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Abstract

Recently, several methods have been proposed for
optimal delete-free planning. We present an in-
cremental compilation approach that enables these
methods to be applied to problems with conditional
effects, which none of them support natively. With
an h+ solver for problems with conditional effects
in hand, we also consider adapting the h++ any-
time lower bound function to use the more space-
efficient PCce compilation. This avoids the memory
limitation of the original h++ caused by its reliance
on an exponential-space compilation. It also leads
to improvements on some problems where memory
is not an issue.

1 Introduction
In action description languages, a conditional effect is an ac-
tion effect that takes place only if an additional condition
holds when the action is applied, but which does not pre-
vent the action from being applied if this condition is not true.
Conditional effects have been part of planning languages dat-
ing back at least to ADL [Pednault, 1989], and part of PDDL
since its first version [McDermott et al., 1998]. They have
been cited, particularly by researchers using classical plan-
ners as “black boxes”, as an essential feature [Brafman et
al., 2012]. The now popular approach of compiling non-
classical planning problems, like planning with uncertainty
or temporally extended goals, into classical planning in order
to leverage the recent performance gains of classical planners
often makes extensive use of conditional effects [Palacios and
Geffner, 2007; Bonet et al., 2009; Keller and Eyerich, 2011;
Baier and McIlraith, 2006]. Yet, support for conditional ef-
fects in planners, particularly cost-optimal planners, is lim-
ited: none of the twelve cost-optimal planners that partici-
pated in the last IPC had any support for conditional effects.

Conditional effects can be removed by two different prob-
lem transformations [Nebel, 2000], but there are problems
with both: the compilation that preserves plans exactly is ex-
ponential in size, making it infeasible when actions have more
than a few conditional effects, while the compact compilation
does not preserve the problem delete relaxation, which is the
basis of many planning heuristics.

Several efficient methods for optimal delete-free planning
have been presented recently [e.g., Robinson et al. 2010;
Gefen and Brafman 2012; Haslum et al. 2012; Pommeren-
ing and Helmert 2012], but none of them support conditional
effects. Here, we introduce an incremental compilation ap-
proach through which they can be applied to problems with
conditional effects. A subset (initially empty) of effects are
compiled out, and the rest treated in a relaxed way; the com-
piled subset is grown, iteratively, only if needed to obtain a
valid plan. This approach can solve problems with large num-
bers of conditional effects, where full compilation is infeasi-
ble, by compiling out only a small fraction.

The recent idea of “semi-relaxation” [Keyder et al., 2012]
provides a spectrum of intermediate points between delete-
relaxed and fully non-relaxed planning, and is the basis of
the h++ anytime lower bound function on plan cost [Haslum,
2012]. Semi-relaxed planning is delete-relaxed planning on a
transformed problem. It too can be done in two ways: the PC
compilation is exponential in size, while the linear-space PCce
compilation introduces conditional effects into the problem.
Having an effective h+ solver for problems with conditional
effects enables us to consider using the compact PCce compi-
lation in h++, reducing the memory requirements drastically;
surprisingly, it also improves the function on some problems
where memory is not an issue.

2 Background
A planning problem is defined by a set of propositional state
variables (“atoms”), a set of actions, a completely specified
initial state (s0) and a goal condition (G). Each action a
is defined by a precondition (pre(a)) and sets of positive
(add(a)) and negative (del(a)) effects; each effect is a pair
〈c, p〉, where c is the effect condition and p the effect atom,
made true (“added”) by the action if 〈c, p〉 ∈ add(a) and
made false (“deleted”) if 〈c, p〉 ∈ del(a). Unconditional ef-
fects of an action are simply effects with an empty condition.
A problem in which all actions have only unconditional ef-
fects is called a STRIPS problem. Note that an action may
have both (conditional) effects that add and delete an atom
p. If effects of both kinds trigger when the action is applied
in some state, the add effect takes precedence so the result
is to make the atom true. This is in accordance with PDDL
semantics [Fox and Long, 2003].

Action preconditions, effect conditions, and the goal are



sets of atoms, interpreted as conjunctions. Instead of having
negated atoms in conditions we assume that, when needed,
each atom p has a complementary atom not-p that plays the
role of ¬p, i.e., such that exactly one of p and not-p is true
in every reachable state. Such complementary atoms can be
added as needed with only a linear increase in problem size
[Erol et al., 1991]. As we consider cost-optimal planning,
each action has a non-negative cost (cost(a)); the cost of a
plan is the sum of the costs of actions in it. The cost of an
optimal plan for P is denoted h?(P ).

2.1 The Delete Relaxation
The delete relaxation of a planning problem P , denoted P+,
is exactly like P except that all negative effects are removed.
The cost of an optimal plan for P+, denoted h+, is a lower
bound on the cost of an optimal plan for P . Computing h+ is
NP-hard [Bylander, 1991].

A plan for a delete-free problem is monotonic, in the sense
that any atom once made true never becomes false in a later
state. (In P+, it is possible for both atoms p and not-p in
a complementary pair to be true in a state.) This means
that if P is a STRIPS problem, an optimal (non-redundant)
plan for P+ does not include any action more than once.
This is not true of planning problems with conditional ef-
fects, because different sets of conditional effects may need
to trigger at different occurrences of the same action. Hence,
we define a (sequenced) delete-relaxed plan as a sequence
of pairs 〈a1, E1〉, . . . , 〈an, En〉, where ai is an action and
Ei ⊆ add(ai) is the subset of conditional add effects of ai
that must take place at step i of the plan; we call such a pair
a step, and say the effects in Ei are active. A step 〈ai, Ei〉 is
applicable in state s if pre(ai) ∪

⋃
〈c,p〉∈Ei

c holds in s, and
applying it adds {p | 〈∅, p〉 ∈ add(ai)} ∪ {p | 〈c, p〉 ∈ Ei}.
In other words, a step may be viewed as an unconditional
(STRIPS) action that combines the unconditional effects of
ai with the active effects in Ei. Ei does not have to contain
all the effects of ai that trigger when ai is applied: triggering
more effects can only make more atoms true, which cannot
invalidate the remainder of the plan.

In an optimal (non-redundant) delete-relaxed plan, each
step is a unique combination of action and effects. Although
defined as a sequence, we will often consider a relaxed plan
as an unordered set of steps. An unordered relaxed plan is
valid iff some sequencing of the steps in it is. Because delete-
relaxed execution is monotonic, deciding the validity of an
unordered set of steps, and producing a sequencing if it is
valid, can be done, in linear time, by greedily applying steps
until all are done or no remaining step is applicable.

The relaxed plan dependency graph (RPDG) [Haslum,
2012] is a labelled directed graph that describes necessary
ordering constraints in an unordered delete-relaxed plan S. It
has one node na for each action a ∈ S, one node nG repre-
senting the goal, and an edge na λ−→n′ iff λ 6= ∅ is the subset
of pre(n′) that becomes relaxed unreachable if a is removed
from the plan (pre(nG) = G). The RPDG of a valid re-
laxed plan is acyclic, and any sequencing of the plan must be
a topological sort of the RPDG. We extend the RPDG to re-
laxed plans for problems with conditional effects by treating
each step as an unconditional (STRIPS) action.

2.2 Semi-Relaxation
A semi-(delete-)relaxation of a planning problem P is a trans-
formation of P into a new problem P ′ such that P ′ has the
same optimal plan cost as P but the delete relaxation of
P ′ keeps some information about the negative interactions
caused by delete effects. Thus, h+(P ′) may be greater than
h+(P ) but remains a lower bound on h?(P ). Two semi-
relaxing transformations have recently been proposed: Both
take a parameter, C, which is a set of conjunctions (sets) of
atoms, and add to the problem a new atom πc for each c ∈ C.
Actions in the compiled problem make πc true only if their
application in the original problem makes the condition c true.
The PC compilation [Haslum, 2012] produces a STRIPS
problem that may be exponentially larger than P . The PCce
compilation [Keyder et al., 2012] instead uses conditional ef-
fects to update πc atoms, and therefore grows only linearly.
Both compilations are defined only for STRIPS problems.

Both compilations are perfect in the limit, meaning that for
some sufficiently large set C, h+(PC) = h+(PCce ) = h?(P ).
The PCce compilation is weaker, in the sense that it may
require compiling in a larger set of conditions to achieve
the same information gain; that is, there are cases where
h+(PCce ) < h+(PC) when both use the same set C.

2.3 Compilation of Conditional Effects
A planning problem with conditional effects can be compiled
into a STRIPS problem in two ways [Nebel, 2000]: The first
compilation, denoted Pexp, replaces each action a with one
action for each possible “case”, meaning a subset of effects
that are triggered. As there can be up to 2| add(a)∪del(a)| cases,
this compilation can increase the size of the problem expo-
nentially, but it preserves plans exactly. Thus, h+(Pexp) =
h+(P ). The second compilation, denoted Pseq, breaks each
action a into a sequence of actions, including one for each ef-
fect in add(a)∪del(a), and through additional control atoms
forces each application of a (in the compiled problem) to be
followed by the complete sequence. This compilation only
increases the size of the problem polynomially, but may in-
crease plan length polynomially. To preserve optimal plan
cost, action costs must be set so that the cost of the com-
plete sequence equals the cost of the original action. Inclu-
sion of the complete sequence of separated effects cannot be
enforced without the use of negative (delete) effects. Thus,
delete relaxation of this compilation results in an additional
relaxation, i.e., h+(Pseq) ≤ h+(P ).

3 Relaxed Planning with Conditional Effects
We approach optimal delete-relaxed planning for a problem
P with conditional effects by incremental compilation: We
first apply a transformation, similar to Pseq, to produce a
delete-free STRIPS problem that is a relaxation of P+; we
call this the floating effects relaxation of P+. The relaxed
problem is solved, optimally, using any method for opti-
mal delete-free planning available for STRIPS problems [e.g.,
Robinson et al. 2010; Gefen and Brafman 2012; Haslum et
al. 2012; Pommerening and Helmert 2012]. If the resulting
plan can be scheduled into a plan for P+, this plan is optimal



and we are done; if not, we apply the exponential compila-
tion to a subset of conditional effects, and the relaxation to
the remaining conditional effects, and repeat. We call this
procedure h+ce.

In the worst case, this may end up compiling away all con-
ditional effects, thus faring no better than applying the expo-
nential compilation up front and solving the STRIPS problem
only once. But in practice, as will be shown, we often need to
compile only a small fraction of them, thus making this ap-
proach able to solve problems whose exponential compilation
is prohibitively large.

3.1 The Floating Effects Relaxation
The idea of making conditional effects into separate actions
has been used in delete relaxation-based heuristics since FF
[Hoffmann and Nebel, 2001]. Typically, the condition of each
effect is augmented with the precondition of its action to en-
sure the action is (relaxed) applicable when the effect is used.

The floating effects relaxation is based on the same idea,
but differs on two points: First, it ensures that whenever a
conditional effect appears in the relaxed plan, so does at least
one instance of the action that the effect belongs to. This al-
lows setting costs so that the relaxation yields a lower bound,
and simplifies scheduling the relaxed plan. Second, a subset
of conditional effects (a parameter of the transformation) are
compiled out rather than relaxed. This gives a sliding scale,
from full relaxation to full exponential compilation of all con-
ditional effects. To keep track of the compiled out effects, we
associate with each action a in the relaxation a set ce(a) of
conditional effects.

Definition 1 Let P+ be a delete-free problem with condi-
tional effects and E a subset of its effects (with non-empty
effect conditions). The (partially compiled) floating effects
relaxation, denoted P+

fe /E, is defined as follows. Atoms in
P+
fe /E are all atoms of P+, plus one atom done-a for each

action a in P+. For each action a in P+, P+
fe /E has two

types of actions:
• For each A ⊆ (add(a)∩E), an action aA with pre(aA) =
pre(a) ∪

⋃
〈c,p〉∈A c, add(aA) = {p | 〈∅, p〉 ∈ add(a)} ∪

{p | 〈c, p〉 ∈ A} ∪ {done-a}, and cost(aA) = cost(a). This
is called an anchor action (for a). We set ce(aA) = A.
• For each conditional effect 〈c, p〉 ∈ (add(a) − E) (where
c 6= ∅), an action a〈c,p〉 with pre(a〈c,p〉) = c ∪ {done-a},
add(a〈c,p〉) = p and cost(a〈c,p〉) = 0. This is called a float-
ing effect (of a). We set ce(a〈c,p〉) = ∅.
The initial state of P+

fe /E is that of P+, with all done-a atoms
false, and the goal of P+

fe /E is that of P+.

The size of P+
fe /E is exponential, but only in the maximum

number of effects per action that are compiled out. Note that
the size of P+

fe /∅ is linear in P .
It is easy to see that P+

fe /E is a relaxation of P+: Given a
step 〈ai, Ei〉 in an optimal plan for P+, let Ai = Ei ∩ E be
the subset of Ei that has been compiled out. P+

fe /E, by con-
struction, includes an anchor action aiAi

with ce(aiAi
) = Ai.

The precondition of this action is pre(ai)∪
⋃
〈c,p〉∈Ai

c, which
must hold in the state where the step takes place, since ai

is applicable and all effects in Ei trigger, and it adds all of
{p | 〈c, p〉 ∈ Ai}. Thus, replacing each step 〈ai, Ei〉 with
aiAi

followed by the floating effect action a〈c,p〉 for each ef-
fect 〈c, p〉 ∈ (Ei − Ai) yields a plan for P+

fe /E, with equal
cost. The converse, however, is not necessarily true (unlessE
contains all conditional effects in P+). This is shown by the
following example.

Example 1 Consider (a simplified version of) the Miconic
domain, which involves scheduling the stops of an elevator
to serve a queue of waiting passengers. The action (stop ?f),
for each floor ?f, has two types of conditional add effects:
one effect 〈{(waiting ?p)}, (boarded ?p)〉 for each passenger
?p waiting at ?f and one effect 〈{(boarded ?p)}, (served ?p)〉
for each passenger ?p whose destination is ?f.

Consider a problem with two passengers, A and B, where
A wants to go from F1 to F2 and B from F2 to F1. An opti-
mal plan for the floating effects relaxation (with E = ∅) of
this problem is (stop F1), 〈{(waiting A)},(boarded A)〉, (stop
F2), 〈{(boarded A)},(served A)〉, 〈{(waiting B)},(boarded B)〉,
〈{(boarded B)},(served B)〉, with a cost of 2 (since floating
effect actions have cost 0). But this plan cannot be rewritten
into a plan for the delete relaxation of the original problem:
The last floating effect, 〈{(boarded B)},(served B)〉, belongs
to action (stop F1), so must take place at the same time as that
action (whereas the relaxation only requires it to happen after
the anchor action), but depends on the fact (boarded B) which
is only added by an effect of the second action, (stop F2).
Swapping the order of the two stops only leads to the same
problem with passenger A. Due to the cyclic dependency, any
plan for the delete relaxation of the original problem must
stop at one floor twice, for a minimum cost of 3.

3.2 Scheduling a Relaxed Plan
A scheduling of a plan S for a partially compiled floating
effects relaxation P+

fe /E is a plan S′ for P+ that has one step
for each anchor action a ∈ S, whose active effect set includes
ce(a), and where each floating effect in S is included in the
effect set of a (not necessarily adjacent) step with the action
that the effect belongs to. The cost of S′ is the same as the
cost of S; thus, if S is an optimal plan for P+

fe /E then S′ is an
optimal plan for P+. Example 1 shows it may be impossible
to schedule a plan for P+

fe /E, but if S contains no floating
effect action, then clearly a valid scheduling of S exists; thus
for large enough E, scheduling succeeds.

The complexity of deciding if a plan for P+
fe /E can be

scheduled is an open question. Keyder et al. [2012] show
NP-hardness, but for a slightly different scheduling problem;
their reduction does not apply when both the set of anchor ac-
tions and floating effects is fixed. On the other hand, we also
do not have a polynomial-time scheduling algorithm.

To schedule a relaxed plan we use plain depth-first search,
with a constraint propagation mechanism for efficiency. With
slight abuse of terminology, let S′ be a partially scheduled
plan, i.e., a set of steps where some actions are floating ef-
fects. Let 〈a′, E′〉 and 〈a〈c,p〉, ∅〉 be two steps in S′, where
a〈c,p〉 is a floating effect and a′ is an instance of the action
that this effect belongs to. Placing a〈c,p〉 with 〈a′, E′〉 trans-
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Table 1: Left: Number of delete-relaxed problems solved with h+ce; where Pexp could be built; and h+(Pexp) computed. Both
methods are limited to 1h CPU time and 3Gb memory for each problem. Right: Maximum number of conditional effects per
action compiled out, as a percentage of the instance maximum.

forms S′ into a new plan S′′ by (i) replacing 〈a′, E′〉 with
〈a′, E′ ∪ {〈c, p〉}〉 and (ii) removing 〈a〈c,p〉, ∅〉.

Let S′′ be the result of placing a floating effect a〈c,p〉 with
some step 〈a′, E′〉 in S′: for any valid sequencing of S′′ there
is a corresponding valid sequencing of S′, with a〈c,p〉 applied
immediately following the step 〈a′, E′〉. This implies that
the RPDG of S′, excluding the a〈c,p〉 node, is an edge-label-
subgraph of the RPDG of S′′, i.e., if n λ−→n′ is an edge in
the former, then n λ′−→n′, with λ ⊆ λ′, is an edge in the lat-
ter. We exploit this to build a sound approximation (i.e., an
edge-label-subgraph) of the RPDG of the final scheduled plan
incrementally: Starting from the RPDG of the plan for the re-
laxation, whenever a floating effect a〈c,p〉 is placed with a step
〈a′, E′〉, the a〈c,p〉 node is removed and all its incident edges
redirccted to the 〈a′, E′〉 node. Because the RPDG of a valid
plan is acyclic, a cycle in the approximate graph implies that
the current partially scheduled plan cannot be valid.

Scheduling starts from S′ = {〈a, ce(aA)〉 | aA ∈ S} ∪
{〈a〈c,p〉, ∅〉 | a〈c,p〉 ∈ S}. If there is a floating effect a〈c,p〉
in S′, then for each candidate step 〈a′, E′〉 in turn, try plac-
ing a〈c,p〉 with 〈a′, E′〉. If the placement causes a cycle in
the RPDG, or the new plan S′′ cannot be sequenced, proceed
to the next candidate; otherwise try to schedule S′′. If any
placement succeeds, return the plan, else add the effect 〈c, p〉
to a set Failed and backtrack.

If the scheduling procedure returns failure, the set Failed
contains at least one conditional effect, and no effect in Failed
is in the set E of effects that have been compiled out. In this
case, we set E′ = Failed ∪ E, construct P+

fe /E
′, call the

STRIPS h+ solver to obtain a new relaxed plan, and try again.
This repeats until scheduling succeeds, which will happen
eventually since the set of compiled out effects grows at each
iteration. We then have an optimal plan for P+.

3.3 Evaluation: h+ce in Practice
We compare the effectiveness of h+ce with building the full
exponential compilation of the delete-relaxed problem, P+

exp,
and computing h+ on that. The exponential compilation is
optimised so that no redundant actions are generated: when

an action has two conditional effects 〈c, p〉 and 〈c′, p′〉 such
that c implies c′, any compiled action that includes 〈c, p〉 also
includes 〈c′, p′〉. We make one modification to h+ce, adding at
most one conditional effect per action from Failed to the set
of compiled effects, E, per iteration.1 Both methods use the
iterative landmarks h+ solver [Haslum et al., 2012].

Of the usual planning benchmark domains only Assembly
(from IPC-1) and the “full” version of Miconic (from IPC-
2), have conditional effects (after grounding). Both of them
are easily dealt with by compilation because the maximum
number of effects per action is small. Therefore, we also
use problems generated by the conformat-to-classical plan-
ning compilation (T0) of Palacios and Geffner [2009] and the
finite-state controller synthesis compilation (FSC) by Bonet
et al. [2009]. These have significantly larger maximum num-
bers of conditional effects per action.

Table 1 (left) summarises the number of problems solved
(i.e., h+ computed) by the two methods, within 1h CPU and
3Gb memory per problem. Assembly and Miconic are easily
solved by full compilation, but in the more difficult domains,
incremental compilation has a clear advantage. In these, the
number of conditional effects per action compiled (the expo-
nent in the size of the compilation) is often a small fraction
of the maximum; in about a third of the problems, no effects
need to be compiled. The number of h+ce iterations varies from
1 to 101 (median 3, mean 7.9). There is, of course, a time
overhead for computing h+ several times: on those problems
that can be solved with the full exponential compilation, the
median slow-down of h+ce is a factor of 2.4 (mean 309).

4 Incremental Lower Bounds Beyond h+

The h++ incremental lower bound function [Haslum, 2012]
uses the PC compilation to iteratively strengthen h+. It com-
putes an optimal delete-relaxed plan, checks if the relaxed

1We also tried a different compilation of relaxed planning with
conditional effects, based on time-indexing atoms and actions in a
way similar to the relaxed planning graph (Joerg Hoffmann, pers.
comm.). Although it is polynomial in size, it was more difficult for
the h+ solver, and led to fewer problems solved.



plan works for the real, unrelaxed problem, and if not, com-
putes a set of binary conjunctions C, called flaws, and repeats
the process with PC , thus creating a series of less and less re-
laxed problems. Each flaw set is chosen so that the current
relaxed plan does not solve the delete relaxation of the next
problem. This ensures the process eventually converges to a
point where h+((· · · (PC1)C2 · · · )Ck) = h?(P ). However,
because the PC compilation is exponential it may run out of
space, or out of time computing h+. The derelaxation is built
iteratively, instead of rebuilding PC each time with a larger
setC, because flaw extraction finds only binary conjunctions;
after the the second iteration, the conjuncts can be πc atoms,
which lets it find (implicit) conjunctions of arbitrary size.

With a method of computing optimal delete-relaxed plans
for problems with conditional effects in hand, we can use the
linear-space PCce compilation in place of PC in h++. This
may avoid the exponential blow-up, as well as allow its ap-
plication to problems with conditional effects. There are two
obstacles: First, PCce , as defined by Keyder et al. [2012], is
defined only for STRIPS problems. Generalising it to work
with conditional effects is straightforward, but the size of the
generalised compilation is no longer polynomial in the worst
case. Second, the existing flaw extraction method only works
for STRIPS problems, and requires substantial revision.

4.1 The PC
ce Compilation with Conditional Effects

The PCce compilation [Keyder et al., 2012] augments the plan-
ning problem P with a new atom πc for each conjunction
c ∈ C, and modifies actions so that πc is made true only when
the conjunction c holds. Here, we define the generalised PCce
compilation only for binary conjunctions.

Let C be a set of (binary) conjunctions, and X any set of
atoms: XC denotes the set {πc | c ⊆ X, c ∈ C}. Let a be
an action, and {p, q} a binary conjunction. The conditional
effects of a on {p, q} are characterised as follows:
• For an atom p, add(a, p) = min⊂{c | 〈c, p〉 ∈ add(a)};
that is, add(a, p) is the set of minimal (w.r.t. subset) condi-
tions which cause action a to add p. Likewise, del(a, p) =
min⊂{c | 〈c, p〉 ∈ del(a)}.
• Let del(a, p) = {c1, . . . , ck}: —del(a, p) is the set of min-
imal conditions in which a does not delete p, and is given
by {{not-p1, . . . , not-pk} | p1 ∈ c1, . . . , pk ∈ ck}, i.e., all
ways of taking the complement of one atom in each condi-
tion that causes a to delete p. Likewise, —–add(a, p) is the set
of conditions in which a does not add p and is constructed
analogously.
• Finally, add(a, {p, q}) denotes the conditions in which a
makes {p, q} true. It is the union of three sets:

{c ∪ c′ | c ∈ add(a, p), c′ ∈ add(a, q)}
∪{c ∪ {q} ∪ c′ | c ∈ add(a, p), c′ ∈—del(a, q)}
∪{c ∪ {p} ∪ c′ | c ∈ add(a, q), c′ ∈—del(a, p)}

• Likewise, del(a, {p, q}) denotes the conditions in which a
makes {p, q} false. Because add effects take precedence over
deletes, this happens only if a deletes, and does not add, one
of the conjuncts: del(a, {p, q}) = {c ∪ c′ | c ∈ del(a, p), c′ ∈
—–add(a, p)} ∪ {c ∪ c′ | c ∈ del(a, q), c′ ∈—–add(a, q)}.

Definition 2 Let P be a planning problem (with conditional
effects) and C a set of binary conjunctions. Atoms in PCce are

all atoms of P , plus one atom πc for each c ∈ C. For each
action a in P , PCce has an action a′ with
• pre(a′) = pre(a) ∪ pre(a)C ,
• add(a′) = {〈c ∪ (c ∪ pre(a))C , p〉 | 〈c, p〉 ∈ add(a)}
∪{〈c ∪ (c ∪ pre(a))C , π{p,q}〉 | c ∈ add(a, {p, q})},

• del(a′) = del(a) ∪ {〈c, π{p,q}〉 | c ∈ del(a, {p, q})},
and cost(a′) = cost(a). Each atom πc is initially true iff c is;
the initial state of all other atoms in PCce is as in P . The goal
of PCce is GC , where G is the goal of P .

The size of PCce is potentially exponential, but only if some
actions conditionally add and delete atoms in some c ∈ C,
and it is exponential only in the number of minimal conditions
which cause the actions to add or delete those atoms.

The key property of PCce is that in any reachable state, πc is
true if and only if c holds. (The proof of this is a straightfor-
ward adaptation of the proof for PC [Haslum, 2012].) Since
pre-, effect and goal conditions in PCce include πc only when
the condition contains c, it follows that a1, . . . , an is a plan
for P if and only if a′1, . . . , a

′
n is a plan for PCce . Thus, since

corresponding actions have the same cost, h?(PCce ) = h?(P ).

4.2 Flaw Extraction
The flaw extraction procedure for STRIPS problems has two
steps: First, if a relaxed plan fails when executed in the real
problem, it is because some atom, p, required by an action
precondition or the goal, was deleted by a previous action.
The nodes in the RPDG corresponding to these are identified
as the failed node, nf , and the deleter, nd, respectively. Sec-
ond, the set of flaws is extracted from the edge labels of the
RPDG: A dependency closure from n to n′ is a recursively
defined subgraph of the RPDG that contains a path from n to
n′, and a path from n to any node that adds an atom that labels
an edge in the closure. If nf is a descendant of nd, flaws are
pairs {p, q} where q labels an edge in a dependency closure
from nd to nf . If not, dependency closures from nd and nf
to one of their nearest common descendants are chosen, and
flaws are pairs of one atom from each closure, with p added
to the second. For a full description of the procedure we must
refer to the earlier paper [Haslum, 2012]. Adapting it to re-
laxed plans with conditional effects requires several changes,
which we can only sketch briefly here.
Relaxed Plan Normalisation The relaxed plan is normalised
by (1) including in the active effect set of each step 〈a,E〉 all
〈c, p〉 ∈ add(a) that are implied by the combined precondi-
tion of the step, i.e., such that c ⊂ pre(ai) ∪

⋃
〈c′,p〉∈Ei

c′;
and (2) iteratively removing from each step any redundant
non-implied effect, and any redundant step from the plan.
Splitting the RPDG Next, we need to separate active effects
from actions, and track their dependencies explicitly. Com-
puting the RPDG on the floating effects relaxation is not suf-
ficient, because this does not reveal all necessary dependen-
cies. Instead, we compute a split RPDG in two steps. Recall
that each step 〈ai, Ei〉 in a relaxed plan can be viewed as a
STRIPS action; we compute a standard RPDG, G1, on this
plan, and transform it into the split RPDG, Gsplit, as follows:
1. Each node n〈a,E〉 in G1 is split into one node, na, for the
action and one node n〈c,p〉 for each active effect 〈c, p〉 ∈ E.



2. For each incoming edge n λ−→n〈a,E〉 in G1, each label
atom q ∈ λ is considered separately: If q ∈ pre(a), redraw
the edge n q−→ to each node that n〈a,E〉 was split into (or add
q to the label where an edge already exists). If q 6∈ pre(a),
q must belong to the condition of some active effects; redraw
the edge only to each node n〈c,p〉 where q ∈ c.
3. For each outgoing edge n〈a,E〉 λ−→n in G1 and each label
atom q ∈ λ: If q is an unconditional effect of a, draw the edge
q−→n from na (or add q to the label if the edge already exists).

Otherwise, q is added by one of the active effects 〈c, q〉 ∈ E;
in this case, draw the edge n〈c,q〉 q−→n.
Assigning Failures If a step in the relaxed plan fails only
because some of its effects’ conditions are unsatisfied, each
node n〈c,p〉 corresponding to such an effect is a failed node.
If a step fails because the precondition of the action is un-
satisfied, the action node, na, and all of its associated condi-
tional effect nodes are failed. Flaws are generated separately
for each failed node. In the split RPDG, nodes other than
the goal node may have no outgoing edges; these cannot be
used to derive flaws. However, due to normalisation, when-
ever there is a failed node with no outgoing edge, there is also
another failed node that has at least one outgoing edge.
Selecting Deleters For each failed node, flaw extraction from
the split RPDG proceeds in the same way as for STRIPS
plans. However, since the node of the action that deleted the
missing atom may have been split, we may have a choice of
deleter node. This choice is made to minimise the size of the
flaw set, with the restriction that if any candidate deleter node
has a path to the failed node, one that does must be chosen.
Convergence The flaw extraction procedure for STRIPS
plans returns a set of conjunctions such that compiling those
in is guaranteed to rule out the failed relaxed plan. This is not
true of flaw extraction, as described above, for conditional
effect plans. The difficulty arises in the recursive part of a
dependency closure, which must include a path from the root
node of the closure to every node that adds an atom that labels
an edge in the closure. In the standard RPDG, such a path al-
ways exists [Haslum, 2012, Theorem 2, item 5]. In the split
RPDG, that path may need to be traced “backwards” from a
conditional effect node to the action node of the correspond-
ing step. How to define a closure in the split RPDG to ensure
convergence is an open question.
Flaw Extraction for Non-Sequenced Plans The procedure
used to compute a small flaw set that covers each sequenc-
ing of a partially ordered relaxed plan in the STRIPS version
[Haslum, 2012] does not easily generalise to the conditional
effects case. However, with the PCce compilation minimising
the size of the flaw set is not as critical. Thus, we adopt the
simple enumerate-to-first-failure approach for non-sequenced
relaxed plans.

4.3 Evaluation: h++
ce vs. h++

We compare use of the PCce compilation in h++ (called h++
ce )

with the original procedure, using the PC compilation, on
two sets of domains: Airport, 4-ops Blocksworld and Open-
stacks are domains where the original h++ most often runs
out of memory. Here, we want to see if using PCce instead

h++
ce h++

Sol. > Sol. > Mem.
Airport (50) 21 0 24 9 15
4-ops Blocksworld (35) 12 15 8 8 5
Openstacks (30) 0 10 0 0 19
APPN (35) 35 1 33 0 0
ParcPrinter (30) 26 0 27 4 0
Woodworking (30) 11 7 9 9 0

Table 2: Comparison of h++, using the PCce (h++
ce ) and PC

compilations. Columns show the number of problems solved
(“Sol.”); where each method proves a strictly higher lower
bound (>); and for the PC compilation, where h++ runs out
of memory (“Mem.”).

leads to better lower bounds. APPN, ParcPrinter and Wood-
working are among the domains where h++ is at its best,
compared to lower bounds based on A* search. Here, we
want to see if using the weaker PCce compilation also leads to
weaker bounds.

Both solvers are given 1h CPU time and 3Gb memory per
problem. Table 2 shows the number of problems optimally
solved, and how often each method proves a lower bound (on
h?) strictly higher than the other. h++

ce , of course, never runs
out of memory, and does improve over h++ where it does, but
the improvement does not seem directly related to how often
that happens. Moreover, h++

ce even fares (slightly) better in
some of the domains where h++ already does well. Clearly,
more factors than just the size of the compilation determine
the effectiveness of this iterative lower bounding approach.

5 Conclusions
Adapting optimal planning techniques to problems with con-
ditional effects is difficult, but important for optimal planners
to be applicable in many cases, particularly to problems gen-
erated by compilations. The exponential conditional effects
compilation is convenient, since it allows such problems to be
reduced to the STRIPS case, but infeasible whenever actions
have more than a few conditional effects. We have shown
that incremental compilation may be a promising approach,
though it remains to investigate how this idea can be applied
in other contexts than for computing h+.

Having an h+ solver for problems with conditional effects
allows us to contemplate using the more space-efficient PCce
construction within the h++ anytime lower bound function.
This requires modifications to both the compilation and the
original h++ procedure, and establishing the convergence
guarantee that holds in the STRIPS case remains an open
problem. However, preliminary results suggest that there are
more benefits to making this switch than just reducing mem-
ory requirements.
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