(a).

e §'[Vi] = s[V;] for all other V.

» Initial state: The (unique) state satisfying I.

> Goal: Set of states satisfying G.

ICAPS 2008
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Abstracting Transformations on Planning Problems

SAS Encoding

Pi: {AtA, AtB, InTi, InT2}
P2: {AtA, AtB, InTi, InT2}

e E.g., ignoring T1 & T2 yields abstract ol o]
state space 1. T2: {AtA, AtB}

» lgnore one or more state variables.

load Pi in Tj at L

» Merge values in domain of a variable. pre: Pi=AtL, Tj=AtL
. eff: Pi=InTj
e E.g., merge InT1 and InT2 in dom(P1). :
unload Pi in Tj at
@ unload P1 from T2 at L pro: PicInTj, Tj-htL
pre: Pi1=InTi-or-InT2, T2=AtL off: PizheL

drive Tj L -> L’
pre: Tj=AtL
eff: Tj=AtL’

eff: Pil=AtL
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» Replace individual variables by counters.

o E.g., replace P1 and P2 with #{Pi=AtA},
#{Pi=AtB}, #{Pi=InT1} & #{Pi=InT2}.
@ unload Pi from T2 at L
pre: T2=AtL
eff: #{Pi=InT2}-=1, #{Pi=AtL}+=1
» Reduce the cost of one or more actions.

o E.g, set cost of drive to zero.
@ Abstract state space same as original,
but has cheaper paths.

SAS Encoding

Pi: {AtA, AtB, InT1, InT2}
P2: {AtA, AtB, InT1, InT2}
Ti: {AtA, AtB}
T2: {AtA, AtB}

load Pi in Tj at L
pre: Pi=AtL, Tj=AtL
eff: Pi=InTj

unload P¢ in Tj at L
pre: P¢=InTj, Tj=AtL
eff: Pi=AtL

drive Tj L -> L'

pre: Tj=AtL
eff: Tj=AtL’

ICAPS 2008
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A Brief History

A Brief (and Very Selective) History of Abstraction
Heuristics

» Prieditis (1993)

o Catalog of abstracting problem transformations.

@ Automatic search for “abstractions that can be sped up”.
» Culberson & Schaeffer (1996, 1998)

o Pattern Database heuristic for the 15-Puzzle.
» Korf & Taylor (1996)

Korf (1997)

@ Reconstruction of Manhattan distance as PDB & extension
to dynamic additive 2-tile PDBs.
@ The t &~ n/m conjecture.
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A Brief History

» Holte & Hernadvolgyi (1999, 2000)
Hernadvolgyi (PhD 2004)
@ Applied PDBs to several search problems.
o Experimental test/validation of theory, including the
A~ n/m conjecture.
@ Pattern selection by local search for SOP.

» Holte et al. (1995, 2005)
@ Hierarchical A* & IDA*: recursive on-the-fly search in
abstract state spaces.
> Edelkamp (2001, 2002)

@ Applied PDBs to planning, using multi-valued state variable
("SAS+") representation.

o Sufficient condition for additivity.

@ Symbolic representation of PDBs using BDDs.
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» Haslum, Bonet & Geffner (2005)

@ Constrained abstraction.
o Conflict-directed pattern selection.

» Edelkamp (2006)
Haslum, Bonet, Helmert, Botea & Koenig (2007)

@ Pattern selection by local search for planning.

» Drager, Finkbeiner, Podelski (2006)
Helmert, Hoffman, Haslum (2007)

@ Automatic construction of general explicit-state
abstractions.

» Katz & Domshlak (2008)
@ Structural pattern heuristics.

ICAPS 2008
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Pattern Database Heuristics

» Pattern databases (PDBs) are memory-based abstraction
heuristics, in which the abstraction is typically a projection.
@ h%g precomputed and stored for every abstract state.
@ h¥(s) computed by looking up the value for ¢(s).

» Let V/ C V be a subset of state variables: ¢ is a projection
on V" iff o(s) = p(s') iff s and s’ agree on the value of every
variable in V',

e Equivalent to ignoring variables not in V.

@ Projecting transformation: Remove conditions & effects on
variables not in V'’ from actions & goal.

e N.B. This is an over-approximation (¢ not necessarily a
homomorphism).

» The kept variable set, V', is called the pattern.

ICAPS 2008 3/41
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» How to store h% ¢ & compute h¥?
@ Map every abstract state s € AS to a unique index
(perfect hash function).
e w.lo.g. dom(V;) ={0,...,|dom(V;)| — 1}: variable-value
assignment is a number in an “uneven” base.
Eg, V' ={Vs,V5}: index(s) = (s(Va) - |dom(V5)|) + s(V5).
@ Store h 4 values in table, indexed by index(s).
@ More compact storage possible for certain state spaces
(e.g., permutations).
» How to compute h% 47
@ Exhaustive, “cost-first” search in reverse through AS.
@ h¥ for forward search: backwards from goal states in AS.
@ h¥ for regression search: forwards from initial state in AS.
ICAPS 2008 4 /41




Pattern Database Heuristics

Example: Logistics

» 2 Packages (P1,p2), 2 Trucks (T1, T2), 2 SAS Encoding

T1: {AtA, AtB}
. . T2: AtA, AtB
» Projection on {T1,P1} (abstract space): { ’
load Pi in Tj at L
drive TIB>A pre: Pi=AtL, Tj=AtL
T~ unload P1from T2 B eff: Pi=InTj

d T1A>B
load P1in T2t A T, e ] ]
m unload P1 from 12 a unload Pi¢ in Tj at L
| e _ pre: Pi=InTj, Tj=AtL
drive TI ASB . i=
eff: Pi=AtL
N driveTIASB PloAin e LN N
— \ o PlinT2atB__~ drive Tj L -> L’
\ - mond P fom T4 1 5
\

pre: Tj=AtL
eff: Tj=AtL’

load PTin T1 at A
~—

Pi: {AtA, AtB, InTi, InT2}

Iocations (A and B). P2: {AtA, AtB, InTi, InT2}

Pattern Database Heuristics

TI=AIA, TI=AtA, TI=AtA,
PI=AB unload P1 from T2 at B Pl=InT2 load P1in T2 at A Pl1=AtA

TI=AB, Ti=Am,
unload P1 from T2 at B P1=InT2 load Plin T2 at A | PI1=AtA

TI=A1B,
P1=AtB

TI=AB [ T1=A0A,
unload P1 from T1 at B Pl=InT1 drive T1 A->B P1=InT1

Progression PDB

index(s): s h(s) index(s): s h(s)
0: T1=AtA, P1=AtA 2 4: T1=AtB, P1=AtA 2
1: Ti=AtA, P1=AtB 0 5. T1=AtB, P1=AtB 0
2: Ti1=AtA, P1=InT1 2 6: T1=AtB, P1=InT1 1
3: Ti=AtA, P1=InT2 1 7: T1=AtB, P1=InT2 1

ICAPS 2008
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A Note on PDBs for Regression
» In regression, a search state is a condition to achieve.
o Conditions may be partial.
@ Need to extend dom(V') with a “don’t care” value (x).
> “Regression in reverse” # Forward action application!
> regress(c,a) = (¢ — effla)) U pre(a)
if eff(a) contributes part of ¢ and eff(a) doesn't contradict c.
> In reverse: (pre(a) Uz) — (zUyU2),
where (zxUyNz2)Neffa) =0,y C efla), y # 0, 2 C pre(a),
zNpre(a) =0, xNy=yNz=xzNz=0.
ICAPS 2008 7/41
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» Another way to compute a regression PDB:
e For complete s € AS, compute h* ¢(s) (distance from
©(s1)) by standard forward exploration.
e For partial s € AS, h4(s) = ming h* ¢(s") over all
completions s’ of s.
» For the kind of projection we've considered so far, both
methods yield same h¥(s) for all s
» But, for constrained projection, this is not necessarily true
— may vyield an inconsistent heuristic.

ICAPS 2008
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unload P1 from T2 at B

load P1in T2 at A

TI=AB,
PI=AB

load P1in Tl at A

Regression PDB
index(s): s h(s) index(s): s h(s)
1: Ti=x, P1=AtA 0 2: Ti=*, P1=AtB 2

11: T1=AtB, P1=AtA 0
12: T1=AtB, P1=AtB 2

6: T1=AtA, P1=AtA 1
7. Ti=AtA, P1=AtB 3

ICAPS 2008
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Combining PDB Heuristics

» If AC B, h(s) < hB(s) Vs (h® dominates h*).

» max(h?, hP) is admissible & consistent.

» Patterns A and B are additive if no action has an effect on
variables in both.

» If A and B are additive, h* + hZ is admissible.
Proof: Least cost solution paths in ©(S) and ¢?(S) have
no action in common.

» N.B. This is a sufficient condition only.

max(h(s), hB(s)) < hA(s) + hB(s) < hAYB(s).

o Additivity implies no “positive” interaction between
abstract plans in p?(S) and ©”(S), but there can still be
“negative” interactions.

v

ICAPS 2008
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The Canonical Heuristic Function

> LetC={P,...
» The canonical heuristic, h®, is defined as

he(s) = hP
(5) = 0 ) 2 W)

, P} be a collection of patterns.

where m.a.s.(C) is the set of maximal additive subsets of C.
@ |m.a.s.(C)| can be exponential in |C].

» Eg., if C={{rP1,T1, T2}, {P2,T1, T2}, {P1}, {P2}},
hC = max(h{(PLTLT2} 4 P2} p{P2TLT2} |y {P1} p{PL} 4 p{P2}
(ht*1} + hiP2} dominated by first two, can be left out).

» hC is admissible & consistent, and dominates every other
combination of h* for P € C under same condition for
additivity.

ICAPS 2008
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Combining PDB Heuristics: A Special Case

» Consider the 15-Puzzle, and a pattern collection containing
all pairs of tiles and single tiles:
C = {{T1,T2},{T1,T3},...,{T14},{T15}}.
@ 210 PDBs with 256 states, 15 PDBs with 16 states.
@ 225225 admissible sums (each of 7 pairs and 1 single).
» How efficiently find maximum admissible sum for state s?
o Make a complete graph over tiles with edge Ti—Tj weight
equal to A{TT7} (5).
o Solve weighted matching problem, in time O(n?).
(Korf & Taylor 1996)
» Not specific to (n? — 1)-Puzzles.
@ Applicable to any set of mutually additive variables.
o But tractable only for collection of patterns of size 2
(hypergraph matching is intractable).

ICAPS 2008
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Generalised Additivity: Cost Distribution

> h¥l 4 h¥2 is admissible when no action may appear in
optimal solution in both abstractions ¢;(S) and 2(S5).

> 1st Generalisation: h¥* 4+ h¥2 is admissible when no action
contributes to the cost of optimal solution in both
abstractions ¢;(S) and @a(S5).

o If every action that has an effect in both patterns A and B
is given zero cost in either p(S) or pB(S), K + hB is
admissible.

> 2nd Generalisation: h¥! + h¥2 is admissible if for every action

a, the sum of its contributions to the cost of optimal solution

in ©1(S) and 2(S) does not exceed its cost in S.

@ Va costy,, (a) + costy,(a) < cost(a).

ICAPS 2008 13 /41
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Optimal Cost Distribution over Abstractions

» Cost of reaching sg € G from s al o

in ©(S) can be formulated as an ° @2 /n3,
LP, of size O(|¢(S)[), in which O« :

action costs are variables.

» Heuristic value of s for the max z(s)
optimal cost distribution over st. z(s) < ylar) + z(s1)
abstractions 1 (5), ..., ¢x(S) z(s) < y(ag) + z(s2)
can also be formulated as an LP: z(s2) < ylas) + z(s3)
“union” of LPs for each ¢;(5), 2(s2) < ylas) + (s4)
plus admissibility constraint. z(s3) =0

(Katz & Domshlak 2008)

Pattern Database Heuristics

Constrained Projection

» The projecting transformation, “ignore variables not in P",
can be more relaxed than the abstraction ¢©(S).

@ Abstract state s’ can be reachable in the transformed
problem even if no s such that ¢ (s) = s’ reachable in S.
(“spurious states").

@ Transition s’ —— ¢ can be allowed in the transformed
problem even if for no s € S such that ¢(s) = s/, pre(a)
holds in s.

» This results in weaker PDB heuristics.

» Projection can be strengthened by enforcing state constraints
valid in original space in the abstract space.
(Haslum, Bonet & Geffner 2005)

ICAPS 2008 15 / 41
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Example: 8-Puzzle
AS En in
3 4. 5 Ti: {<1,1>, ..., <3,3>} (<col,row>)
Blank: {<1,1>, ..., <3,3>}
2 3 6 8 move T1 <1,1> -> <1,2> (down)
pre: T1=<1,1>, Blank=<1,2>
eff: T1=<1,2>, Blank=<1,1>
Init Goal move T1 <1,1> -> <2,1> (right)
pre: Ti1=<1,1>, Blank=<2,1>
eff: T1=<2,1>, Blank=<1,1>
» Projection onto Ti yields Manhattan distance for tile 7.
» Abstractions are additive: sum over all but blank yields
standard MD heuristic.
ICAPS 2008 16 / 41
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» Tiles 7 and 4 are in linear
4 4 conflict.

» But projection onto {T4,T7} still

yields only 2 — same as
hiT4 4 {17}

Init Goal

move T7 <2,1> -> <2.2>

Trm.3>. Tie22> |4 ove T7<2.2> > <2.3>

T7=<2.1>, T4=<2.2>

» Short-cut through an “impossible” abstract state!

ICAPS 2008 17 / 41

Pattern Database Heuristics

Solutions to the Problem?

» Include Blank variable in abstraction:
o Larger PDB.
@ Projection onto disjoint tile-sets not additive
(unless Blank-only moves given zero cost).
» Encode the problem in a different way:
move T1 <1,1> -> <1,2>
pre: Ti=<1,1>, T2=/=<1,2>, T3=/=<1,2>,
T7=/=<1,2>, T8=/=<1,2>
eff: Ti=<1,2>

.

@ How to find right (re-)formulation automatically?

» Enforce constraints of original problem in abstract space.

ICAPS 2008
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Constrained Projection

> Let C be a collection of state invariants that hold in S.
e E.g., permanent mutexes (—T7=<2,2>V —T4=<2,2>).

» In the constrained projection gog(S), action a applies in state
©E(s) iff pre(a) and s agree on variables in P and pre(a) U s
does not violate any invariant in C.

> hi(s) = h:‘oc(s)(s) is admissible and consistent.

Proof: ¢c(S) is a subgraph of ¢(S). Any edge in ¢(S) not
in c(S) can not be part of any s;-G-path in S (action not
applicable, or applied in an unreachable state).
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Pattern Database Heuristics

[17=<2.3>, T4=<32> }4—1 T7=2.2>, T4=<32> |o—] T7=<2,1>, T4=<32> f¢——— ..

-
‘ T7=<3,3>, T4=<2,2> H,/ T7=<3.2>, T4=<2,2> H T7=<3,1>, T4=<2,2>

T7=<2,1>, T4=<2,2>
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Pattern Selection

Pattern Selection for PDB Heuristics

» We can combine any collection of patterns, but not all yield
equally good heuristics.

» More and/or larger PDBs are often better (and never worse)
but memory is limited — how make best use of it?

@ Maxing several smaller PDBs often better than one large.
e Exploit additivity: memory required for hAYB is product of
that for k4 and h5.

o Recall: max(h?(s), hB(s)) < hA(s) + hB(s) < hAVB(s).
» Require automatic (and not too costly) selection.
» Some approaches in planning literature:

@ Bin-packing.

o Conflict-directed construction.

@ Local search.

» Problem representation may affect heuristic quality.

ICAPS 2008
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Example: Blocksworld (3op)

SAS Encoding 1:

below(?X): {A, B, C, D, Table}
clear(?X): {true, false}

move 7X : ?X -> ?7Z
pre: below(?X)=7Y, clear(?X)=true, clear(?Z)=true
eff: below(?X)=7Z, clear(?Y)=true, clear(?Z)=false

move ?X : 7Y -> Table
pre: below(?X)=7Y, clear(?X)=true
eff: below(?X)=Table, clear(?Y)=true

SR

Rlo[=>]

SAS Encoding 2:
above(?X): {A, B, C, D, None}
ontable(?X): {true, false}

move 7X : ?X -> ?Z
pre: above(?Y)=7X, above(?X)=None, above(?Z)=None
eff: above(?Z)=7X, above(?Y)=None

move ?X : 7Y -> Table

pre: above(?Y)=7X, above(?X)=None
eff: above(?Y)=None, ontable(?X)=true

ICAPS 2008
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****** q

able, I below(D)= A, |

A
below(D) = C, D:B>C below(D) = B, - ow(D) = B.
below(C)= A D ASC below(C)= A —A
below(D) = A,
y below(D) = Table,

below(D) = Table,
below(C)= B

D:B>C below(D) = B,
D:ASC below(C)= B
below(D) = A,
below(C)= B
below(D) = Table,
below(C) = Table

below(D) = C,
below(C) = Table ||

below(D) = Table,
below(C) = Table

below(D) = A,
below(C) = Table

below(D)=C,
below(C) = Table

below(D) = B,
below(C) = Table

below(D) = A,
below(C) = Table

below(D) = Table,
below(C)= D

D:B>C below(D) = B,
D:A>C below(C)= D

. w25,
below(C)= D | below(C)=B |
1

J,{below(C) ,below(d)} _ | h{c?elow(c),below(D)} —9

ICAPS 2008

below(D) = B,
below(C)= D

below(D) = Table,
below(C)=D

below(D) = A,
below(C)= D
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above)= None, [+
dbove©)=

above) =B, || ¢ B Artable >D [ above()= None,
above(C)= D above(C)=D

above(D)= B,
above(C)=None [
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Pattern Selection

Encoding 1

> hgoelow(c),below(D)} and hgoelow(A),below(B)}

Encoding 2

/ |
£ A above(a)

Qo)

.above(m’
\"Q
a .ntable(D

are additive.

» plabove(C),above(D)} 54 p{above(d),above®B)} 4ra not

— can only take max.
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Pattern Selection

} 3 5
} 2 32

h{c‘?elow(c) ,below(D)} +

TIO|W x>

h{c‘?elow(c) ,below(D) }+

hg)elow(A),below(B)} —_5 h{c?elow(A),below(B)} —4

p{above(C),above (D) } , max(h{above (C) ,above (D)} ,

max(
J {above (8) ,above(B)}) =3

J{above (A) ,above(B)}) —4

Pattern Selection

Bin-Packing Construction

» Given limit L on the size of any
single PDB, partition V1,...,V,
into smallest number of patterns
s.t. HVjePi |dom(V;)| < L.

@ Bin-packing problem
(if log-transformed).
@ NP-hard, but approximable.

> Ignores additivity.

» lgnores relative usefulness of
placing V; and V; in same pattern.

15-Puzzle

# Nodes Expanded
2000 Sewoa  1ew0s  2e:05  5es0s  levs

o 5 10 15 El B Bl

Instance (sorted by median)

Blocksworld

20000 50000

# Nodes Expanded
100 20 500 1000 2000 5000

Instance (sorted by median)
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Conflict-Directed Construction
» For additive patterns A and B, when is A more
informative than A4 + hB?
@ From a PDB, we can extract not only the cost of an optimal
solution to the abstract problem, but also the abstract plan.
o If there exists abstract plans for s in ¢(S) and ¢©B(S9) that
have no conflict, hRAYB(s) = h4(s) + hB(s).
o Conflict iff no interleaving of plans valid in p4“B(9).
» Can't check every interleaving of every pair of abstract plans.
@ Pick one arbitrary abstract plan.
e Ignore plan in pP(S): check plan in p*(S) for
dependencies on / mutexes with some V' € B.
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Pattern Selection

Example: Blocksworld (30op)

{below(a)}: ()

{below(B)}: (B:C->D)
0] {below(C)}: ()
D]

{below(D)}: (D:Table->C)
» Plan (B:C->D) conflicts with plan () for {below(a)}: prec.
clear (B) mutex with below(A) = B always true.

» Plan (B:C->D) conflicts with plan () for {below(C)}: prec.
clear (D) mutex with below(C) = D always true.

» Plan (D:Table->C) conflicts with plan () for {below(C)}:
prec. clear (D) mutex with below(C) = D always true.
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Pattern Selection

Conflict-Directed Construction

» Given additive variables, V7,..., Vy:
o Initialise collection C with pattern {V;} for each V; with
goal value.

@ Compute PDB for each pattern in C, analyse abstract plans
for conflicts.

@ Merge patterns with most conflicts, if resulting pattern not
too large (limit L on PDB size).

@ Repeat until no conflicts or no feasible mergers.

ICAPS 2008
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{below(A),below(B) }:
a (A:B->Table,B:C->D, A:Table->B)

8]
— [ {below(C) }: ()
D] {below(D)}: (D:Table->C)

» Plan (A:B->Table, B:C->D, A:Table->B) conflicts with empty
plan for {below(C)}: prec. clear(D) mutex with
below(C) = D always true.

» Plan (D:Table->C) conflicts with plan () for {below(C)}:
prec. clear(D) mutex with below(C) =D always true.
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Pattern Selection

A Little Theory: How Useful is Heuristic A?

» Ej(c): # nodes expanded by tree search to
depth (cost bound) d with heuristic h; i.e., #
nodes with g(s) + h(s) < d.

» Blind search: Ey(d) ~ bv°.

> Ep(d) ~ b "

o h: expected value of h(s).
@ But many more s with high g(s) & small
h(s) encountered in search.

> En(d) = 3k, .a Na—kPn(k)
e N;: # nodes with acc. cost (g-value) i.
@ Py(k): probability that h(s) <k, for s
drawn uniformly at random from the search
tree. (Korf, Reid & Edelkamp 2001)

Graph copied from Holte,
Felner, Newton, Meshulam

& Furcy (2006).
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Pattern Selection by Local Search

» Perform a (local) search in the space of pattern collections.
» How compare/rank collections? By estimate of Ej(d).
» Instances of this scheme in planning literature:

@ Evolutionary algorithm over bounded-size collections,
ranking by h. (Edelkamp 2006).
@ Hill-climbing search over “growing” collections, ranking by
estimated reduction in search effort.
(Haslum, Bonet, Helmert, Botea & Koenig 2007).
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Hill-Climbing Pattern Search

» Hill-climbing search.
» Initial pattern collection: C = {{V'} |V in goal}.

» Neighbourhood of C: C' =CU{P U{V}}, forany P € C
and V ¢ P, unless P U {V} or C’ too large.

» Neighbourhood extends C with one new pattern P’, which
extends a pattern P € C with one new variable.

» Neighbourhood ranking: by estimated reduction in search
effort: Eye — Ej .

ICAPS 2008
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» Estimating Ejc — Ejer:

o Recall: Ejc(d) ~ Y _ 4 Na-rPpe (k).

o Effort saved by A% over h¢: 3 Ny_j(Pye(k) — Pyer (k)

o Estimate (m samples): 1 D ns 22hC (na) k< (ng) N—k-

o Simplified estimate: - |{n; | h¢(n;) < h¢ (ni)}| =
probability that h¢ (n) > h¢(n) for node n drawn uniformly
at random from tree.

> Testing h¢(n;) < hC (n;):

o Sample states by random walk (to depth ~ w - h¢(s)).

o Compute hC'(s) for each sampled state — cost-effectively.

@ (' has only one new pattern P/ = P U {V}: compute
h""(s) by search in abstract state space of P’ using k' as
heuristic.
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Pattern Selection

Additional Trix

» Consider patterns over spanning subset S of state variables
@ Assignment to variables in S plus mutex constraints
determines values of all variables.
@ Select S to minimise |\S| and maximise additivity in S.

» Static: Add V to pattern P only if V causally connected to
some variable in P — if not, hfY1V} is never better than
At + nivh,

» Statistical: After each “epoch” of 7* samples, calculate
confidence interval [l;, ;] for improvement of C';: if u; < I,
C’; is very unlikely to be better than C';, so stop evaluating
C';.

» Stopping condition: No more patterns fit within size limits, or
improvement of best new pattern too small (e.g., < 1%).

ICAPS 2008
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Pattern Selection

» No accurate absolute prediction of Ejc — E,cr.

e Simplified formula (disregards weight Ny_).
e Formula for Ej,(d) measures tree search effort — not
necessarily same as graph search effort.

— but sufficiently good measure of relative merit of PDB
heuristics in pattern search neighbourhood.

» Neighbourhood evaluation is computationally expensive.
» Neighbourhood may not contain any improving pattern.
o E.g., Logistics with 2 Trucks: h{P1}(s;) =2,
h{Pl’Tl}(S]) =2, h{Pl,TQ}(SI) =2 but h{Pl,Tl,TQ}(SI) — 4
@ General problem with "disjunctive resources”.
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Symbolic Representation of PDBs

Symbolic Representations

> “Symbolic” refers to use of decision diagrams to compactly
represent functions.

» Binary Decision Diagrams (BDDs) represent boolean
functions of binary arguments.
@ Can represent a set of bit vectors: a(by,...,b,) = 1iff
(b1,...,by) € set.

@ Set operations (U, N, = 0, etc) can be performed on
(ordered) BDDs.

o Key to efficient set-based search algorithms.

» Algebraic Decision Diagrams (ADDs) represent (partial)
mappings from bit vectors to arbitrary domain.

» Decision diagrams can be much more compact than a tabular
representation — but no guarantee.
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Symbolic Representation of PDBs

Example: Logistics

» Encode state as bit vector by writing values

in binary.

P1 P2 T1 | T2
Bit: b0 bl | b2 b3 | bd | bd5
= AtA 0 0]0 O
= AtB 0O 1,0 1]1/|1
= ImT2 |1 0] 1 O
= InT2| 1 1|1 1
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Symbolic Representation of PDBs

How to Represent a PDB With a BDD

» Array of BDDs: A[i] holds > Fast extraction of set of
set of states with A(s) = 1. states with h =i
— important operation in
some symbolic heuristic
search algorithms.

» But finding h(s) for a single
state s requires linear scan.

h=0
©
v
V||

|
|

|

|
IO
S\

r w

1 0

» Direct construction by
symbolic breadth-first search
in abstract space.

(Edelkamp 2002, 2007)

» Alternative: Single BDD holding set of pairs (s, h(s)), with h(s)
encoded in binary.
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Symbolic Representation of PDBs

How to Represent a PDB With an ADD

» Map states to PDB values.

» Fast look-up of h(s) for a single
state s.

» Probably most compact
representation: up to 103 times
smaller than corresponding PDB

Y v
table in some planning domains.
)

(Ball & Holte, 2008

» But not always smaller.
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Abstraction Heuristics in Planning
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Limits on the Power of PDB Heuristics
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Structural Abstraction Heuristics
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Summary & Conclusions
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Abstraction Heuristics in Planning

Malte Helmert & Patrik Haslum

...from various places...

ICAPS 2008

ICAPS 2008

2/32

Limits on the Power of PDB Heuristics

Limits on the Power of PDB Heuristics

» The power of PDB heuristics depends on available memory.
@ If memory not bounded, a PDB could contain all of S.
@ But time to compute the PDB also linear in PDB size.

» Consider search spaces of increasing size, .S,, defined over
variables Vi,...,V,, with h*(s;) = O(|G|) = O(n).
@ E.g., instances of growing size in a planning domain.
@ Plan length grows with size in all interesting domains.

» Examine the asymptotic accuracy, h(sr)/h*(sr) in the limit
of large n.
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Limits on the Power of PDB Heuristics

» Requirement: PDB size (and computation time) is
polynomial in n.
@ Consequence: Each pattern P can contain at most
O(log(n)) variables.
o hf(s;)/h*(s;) — 0 asn — co: hf can be arbitrarily
inaccurate.
» Does exploiting additivity help?
@ Can use O(p(n)) PDBs with O(log(n)) variables each.
@ There are planning domains where additive PDBs achieve
(reasonably) good accuracy also for large n.
@ There are also planning domains where additive PDBs do
not achieve better accuracy, in the limit of large n.

ICAPS 2008
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Limits on the Power of PDB Heuristics

Example: Gripper

SAS Encoding
Robot: {AtA, AtB}
RGrip: {empty, full}

> h*(SI) =2n+n (n X pick up & Lrip: {empty, full}
put down + 1/2n X 2 X go). Bér ek, AeB, Ik, Inl}

» Move n balls from A to B:

. . pick up B¢ with Right at X
» KBiL--Bik} counts k x pick up & pre: Robot=AtX, Bi=AtX,
RGrip=empty
put down. eff: Bi=InR, RGrip=full
» hBU(s)) + ...+ hB(s)) = 2n >
Z/Sh*(SI) put down Bi with Left at X
: pre: Robot=AtX , B¢=InL,
Bi1,...,Bi; ,Robot . LGrip=full
> hé Loee Bl } counts k X pick up & eff: Bi=AtX, LGrip=empty
put down + 1/2k X 2 X go. g X > Y
. ) pre: Robot=AtX
» Additive only if at most one pattern eff: Robot=AtY

includes Robot.

» At most log(n) of n go counted by any
sum: hC(sy) — 2/3n as n — oo.
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Limits on the Power of PDB Heuristics

Example: Blocksworld (3op)

Bl Bl
: : » Swap blocks at base in tower
5.4 " B, of n blocks.
IBn—1 Bn > h*(SI) =2n — 2.
Bn Bn—l

» Only below(B,_2), below(B,_1) and below(B,) differ
between s; and s (resp. only above(B,,_1) & above(B,)).

» hli(s;) > 0 for at most three patterns P;.

» Any sum hfn 4+ hPi2 4 hPis can consider at most 3 - log(n)
variables, requiring no more than 6 - log(n) moves:
h€(s1)/h*(s1) — 0 as n — oo.
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General Explicit-State Abstractions
General Memory-Based Abstraction Heuristics

» To yield an informative heuristic, abstraction must preserve
relevant state distinctions.

» To fit in memory, abstraction must have a small
representation:
e Can't have too many abstract states (|p(S)| < N).
@ Succinct encoding of abstraction mapping, .

» PDBs can use a very compact encoding of the abstraction
mapping (|[PDB(P)| = O(|¢"”(5)))).

» But there may be more informative abstractions with IV
states that are not projections.
o E.g., Logistics, with 1 Package & m Trucks in 1 City:

R =2 = pIPHYUP for any P C {T1,...,Tm}.

» Instead of preserving a few variables perfectly, it may be
better to preserve some information about all variables.
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General Explicit-State Abstractions

» Definition: The synchronised product of two state spaces,
S1 and S5, with same action sets, is denoted S7 ® Sy and
defined as:

@ States in AS7 ® ASs: (81,82), s.t. 51 € ASq, s9 € AS,.

) (51,82) LN (8/1,8/2) in AS; ® ASy iff 51 N 8/1 in AS; and
S92 L) 8’2 in ASQ

o (s1,52) € Gag,was, iff s1 € Gag, and s1 € Gysg,.

> If AS; = p1(S) and ASy = ¢o(S) are abstractions of the
same state space S, AS7 ® AS, is also an abstraction of S
which combines the information in both.

o ©12(5) = (p1(5), p2(s)).
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General Explicit-State Abstractions

> The state space S induced by a SAS+ problem over variables
V1,...,V, can be reconstructed as

AS{V1} Q... AS{Vn}7

where AS{y, = ©V1}(S) is the projection on {V;}.
> If 9(ASfyy ® ... ® ASqy,y) is an abstraction of
AS{V1} ®...Q AS{Vk}v then

(p(AS{Vl} ®R...Q AS{Vk}) (9 AS{Vk+1} R...Q AS{Vn}

is also an abstraction of S.

» Too large intermediate abstractions can be shrunk by
explicitly merging some abstract states.
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General Explicit-State Abstractions

Example: Logistics (A Perfect Abstraction)

TI=AtAIAB

Pl=InT1

TI=AtAIAB

General Explicit-State Abstractions

S
T2=AA 4 PI=AA,
TI=AB,T2=A1B
@ drive TEB->A drive TZ:B->A
52 i St ‘ 30
3 PI=AIA, PI=AIA, PI=AIA,
TI=AtAT2=AIB ‘ l TI=AAT2=A1A TI=AB,T2=A1A
load P1 load P1
in Tl at A inT2at A
S6: s8: |
2 PI=InT1, PI=InT2,
TI=AtA, T2=* I TI=*T2=A1A I
drive TEA>B drive T2A>B
Ti=Ad 7 ) T2-AKIAB @
Ti=A1B S7: 1 S9: 1
1 PI=InT1, PI=InT2,
T2=AAIAB @ TI=AB,T2=+ | TI=HT2=A18 |
TI=AIAIAB unload P1 unload P1
from T1 at B from T2 at B
S50
0 PI=AIB,
@ TI=*T2=*
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General Explicit-State Abstractions
Example: Logistics (A Less Perfect Abstraction)
@ s2:
3 Pl=AtA,
T1=AtB,T2=A1B
e @ érivc Ti:B>A
P]:PI];l'I?:iTZ ( > TI=AtAIAB ‘Q T2=A1AIAB ;@ or.
2 Pl=AtA,
@ #{Ti=AtA]>0
Joad P1 in Tiat A
i P1 S4:
» But still better than h{P1}1 1 PI=InT1 | InT2,
TI=*T2=*
» And better than A{PLT1} and
h{P17T2} unload P1 from Ti at B
S3:
0 PI=A1B,
Tl=,T2=+
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General Explicit-State Abstractions

Constructing General Abstractions

Algorithm for Constructing a General Abstraction
abs := all atomic projections ASyy;y (V; € V).
while abs contains more than one abstraction:
select AS;, ASy from abs
shrink AS; and/or ASs until |[AS] ® ASs| < N
abs := abs \ {AS], AS2} U{AS; ® AS>}
return the remaining abstraction

» Algorithm schema, to be instantiated with:

o A strategy for selecting which pair of abstractions in the
current pool to merge.

o A strategy for how to shrink an abstraction.

@ A size bound N.

» Crucial to have good merging and shrinking strategies.
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General Explicit-State Abstractions

Merging Strategy

» Linear merging strategy: In each iteration after the first,
choose the abstraction computed in the previous iteration as
AS7 and an atomic projection as ASs.

o Strategy defined by an ordering of atomic projections.

@ Maintains only one complex (non-atomic) abstraction.

@ Size of abstraction mapping (in “decision graph” form)
bounded by |V| - N.

» How to order atomic projections?

@ Start with a goal variable.

@ Add variables that appear in preconditions of operators
affecting previous variables.

o If that is not possible, add a goal variable.

ICAPS 2008

14 /32

General Explicit-State Abstractions

Shrinking Strategy

» Construct AS’ = ¢(AS) by selecting pairs of abstract states
in AS to “collapse” (i.e., map to same in AS").
» The mapping ¢ / the selection strategy is
@ h-preserving if it only collapses abstract states with equal
distance-to-goal (h-value);
@ g-preserving if it only collapses abstract states with equal
distance-from-init (g-value);
o f-preserving if it is h- and g-preserving.
> If @ is h-preserving, h¥ ¢(s) = h¥ g (s) for all s — no loss of
heuristic value.
» But some information relevant to variables merged in later
may be lost.
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General Explicit-State Abstractions

» Shrink AS; until \ASly . ’A52| < N.
@ Never represents an abstraction with more than IV states.
@ May preserve unimportant state distinctions in ASy at the
expense of important state distinctions in ASj.
» Use f-preserving abstraction as long as possible.

» If can’t be f-preserving (# f-values > N/|ASs|), prefer
merging states with high f-values and small f-difference.

@ States with high f-values less likely to be explored.

> Tie-breaking: Prefer to preserve distinctions between states
with small h-values.

ICAPS 2008
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General Explicit-State Abstractions

Representational Power of General (Linear-Merge)
Abstractions

> At least as powerful as PDBs.

@ Projection on P C V is a special case.
@ O(|V|- N) overhead for general mapping representation.
» Captures additivity.

o If P and P, are additive patterns, for any h-preserving
abstraction AS; = gol(ASpl) and ASy = (pQ(ASP2), the
heuristic for AS; ® ASy dominates hf* + h!2.

e But |A51 ® ASQ| may be O(|ASP1| . |ASP2|)

e If Va cost(a) = 1, there is an h-preserving abstraction ¢
such that |p(AS) ® AS2)| = O(|]ASp,| + |ASp,|), but it
may not be linear-merge constructible.

General Explicit-State Abstractions

Representational Power of General (Linear-Merge)
Abstractions

» Can construct perfect heuristics with polynomial-size
abstractions in some planning domains:

o Gripper
@ Schedule
@ Two PROMELA variants.

» PDBs have unbounded error in these domains.

ICAPS 2008
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General Explicit-State Abstractions
Example: Gripper
SAS Encoding
» 27~ 1.(n? 4 n + 4) reachable states. Robot: {AtA, AtB}
. RGrip: {empty, full}
» (3n — 3) - 2 state “classes” characterised Lerip: {empty, full}
. . . Bi: {AtA, AtB, InR, InL}
by (#Bi=A, #Bi=B, #Bi=InX, Robot)
. pick up B¢ with Right at X
— all states in each class have same pre: Robot=AtX, Bi=AtX,
d . I B.Grip=empty
Istance-to-goal. eff: Bi=InR, RGrip=full
» Linear construction:
: : 1 put down Bi with Left at X
@ Add Robot, RGrip & LGrip, without i ettt
abstraction Lerip=full
T i eff: Bi=AtX, LGrip=empty
@ Add each Bi in turn, merging abstract oy
. g X -
states that agree on number of balls in pre: Robot=AtX
. . eff: Robot=AtY
A, B and in grippers.
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Structural Abstraction Heuristics

Structural Abstraction Heuristics

» PDBs & memory-based abstraction heurstics in general rely
on blind search to compute h¥g: efficient only if the size of
the abstract space is small.

» Alternative: Choose ¢ so that ¢(.S) has a structure that
permits computing h% g by some more effective method than
search.

e E.g., choose ¢ so that ¢(S) falls into a known class of
tractable optimal planning problems.

@ h¥ still has all properties of abstraction heuristics:
admissibility, monotonicity, condition for additivity, etc.
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Structural Abstraction Heuristics

» But there aren't many known tractable optimal planning
classes.
» Some examples:
@ SAS+-1AO (if actions have unit cost).
(Jonsson & Backstrom 1998)
@ SAS+-UB with polytree causal graph of bounded in-degree.
(Brafman & Domshlak 2003)
o SAS+ with “fork” and “inverted fork” causal graphs, under
various additional restrictions.
(Katz & Domshlak 2008)

» These problem classes are severely restricted: Do any usefull
abstractions fall in them?
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Structural Abstraction Heuristics

Quick Reminder: The Causal and Domain Transition
Graphs

Definition:

» The causal graph is a graph over
the variables of a SAS+ problem.

» Edge from V; to Vj iff there exists
an action a with an effect on V;
and precondition or effect on V;.

Definition:

» The domain transition graph
(DTG) is a graph over the values of
one variable V.

» Edge from x to y iff there exists an
action a with V' =z in pre(a) and
V =y in effla).
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Structural Abstraction Heuristics

Tractable Classes With Fork-Shaped Causal Graphs

» Cost-optimal planning is tractable if

Projection on
{B1,...,Bn,Robot}

1 The causal graph is a fork; and
2(a) |dom(V;.)| = 2 for the root variable;
or
2(b) |dom(V;)| is bounded by a constant
for every non-root variable.

» Projections inducing fork-shaped
causal graphs found in many planning
domains (n variables depending on 1).

» Domain-size restrictions can be
achieved by merging values.
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Tractable Classes With “Inverse Fork”-Shaped Causal
Graphs

» Cost-optimal planning is tractable if
Projection on

{P1,T1,T2, Airplane}

1 The causal graph is an inverted fork;
and

2 the domain of the (single) leaf
variable V} is bounded by a constant;

and o
3 each action affecting V; has a

precondition on at most one other

variable.

» Projections inducing inverse
fork-shaped causal graphs also found in
many planning domains
(1 variable depending on n).
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Structural Abstraction Heuristics

The SAS+-1AO Class

» A SAS+ planning problem is

o Interference-safe (1) iff every non-unary action a is
irreplaceable (removing the edge associated with a splits
the DTG of every variable affected by a in separate
components).

e Acyclic w.r.t. requestable values (A) iff for every variable
Vi, and for the set of requestable values R C dom(V;)
(values that appear in effla) for non-unary a or in pre(a)
for a not affecting V;), the transitive closure of its DTG
restricted to R is acyclic.

@ Prevail-order preserving (O) iff for every variable V; and
z,y € dom(V;), X C R(V;), the shortest path from x to y
passing each value in X also has minimal
(subsequence-wise) conditions on other variables.
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Structural Abstraction Heuristics

» Minimal-length planning for SAS+-1AQ is tractable.

» N.B. The SAS+-IAQ class contains problems with arbitrary
causal graphs.

» The projection on a single variable satisfies the 1AO
restrictions (by definition).

> But there doesn’t seem to be any non-trivial larger
projections that do so in standard planning domains.

@ Many domains are symmetric: fail
acyclicity and/or interference-safety
restrictions.

load/unload load/unload

@ Many domains have alternative DTG Piat A Piat B
paths: fail interference-safety and/or
prevail-order restrictions.

Hierarchical A* & IDA*

Hierarchical Abstraction Search

» PDBs precompute h4(s) for every abstract state s.

» In solving a single problem, typically only a small fraction of
PDB entries are used (may be < 0.1%).

> Alternative: Compute 2% ¢(p(s)) on “need to know basis”,
i.e., only when h¥(s) evaluated.
o Still using search to compute A% ¢(¢(s)).
@ But not using blind search: a hierarchy of abstractions

provides heuristics for search in AS.

e Still using memory to avoid recomputing h ¢(¢(s)).
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Caching in Hierarchical Abstraction Search
» Abstraction hierarchy: AS] = ¢1(S), ASe = ¢2(AS1), ...
» What to store?
@ When an s—G-path in AS; is found, we know hZSi for
every state on this path.
@ When an s—G-path in AS; is found, we know that
Pis,(s") > Wi, (s) — g(s') for every s" explored in that
search.
» How to use it?
o Use stored 1y (s) whenever evaluating h¥?i(s') for
s’ € AS;_1 such that ¢;(s’) = s.
@ Use stored lower bounds on hjlsi to focus search in AS;.
o When search in AS; reaches s such that A% (s) is known,
short-cut the search.
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Hierarchical A* & IDA™

How Effective Is It?

» The total size of hierarchy of abstract spaces,
|AS1|+ ...+ |ASy| may be much larger than |S|.
» With above caching strategies and suitable abstractions:
@ Hierarcical A* beats blind search in S in > 50% of
instances across several domains.
@ But never in 100% of instances.

(Holte, Perez, Zimmer & MacDonald, 1995).

» PDB computation searches only AS1, but does so
exhaustively.
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Summary & Conclusions

Summary & Conclusions

» We've talked mostly about memory-based abstraction
heuristics:
e Using projections (PDBs).
@ Using more general explicit-state abstractions.
» These heuristics have been shown to be very effective in
many domain-specific search applications.
» And they can be effective for domain-independent planning
too, in spite of the fact that
@ we must include heuristic construction (precomputation)
time in cost-benefit trade-off; and
@ we need automatic and domain-independent methods for
selecting good abstractions.
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Summary & Conclusions

Some Open Questions

» For memory-based abstraction heuristics,
@ we don't know how to trade off precomputation time
against the value of heuristic information;
@ the pattern selection problem is not solved.
» There are alternatives to memory-based abstraction
heuristics:
@ Hierarchical abstraction search
— search abstract spaces only when needed.
@ Structural pattern heuristics
— solve abstract problem by better method than search.
» But these have not been much explored in planning.
@ We don't know which is most the effective way, for which
classes of problems.
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Summary & Conclusions

Some Things We Haven't Talked About

» Many improvements to PDB heuristics in domain-specific
search:
@ Dual look-up & exploiting problem symmetries.
(Felner, Zahavi, Schaeffer & Holte 2005)
@ Storing “increment over base heuristic” in PDB.
o Compressed PDBs. (Felner, Korf, Meshulam & Holte 2007)
@ Combining PDBs with perimeter search.
(Linares Lopéz 2008)
» Non-heuristic uses of abstraction:
@ Problem simplification, safe abstraction & heirarchical
planning.
@ The use of abstractions to prove unreachability, common in
model checking.
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