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Abstract

AI planners have to compromise between the speed
of the planning process and the quality of the gen-
erated plan. Anytime planners try to balance these
objectives by finding plans of better quality over
time, but current anytime planners often do not
make effective use of increasing runtime beyond a
certain limit. We present a new method of contin-
uing plan improvement, that works by repeatedly
decomposing a given plan into subplans and opti-
mising each subplan locally. The decomposition
exploits block-structured plan deordering to iden-
tify coherent subplans, which make sense to treat
as units. This approach extends the “anytime capa-
bility” of current planners – to provide continuing
plan quality improvement at any time scale.

1 Introduction
Producing high quality plans and producing them fast are two
of the main aims of automated planning. There is, however,
a tension between these two goals: plans found quickly are
often of poor quality, and plans of good quality tend to be
hard to find (except perchance if “quality” is taken to be just
plan length). Although much progress has been made both
on fast planning methods (without quality guarantees) and on
optimal (and bounded suboptimal) planning methods, there
is a gap between the capabilities of these two classes of plan-
ners: optimal planners are far from scaling up to the size of
problems that fast, “any-solution” planners can solve, but the
quality of plans found by such planners is often equally far
from optimal. Few, if any, planners have the flexibility to be
used at any point on the efficiency–quality trade-off scale.

Anytime planners promise to provide that flexibility, by
finding an initial plan, possibly of poor quality, quickly and
then continually finding better plans the more time they are
given. The current best approach to anytime planning is based
on restarting weighted A* search with a schedule of decreas-
ing weights [Richter et al., 2010], as implemented in the
LAMA planner. This method, however, does not quite live
up to the promise of continually improving plans over time.
As the weight used in WA* decreases, it fairly quickly degen-
erates into a plain A* search (with an inadmissible heuristic).
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Figure 1: Total IPC quality score as a function of time for
LAMA and three plan optimisation methods, on all problems
used in our experiments (606 problems, of which LAMA
solves 577). The score of a plan is calculated as cref/c, where c
is the cost of the plan and cref the “reference cost” (best cost
of all plans for the problem). Thus, a higher score reflects a
lower-cost plan. Note that the y-axis is truncated.

This can be seen in the compound anytime profile of the plan-
ner, shown in Figure 1: it rises very sharply in the beginning,
meaning that a small amount of additional time at this stage
leads to a big improvement (mainly due to more problems
solved), but then quickly flattens out. Over the second half
of the 1 hour time limit, the improvement in plan quality (as
measured by the summed IPC quality score) is less than 1%.
Yet, as the figure also shows, it is possible to attain a consid-
erably greater improvement.

The key to this continuing improvement of plan quality is
focusing optimisation effort. We present a way to do this, by
analysing the structure of the initial plan to identify coherent
subplans, which are optimised independently using bounded-
cost search. Improved subplans are substituted into the plan,



with multiple such substitutions made if possible. The pro-
cess is then repeated, starting from the new best plan.

The main challenge is to find the right subplans for local
optimisation. For this, we use plan deordering: A partially
ordered plan exhibits some structure, in that dependencies
and threats between the steps in the plan are explicit. In a
partially ordered plan, we can identify independent “threads”
of activity, and the points where these threads split and join.
The sequential subplans between these points form the ba-
sic building blocks of our decomposition strategy. Standard
plan deordering, however, requires unordered plan steps to be
non-interfering. This limits its applicability, so that in many
cases no deordering of a sequential plan is possible. To over-
come this limitation, we use the idea of block decomposition
of plans [Siddiqui and Haslum, 2012]. Intuitively, a “block”
is a subset of plan steps that encapsulates some interactions.
Decomposing a plan into blocks allows some blocks to be
unordered even when their constituent steps cannot. This in-
creased deordering of the plan makes the strategy for finding
subplans more effective, and more widely applicable.

2 Related Work
The idea of optimising a solution one small part at a time has
been used very successfully in constraint-based approaches to
hard combinatorial optimisation problems like vehicle rout-
ing [Shaw, 1998] and scheduling [Godard et al., 2005], where
it is known as “large neighbourhood search” (LNS). In this
setting, a local search step solves the constraint optimisation
problem, using an expensive but highly optimising search, for
a small set of variables, keeping remaining variables fixed at
their current values. Our plan improvement approach can be
viewed as applying LNS to planning. A key difficulty in LNS
is defining the neighbourhood, i.e., identifying good subprob-
lems to re-optimise. Routing and scheduling solvers using
LNS rely on problem-specific heuristics, based on insights
into the problem and its constraint formulation, for this. For
planning, we need automatic and domain-independent meth-
ods: this is what our plan decomposition strategy provides.
Our local search is a plain hill-climbing search, always mov-
ing to a better (but not necessarily best) plan in the neighbour-
hood. It might be improved through use of more sophisticated
meta-heuristics, such as simulated annealing or restarts.

Ratner and Pohl [1986] use local optimisation to shorten
solutions to sequential search problems. However, their ap-
proach to subproblem identification is a simple sliding win-
dow over consecutive segments of the current path. This is
unlikely to find relevant subproblems for optimising plan cost
in general planning problems, where the sequential plan is
often an arbitrary interleaving of separate causal threads. In
experiments, 75% of the subproblems for which we find an
improved subplan correspond to non-consecutive parts of the
original plan. Similarly, Balyo, Barták and Surynek [2012]
use a sliding window to minimise parallel plan length.

Plan neighbourhood graph search (PNGS) [Nakhost and
Müller, 2010] constructs a subgraph of the state space of the
problem, limited to a fixed distance d from states traversed
by the current plan, and searches for the cheapest plan in this
subgraph. If it improves on the current plan, the process is

repeated around the new best plan; otherwise, the distance is
increased. ITSA* [Furcy, 2006] similarly explores an area of
the state space near the current plan. Compared to our method
(and LNS, generally) these can be seen as using a different
neighbourhood, that includes only small deviations from the
current plan, but anywhere along the plan. In contrast, we fo-
cus on a section of the plan at a time, but do not restrict how
much the replacement subplan differs from the original plan
section. As we will show, our method and PNGS have com-
plementary strengths. Thus, a local search over both types of
neighbourhoods might be even more effective.

The planning-by-rewriting approach [Ambite and
Knoblock, 2001] also uses local modifications of partially
ordered plans to improve their quality. Plan modifications
are defined by (domain-specific) rewrite rules, which have
to be provided by the domain designer or learned from
many examples of both good and bad plans. Using instead
a planner to solve the local improvement subproblem may
be more time-consuming than applying pre-defined rules,
but makes the process fully automatic. However, if we
consider solving many problems from the same domain it
may be possible to reduce average planning time by learning
(generalised) rules from the local plan improvements we
discover and using these where applicable to avoid calling
the planner.

3 Plan Deordering and Block Decomposition
We use the standard STRIPS model of classical planning
problems. We briefly recap some basic notions concerning
partially ordered plans. For a detailed introduction, see, for
example, the book by Ghallab et al. [2004].

A partially ordered plan (POP) is a tuple (S,≺), where S
is the set of plan steps and ≺ is a strict partial order on S;
≺+ denotes the transitive closure of ≺. A linearisation of a
POP is a strict total order that contains ≺. Each step s ∈ S,
except for the initial and goal steps, is labelled by an action,
act(s), which, as usual, has precondition, added and deleted
sets of propositions. With slight abuse of terminology, we talk
about the preconditions and effects of a step, meaning those
of its associated action. A causal link, (si, p, sj), records a
commitment that the precondition p of step sj is supplied by
an add effect of step si. The link is threatened if there is a step
sk that deletes p such that si ≺ sk ≺ sj is consistent. The
validity of a POP can be defined in two equivalent ways: (1)
a POP is valid iff every linearisation of its actions is a valid
sequential plan, under the usual STRIPS execution semantics;
and (2) a POP is valid if every step precondition (including
the goals) is supported by an unthreatened causal link. (That
is, essentially, Chapman’s [1987] modal truth condition.)

Block deordering [Siddiqui and Haslum, 2012] restricts the
linearisations for which a POP must be valid. A block is a
subset of plan steps that must not be interleaved with steps
not in the block; steps within a block may still be partially or-
dered. A block decomposition divides plan steps into blocks
that do not overlap. The decomposition may be recursive, so
a block can be wholly contained in another, though. Blocks
behave much like (non-sequential) macro actions, having pre-
conditions, add and delete effects that can be a subset of the



Figure 2: A sequential plan and its block deordering. Prece-
dences are labelled with their reasons: producer–consumer
(i.e., a causal link), denoted PC(p); threat–producer, denoted
TP(p); and consumer–threat, denoted CT(p).

union of those of its constituent steps. This enables blocks
to encapsulate some plan effects, reducing interference and
thus allowing blocks to be unordered even when some steps
in them may not. As a simple example, Figure 2(i) shows a
sequential plan for a small Blocksworld problem. This plan
can not be deordered into a convential POP, because each plan
step has a reason to be ordered after the previous. In the block
deordered plan (ii), neither of the two blocks delete or add
proposition handempty (though it is a precondition of both).
This removes the interference between them, and allows the
two blocks to be unordered. Note that the possible linearisa-
tions of the block decomposed partially ordered plan are only
a1, a2, a3, a4 and a3, a4, a1, a2.

We first apply standard deordering, using essentially the
PRF algorithm [Bäckström, 1998]. Next, we apply a (non-
optimal) heuristic procedure to automatically find a block de-
composition that tries to maximise further deordering. For
a detailed description of the block deordering procedure, we
must refer to the earlier paper [Siddiqui and Haslum, 2012].
Our interest here is not in deordering per se, but using the
structure it reveals to find subplans suitable for local optimi-
sation. However, block deordering tends to produce blocks
that localise interactions as much as possible, i.e., that are
as “self-contained” as they can be, and this is useful also for
local plan optimisation. Validity of a block decomposed par-
tially ordered plan can be established in the same way as for
POPs, by supporting each precondition of each block with an
unthreated causal link. The block deordering algorithm re-
turns not just the decomposed and deordered plan, but also
a justification for its correctness, by labelling ordering con-
straints with their reasons (causal links or threats). We exploit
this when merging improvements to separate parts of a plan.

4 Plan Optimisation Algorithm
The plan optimisation algorithm (Algorithm 1) consists of
three main steps: First, block deordering is applied to the
input plan (πin), producing a block decomposition that min-
imises inter-block dependencies. Second, a set of candidate
subplans for optimisation, termed “windows”, are extracted
from the block deordered plan. Window formation rules are
divided into three groups, and the corresponding three sets of

Algorithm 1 Block Decomposition Plan Optimisation
1: procedure BDPO(Γ, πin, tlimit, g)
2: Initialise telapsed = 0, Csp = ∅, πlast = πin.
3: πbdp = BLOCKDEORDER(πin).
4: Set time bound tb = initial time bound.
5: while Csp = ∅ do
6: if Wg not initialised then
7: Set Wg = FORMWINDOWS(πbdp, g).
8: for each window (pi, wi, si) ∈Wg do
9: if telapsed ≥ tlimit then return πlast.

10: Γi
sub = SUBPROBLEM(pi, wi, si).

11: if h(πi
sub) = cost(wi) then

12: Set Wg = Wg \ {(pi, wi, si)}.
13: continue
14: πi

sub = BOUNDEDCOSTPLANNER

(Γi
sub, cost(wi), tb).

15: if Γi
sub proven unsolvable then

16: Set Wg = Wg \ {(pi, wi, si)}.
17: else if πi

sub 6= null then
18: /* cost(πi

sub) ≤ cost(wi) */
19: Csp = Csp ∪ {(wi, π

i
sub)}.

20: π̂bdp = MERGE(Csp, πbdp).
21: if cost(π̂bdp) < cost(πlast) then
22: πlast = SEQUENCEPLAN(π̂bdp).
23: if πlast 6= πin then
24: return BDPO (Γ, πlast, tlimit − telapsed, g).
25: Set g = (g + 1) mod 3 /* next group */
26: if all groups have been tried at tb then
27: if W1 = W2 = W3 = ∅ then return null
28: Set tb = 2 ∗ tb.

windows are tried in turn. Each window generates a bounded-
cost subproblem, which is the problem of finding a cheaper
replacement for that subplan. The algorithm calls a planner
on each of these subproblems, with a cost bound equal to the
cost of the current subplan, and a time-out. In principle, the
subplanner can be any planning method that accepts a bound
on plan cost; we use an iterative bounded-cost search. When-
ever a better replacement subplan is found, all replacement
subplans found so far (Csp) are fed into a merge procedure,
which tries to combine several of them to achieve a greater
overall improvement. (At least one replacement subplan can
always be merged, so if Csp is non-empty, πlast is better than
πin.) If any improvement is found in the current set of win-
dows, the procedure starts over with the new best plan (πlast);
it restarts with the group of rules that generated the set of win-
dows where the improvement was found. If no improvement
has been found in all window sets, the time-out is doubled
and the subplanner tried again on each subproblem, except
those known to be solved optimally already. This is detected
by comparing the subplan cost with a lower bound (obtained
from an admissible heuristic, h), or by the subplanner prov-
ing the bounded-cost subproblem unsolvable. The initial time
bound is 15 seconds, or tlimit/|W1 ∪W2 ∪W3|, whichever is
smaller.



4.1 Window Formation
Before extracting windows, we extend blocks to cover com-
plete non-branching subsequences of the plan. That is, if a
block bi is the only immediate predecessor of block bj , and
bj the only immediate successor of bi, they are merged into
one block. (Note that when we talk about blocks here and in
the following, these can also consist of single actions.)

A window is a triple (p, w, s), where w is the set of blocks
in the subplan (to be replaced), and p and s are sets of blocks
to be placed before and after w, respectively. Any block that
is ordered before (resp. after) a block inwmust be assigned to
p (resp. s), but for blocks that are not ordered w.r.t. any block
in w we have a choice of placing them in p or s. Let Un(b)
be the set of blocks not ordered w.r.t. b, IP(b) its immediate
predecessors of b, and IS(b) its immediate successors. The
three groups of window-forming rules are:
1. w ← {b}, p← Un(b); w ← {b}, s← Un(b);
w ← {b} ∪Un(b); w ← {b} ∪ IP(b), s← Un(b);
and w ← {b} ∪ IS(b), p← Un(b).

2. w ← {b} ∪Un(b) ∪ IP(b); w ← {b} ∪Un(b) ∪ IS(b);
and w ← {b} ∪Un(b) ∪ IP(b) ∪ IS(b).

3. w ← {b} ∪Un(b) ∪ IP({b} ∪Un(b));
w ← {b} ∪Un(b) ∪ IS({b} ∪Un(b)); and
w ← {b} ∪Un(b) ∪ IP({b} ∪Un(b)) ∪ IS({b} ∪Un(b)).

Each rule is applied to each block b, which may produce
duplicates; of course, only unique windows are kept. This
grouping aims to reduce overlap between windows in each
set, and group them roughly by size. BDPO processes win-
dows in each set in order of increasing size, measured by the
number of actions in w.

4.2 Subproblem Construction and Subplanner
Each window (p, w, s) gives rise to a bounded-cost subprob-
lem. This is the problem of finding a replacement for the
part w of the plan, of cost less than cost(w), that can be sub-
stituted between plan parts p and s. The subproblem differs
from the original problem only in its initial state and goal.

To find the initial state for the subproblem, we generate a
linearisation, ap1 , . . . , apk

, of the actions in p, and progress
the original initial state through this sequence, i.e., apply
the actions in this sequence. To find the goal, we pick a
linearisation, as1 , . . . , asm , of the actions in s, and regress
the original goal backwards through this sequence. This en-
sures that for any plan a′1, . . . , a

′
n returned by the subplanner,

the concatenation of the three sequences, i.e., ap1
, . . . , apk

,
a′1, . . . , a

′
n, as1 , . . . , asm , is a plan for the original problem.

The subplanner must return a plan of cost less than the
given bound, cost(w). We use a simple bounded-cost greedy
search, guided by the (unit-cost) FF heuristic and using an
f-value based on the admissible LM-Cut heuristic [Helmert
and Domshlak, 2009] to prune states that cannot lead to a
plan within the cost bound. It is implemented in the Fast
Downward planner. The search is complete: if there is no
plan within the cost bound, it will prove this by exhausting
the search space, given sufficient time. Because bounded-
cost search can return any plan that is within the cost bound,
we iterate it: whenever a plan is found, as long as time re-
mains, the search is restarted with the bound set to be strictly

Algorithm 2 Merging Candidate Subplans
1: procedure MERGE(Csp, πbdp)
2: Initialise π̂bdp = πbdp.
3: Sort Csp by decreasing (cost(wi)− cost(πi

sub)).
4: for each (wi, π

i
sub) ∈ Csp in order do

5: πtemp = REPLACEIFPOSS(wi, π
i
sub, π̂bdp).

6: if πtemp 6= null then
7: π̂bdp = πtemp

8: Csp = Csp \ {(wj , π
j
sub) ∈ Csp |

wj overlaps with wi}.
9: return π̂bdp

less than the cost of the new plan. This ensures we get not
just an improved subplan, but the best improved subplan that
the search can find within the given time limit.

As an alternative to constructing each subproblem from an
arbitrary linearisation, we could take a “least committment”
approach, taking as initially true only those facts that hold
after any linearisation of p, and as goal all facts that must
hold for every linearisation of s to succeed. (This is the same
principle used to compute the preconditions and effects of
a block, since steps in the block may be partially ordered.)
This, however, severely restricts plan choices for the subprob-
lem, reducing the chances of finding an improvement.

4.3 Merging Improved Subplans
When an improved subplan is found, the window (i.e., the w
part) in the original plan can be replaced with the new sub-
plan, by construction of the subproblem. Obviously, we gain
a greater improvement if we can make several replacements
simultaneously. Merging all candidates (windows with im-
proved subplans) is usually not possible, since windows may
overlap. It is further complicated because each subproblem
is constructed from a potentially different linearisation: the
replacement subplan may have additional preconditions or
delete effects that the replaced window did not, or lack some
of its add effects. For a single candidate, these flaws can be
resolved by adding more ordering constraints on the plan, but
different candidates may require contradictory orderings.

Merging is done by a greedy procedure (Algorithm 2). It
takes a current, block deordered, plan (πbdp) and a set of can-
didates (Csp), and sorts the candidates in decreasing order of
their contribution to decreasing plan cost, i.e., the cost of the
replaced plan part (cost(wi)) minus the cost of the new sub-
plan (cost(πi

sub)). In this order, each candidate is tried in turn:
If the replacement is still possible, it is made, and any re-
maining candidates that overlap with the window are removed
from further consideration. The first replacement is always
possible, so the new plan returned by merging has lower cost
than the input plan. Another, possibly better, merging strat-
egy would be to try sets of non-overlaping candidates, i.e.,
independent sets, (approximately) in order of their summed
plan cost decrease.

MERGE maintains at all times a valid block deordered
plan (π̂bdp), meaning that each precondition of each block
(and each goal) is supported by an unthreatened causal link.
Initially, this is the input plan, for which causal links (and



additional ordering constraints) are computed by block de-
ordering. The REPLACEIFPOSS subroutine takes the current
plan, and returns an updated plan (which becomes the current
plan), or failure if the replacement is not possible. Recall that
preconditions and effects of a block are computed using least-
committment semantics. This is done for both the replaced
window (wi) and the replacement subplan (πi

sub), where the
subplan is treated as a single block whose actions are totally
ordered. For any atom in pre(πi

sub) that is also in pre(wi), the
existing causal link is kept; likewise, causal links from an ef-
fect in add(wi) that are are also in add(πi

sub) are kept. (These
links are unthreatened and consistent with the order, since the
plan is valid before the replacement.) For each additional pre-
condition of the new subplan (p ∈ (pre(πi

sub) \ pre(wi))), a
new causal link must be found, and likewise for each pre-
condition of a later block (or the goal) that was supplied by
wi but is missing from add(πi

sub). Finally, πi
sub may threaten

some existing causal links that wi did not; for each of these
preconditions, we also try to find a new link.

The subroutine FINDCAUSALLINK takes the current block
deordered plan (π̂bdp), the consumer block (b), which can also
be the goal, and the atom (p) that the consumer requires, and
performs a limited search for an unthreatened causal link to
supply it. Specifically, it tries the following two options:
1. If there is a block b′ ≺+ b with p ∈ add(b′), and for every
threatening block (i.e., b′′ with p ∈ del(b′′)), either b′′ ≺ b′

or b ≺ b′′ can be added to the existing plan ordering without
contradiction, then b′ is chosen, and the ordering constraints
necessary to resolve the threats added.
2. Otherwise, if there is a block b′ with p ∈ add(b′) that
is unordered w.r.t. b, and for every threatening block either
b′′ ≺ b′ or b ≺ b′′ can be enforced, then b′ is chosen, and the
causal link and threat resolution ordering constraints added.
If these two steps cannot find one of the required causal links,
the replacement fails, and the candidate is skipped by merge.

Note that some of the ordering constraints between wi and
the rest of the plan may become unnecessary when wi is re-
placed with πi

sub, because πi
sub may not delete every atom that

wi deletes and may not have all preconditions of wi. Even if
an ordering b ≺ wi, for some block b, is not required after
replacing wi with πi

sub, removing it may make πi
sub unordered

w.r.t. blocks b′ ≺ b. Each of these must be checked for poten-
tial threats, either due to atoms deleted by πi

sub or by b′, and
new ordering constraints b′ ≺ πi

sub added where needed. In
the same way, if an ordering πi

sub ≺ b is removed, potential
threats with blocks b′ � b must be checked.

Theorem 1. If the input plan, πbdp is valid, then so is the plan
returned by MERGE.

Proof sketch. This is shown by induction on the sequence of
accepted replacements. Initially, the current plan is the valid
input plan. It changes only when a replacement is made. A
successful replacement does not invalidate the plan: All nec-
essary causal links to and from the replacement subplan are
established by REPLACEIFPOSS. Likewise, any causal links
threatened by the new subplan are re-established. The re-
maining possibility, that the new subplan becomes unordered
w.r.t. a block b′ that wi was not, and therefore πi

sub threatens

a causal link that wi did not, or a causal link to or from πi
sub

is threatened by b′, is explicitly checked for before removing
any ordering constraint. �

5 Results
The starting point for plan improvement is the best plan found
by LAMA [Richter and Westphal, 2010, IPC 2011 version]
in 30 minutes (called “LAMA@30” in the following). The
compared methods are block decomposition plan optimisa-
tion (BDPO), plan neighbourhood graph search (PNGS), it-
erated bounded-cost search (IBCS) and letting LAMA con-
tinue (LAMA@60). Each is given 30 minutes and 3Gb mem-
ory per problem. IBCS uses the same bounded-cost search as
local plan optimisation, applied to the whole problem.

We use problems from the satisficing track of the 2008 and
2011 IPC1, data set 2-nd of the Genome Edit Distance (GED)
domain [Haslum, 2011], and the Alarm Processing for Power
Networks (APPN) domain [Haslum and Grastien, 2011].

Figure 1 shows the cumulative IPC quality score over time.
Although this is a convenient summary, it does not convey the
complete picture: it is strongly weighted by coverage (the
score taking only the first plan found by LAMA for each
problem is 404.77), and, more importantly, does not tell us
anything about how much plan quality can actually be im-
proved. To this end, we compare plan costs with the highest
known lower bound for each problem (obtained by a variety
of methods, including several optimal planners; cf. [Haslum,
2012]). For 163 out of 576 problems solved by LAMA@30,
the best plan cost already matches the lower bound, which
means no improvement is possible. Figure 3 shows for the re-
maining problems (excluding one in the PegSol domain) the
cost of the best plan found by the plan optimisation methods,
normalised to the gap between the initial plan cost and the
highest lower bound. Table 1 provides a different summary
of the same data. For the Genome Edit Distance problems, a
non-optimal problem-specific algorithm (GRIMM) finds bet-
ter solutions than all planners in most cases. However, BDPO
and PNGS both find a better plan than GRIMM for 12 out of
156 problems, while LAMA@60 manages 6.

The results clearly show strong complementarity between
the methods, both across domains and in time. Only IBCS
does not outperform all other methods in any domain. In the
PegSol domain, all plans but one found by LAMA@30 are
optimal and no method improves on the cost of the last one.
In OpenStacks and VisitAll, PNGS and BDPO find very few
improvements, while LAMA finds more but smaller.

Most of the plan improvement achieved by LAMA is done
early: During the first 30 minutes, it reduces plan cost, from
that of the first plan it finds, by an average 17.9%, but the
reduction over the next 30 minutes is only 0.8%. In contrast,
BDPO, starting from the plan by LAMA@30, achieves an
average plan cost reduction of 8%, and PNGS 7.3%. PNGS
is also fast (99.6% of its improved plans are found in the first
5 minutes), and limited mainly by memory (it runs out of

1We exclude the CyberSec domain, which our current implemen-
tation is unable to deal with. For domains that appeared in both the
2008 and 2011 IPC, we use only the instances from 2011 that were
new in that year.
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Figure 3: Cost of plans found by the four improvement methods applied to LAMA’s best plan at 30 minutes. Costs are
normalised to the interval between the initial plan and the highest known lower bound; problems where the initial plan is known
to be optimal are excluded. Within each domain, problems are sorted by the cost of the best BDPO plan.

BDPO PNGS IBCS LAMA
@60

= < ? = < ? = < ? = < ?
APPN 100 76 24 24 0 4 8 0 0 8 0 0
Barman 0 0 0 100 100 0 0 0 0 0 0 0
Elevators 42 26 0 61 45 0 29 13 0 13 0 0
Floortile 0 0 0 100 100 67 0 0 0 0 0 0
NoMystery 83 33 50 33 17 0 50 0 33 17 0 0
OpenStacks 67 0 0 67 0 0 76 5 5 95 24 5
ParcPrinter 100 50 28 28 0 6 44 0 6 22 0 0
Parking 60 0 0 95 35 0 50 0 0 55 5 0
Scanalyzer 33 0 22 100 61 28 39 0 22 17 0 6
Sokoban 50 0 12 75 38 0 50 0 12 50 12 12
Tidybot 54 0 0 77 15 0 62 8 8 77 15 0
Transport 3 0 0 100 97 0 0 0 0 0 0 0
VisitAll 21 0 0 84 63 0 21 0 0 37 16 0
Woodworking 97 86 11 9 3 6 6 0 6 0 0 0
GED 83 30 0 38 8 0 43 4 0 18 4 0

Table 1: For each plan improvement method, the percentage
of instances where it matches the best plan (=); finds a plan
strictly better than any other method (<); and finds a plan that
is known to be optimal, i.e., matched by the highest lower
bound (?). The percentage is of instances in each domain that
are solved, but not solved optimally, by LAMA@30.

memory on 86% of problems, and out of time on 8.5%), while
BDPO is limited mainly by time and continues to find better
plans (though at a decreasing rate) even beyond 30 minutes.

6 Conclusions
Different planning and plan optimisation approaches have
their strength at different time scales. This suggests that
truly anytime planning – providing continuing improvement
of plan quality at any time scale – is best achieved by a com-
bination of methods.

The deordering step is critical to the success of local plan
optimisation: 75% of subproblems for which we find an im-

proved subplan do not correspond to consecutive parts of the
original plan (61% looking only at the w part). The impor-
tance of block deordering, in addition to standard deordering,
varies between domains: in some (e.g., Sokoban, GED) no
deordering is possible without block decomposition, while in
some (e.g., ParcPrinter, Woodworking) it adds very little.

Block decomposition plan optimisation can be viewed as a
large neighbourhood local search, moving at each step from
one valid plan to a new, better, valid plan. Results show
strong complementarity, across problems and time scales,
with anytime search and plan neighbourhood graph search,
another local plan improvement method. Hence, a better
strategy may be to combine them, either in a sequential port-
folio (i.e., running BDPO on the result of PNGS, or vice
versa), similar to portfolios of planners [Helmert et al., 2011;
Gerevini et al., 2009], or, more interestingly, by extending
the neighbourhood of the local search to include multiple
types of plan improvement operations. Adaptive LNS [Ropke
and Pisinger, 2006] uses a set of heuristic local improvement
methods, and tries to learn, on-line, the strategy for selecting
which to use. Our heuristic of restarting each iteration with
the group of windowing rules that led to the last improvement
can be seen as a simple adaptive strategy. Other aspects of the
method, such as the merging strategy, grouping of windowing
rules, subplanner, etc., can probably also be improved.

Local plan optimisation also highlights a promising use
case for bounded-cost planning. This problem, i.e., quickly
finding any plan with cost within a given, absolute, bound,
has recently received interest in planning and search [Stern et
al., 2011; Thayer et al., 2012]. Through block decomposition
plan optimisation, any improvements made to bounded-cost
planning algorithms translate directly into more efficient any-
time planning.
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