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Abstract— This paper applies a sensor which has been
developed based on a model of primate vision to corner
fixation. Fixation is critical for the log-polar sensor as many of
the sensor’s advantages are demonstrated only under fixation.
This paper presents a fast corner fixation algorithm using the
log-Hough transform to find the dominant centre-most corner
and aligning the optical axis with the corner. The algorithm
has been implemented in a real-time closed-loop control system
on a pan-tilt platform, This paper demonstrates an important
benefit of the log-polar sensor with vote-based algorithms, an
emphasis of foveal pixels. This removes the need for searching
explicitly through all detected corner positions in order to
locate the most central. In addition, since the sensor has a
large field of view for a given number of pixels compared
to space-invariant cameras, it shows increased computational
performance, while still supporting accurate fixation.
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I. INTRODUCTION

A deeper understanding of human anatomy and biology
is contributing greatly to enhancing health and quality of
human life through avenues such as medicine and education.
While direct study of human anatomy and behaviour yields
many insights, there are limitations when studying biologi-
cal creatures as systems due to their extreme complexity.
Robotic simulation of biological entities can help here
by testing whether models of perception and action can
actually work in practice, or suggesting possible ways a
biological entity may process information and act. On the
other hand biological creatures are able to operate within
their environments in a highly effective manner, far more
so than the current generation of robots. Examination of
biological models of perception and action can lead to more
effective algorithms and systems for performing robotic
tasks. These are the complementary aims of the field of
bio-robotics.

The log-polar sensor was developed based on a model of
primate vision [20]. Its incorporation into robotic perceptuo-
motor loops can help facilitate the study of biological
perception and action. The log-polar sensor has a high res-
olution at the fovea, which reduces logarithmically towards
the periphery. The sensing elements are aligned in a polar
layout. Theoretical and robotic study of the sensor has lead
to the discovery of various advantages for perception and

action over traditional Cartesian cameras. A foundational
theoretical paper by Weiman and Chaikin [27] proved that
the exponential mapping is conformal (angles are preserved
locally), and that expansion and rotation about the camera
centre are mapped simply to addition in log-polar coordi-
nates. Massone, Sandini and Tagliasco [15] demonstrated
the advantages of the sensor for 2D recognition. Questa
and Sandini [19] and Tisarelli and Sandini [23] showed
that time-to-contact calculations are simplified, providing
benefits in docking and obstacle avoidance. The natural
foveation of the sensor naturally leads to a wider field
of view with lesser computation requirements to maintain
high resolution at region of interest. Bernardino and Santos-
Victor [4] demonstrated the advantages of distance weight-
ing from the centre of the scene for focus of attention.
Barnes and Sandini [3] showed that egomotion recovery
under fixation is simplified on a log-polar sensor, benefitting
docking behaviours. Weiman [26] showed the mapping of
circles, straight-lines, and parabolas is unified under a log-
polar sensor and that the Hough transform and log-polar
coordinate systems can be unified.

With these well-known advantages, this paper explores
the advantages of the log-polar sensor for corner fixation.
Foveation shows the greatest benefit when the sensor is
centred on the region of interest in the environment, so
algorithms for fixation are critical to the application of
the log-polar sensor. At the same time the sensor layout
is highly beneficial for fixation as it allows high-precision
fixation at the centre, while maintaining a wide field of
view, with a reduced total pixel count leading to faster
computation. It is not as important to have as precise
information about object position when the object is towards
the periphery, as here the main task is to shift the object
towards the fovea.

Fixation is a specialisation of visual tracking, where gaze
direction is maintained on the same target point over time
[1]. In general, fixation aims to maintain objects of interest
at the centre of the camera - the optical axis. This maximises
the distance the object can move between frames before it
is lost from the field of view. Fixation is part of the active
vision paradigm [2], where the observer is manipulated to
obtain extra information about the environment. This ability
to fixate simplifies many higher-level vision problems, such



as docking [3]. Tracking itself is a fundamental operation
in robotic vision to facilitate control (e.g., [12], [5]). It also
facilitates image understanding by recovering motion [22]
and through recognition of object [25] and shape [6]. Many
solutions exist for space invariant cameras. However, these
often utilise a sub-sampling window to reduce the pixel
count [14] and so image processing time. In any case, for
space invariant cameras it is always necessary to trade-off
fixation precision and field of view to facilitate real-time
performance.

There have been a number of fixation algorithms that
have exploited the advantages of foveation of the log-
polar camera. Oshiro et al. [18] present a binocular fixation
algorithm exploiting the zero disparity field, which is not
relevant to work on monocular fixation. In terms of algo-
rithms that are directly relevant to monocular fixation, there
have been template-based algorithms that are suitable for
general fixation for the log-polar domain. Bernardino and
Santos-Victor [4] formulated a template-based binocular
fixation algorithm using the visual servoing framework.
Ahrns and Neumann [1] proposed a view-based fixation
control algorithm using monocular vision, which involves
comparison against a reference view to obtain a similarity
measure. These template-based algorithms are general in
nature, but this generality comes at a computational cost.

However, when a corner is visible (e.g., manufactured
objects) corner-based methods should be exploited for the
speed increases that are possible through specialised algo-
rithms. Corner-based fixation also can be used to establish
a precise correspondence between a fixated target and a
corresponding object model, and thus facilitate knowledge-
based interaction. However, Cartesian-based corner tracking
methods are not directly applicable to log-polar domain,
thus a new approach is needed to combine the data re-
duction advantages of the log-polar sensor with gains from
specialised corner fixation. In this research, we focus on
corner fixation because corners are commonly encountered
indoors and in built environments.

Corner detection is a well-researched field, with corners
widely used as point features for visual reconstruction [9]
and Simultaneous Localisation and Mapping (SLAM) [21].
A basic definition of a corner can be based on curvature
or intensity discontinuity of edges. One of the most com-
monly used is the Harris corner algorithm [10]. For corner
detection, an evaluation of classical algorithms is available
in [7], and an empirical comparison of various types of
feature detectors for reconstruction tasks can be found in
[17]. The log-polar sensor is conformal so standard corner
algorithms can be used with the sensor. However, there
are two reasons why local point corner detection is not
appropriate for this work: instability; and the singularity
of the log-polar sensor. Corner detectors typically report
fairly high false positive rates [17]. This is acceptable in a
reconstruction or SLAM situation as matching algorithms
deal with false positives. However, false positives may be
highly distracting for fixation. Even for non-false positive
points, point corners are not stable over different scales. For
fixation, either the robot or target will be in motion. If the

(a) (b) (c)

Fig. 1. A corner the centre: (a) Cartesian remapped image, (b) log-polar
image, (c) log-polar edge map.

(a) (b) (c)

Fig. 2. A corner at an arbitrary position: (a) Cartesian remapped image,
(b) log-polar image, (c) log-polar edge map.

relative motion changes the distance between the target and
robot, scale will be effected. If distance increases, small
corners may reduce below sensor resolution, as distance
increases, what appeared as a corner at one scale may not
be a corner at higher resolution. Similarly with changes in
resolution across a space-variant sensor. There is work on
making corners robust under scale [16], but this degrades
under large scale changes. Further, the log-polar sensor has
a singularity at the centre of projection. Thus, point corners
will disappear as soon as they are correctly fixated. In this
paper, the approach emphasises structural support of corners
by defining a corner as the intersection of two straight
lines to support stable fixation. This definition gives rise
to a simple and fast detection algorithm using the Hough
transform.

In this paper, we present a novel algorithm to detect,
track and fixate corners in log-polar space. A space-variant
camera can capture the same field of view as a conventional
camera at lower pixel count, eliminating the need for
windowing. A log-polar camera achieves this by having the
maximum spatial resolution at centre (fovea) and logarith-
mically reducing towards the periphery. Although this does
not support tracking at high resolution across the sensor,
it supports high-resolution fixation. The contributions of
this paper are two-fold: a demonstration of the advantages
of using the log-polar camera for fixation; and, a highly
effective algorithm for monocular fixation. Specifically, the
advantages demonstrated are: increased field-of-view while
maintaining foveal resolution; and, an emphasis on foveal
pixels for vote-based algorithms. This emphasis aligns with
the goal of fixation, which is to keep the corner at the
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Fig. 3. An annulus in the image plane (a) maps to a vertical strip in the
log-polar plane (b).

image centre. This emphasis removes the need for searching
explicitly through all detected corner positions in order to
locate the most central. A closed-loop control system based
on the proposed fixation algorithm has been implemented
and experimentally verified to be stable and sufficient for
real-time performance.

II. BACKGROUND - THE LOG-POLAR MAPPING

The log-polar sensor imitates the mapping from the retina
to visual cortex of primates [20]. In the retinal plane (Figure
3(a), a point can be represented by Cartesian coordinates
(x, y) or polar coordinates (r, ψ):

x = r cosψ, (1)

y = r sinψ.

The mapping between a polar plane (r, ψ) (retinal plane)
and a Cartesian plane (ξ, η) (log-polar cortical plane, Figure
3(b), can be written as:

ξ = loga

r

r0
, (2)

η = qψ, (3)

where r0 is the radius of the inner-most circle and 1

q
is

the minimum angular resolution of the log-polar layout.
A CMOS implementation of the log-polar sensor has been
realised in [19] and is used in this research.

III. ARCHITECTURE

Figure 4 illustrates the system architecture. The control
hardware consists of Giotto log-polar camera as input and
a pan-tilt motor control board as output running a PID
controller. The tracker software module connects these two
pieces of hardware and implements the proposed corner
fixation algorithm. The software architecture of the tracker
is shown in Figure 5.

Fig. 4. Control structure of the corner tracker.

Fig. 5. Log-Hough corner tracking algorithm.

IV. THEORY

The Hough transform [11] finds straight-lines from edge
pixels in a Cartesian image. However the log-polar sensor
transforms straight-lines, so the Cartesian Hough transform
is not directly applicable. The log-Hough transform [26] is
adapted for use in this system.

A. The log-Hough transform

Weiman’s derivation [26] of the log-Hough transform
begins with the following straight-line equation in polar
coordinates:

r =
ρ

sin(ψ − φ)
, 0 < ψ − φ < π, (4)

where φ is the slope of the line (see Figure 6). The log-polar
transform of Equations (2) (3), and (3) are then applied:

ξ = loga ρ− loga(sin(η − ψ)). (5)

To make use of log-Hough transform on real cameras,
we must restrict the ranges to match the finite discrete
representation of digital imagery. In this section, we present
a full derivation of log-Hough voting equation for finite
digital images. Also, Duda and Hart’s [8] coordinate system
should be used for consistency with standard notation in this
field, as shown in Figure 6, and Equation (6). We use (r, θ)
to represent polar coordinates. Hence, the standard Hough
line parameterisation can be written:

ρ = x cos θ + y sin θ. (6)



Fig. 6. Cartesian polar coordinate system.

Now, we can use θ to define the line equation in polar
coordinates instead of φ:

r =
ρ

cos(θ − ψ)
, 0 < θ − ψ < π, r0 ≤ r ≤ rmax, (7)

where θ is the angle, from x-axis, of the perpendicular
line passing through the origin. The Hough voting process
increments an accumulator of all possible line parameters
for a given candidate pixel. The voting equation is:

ρ = r cos(θ − ψ), 0 < θ − ψ < π, r0 ≤ r ≤ rmax. (8)

Converting into log polar coordinates:

ρ = r0a
ξ cos(η − ψ), 0 < η − ψ < π, ξ0 ≤ ξ ≤ ξmax. (9)

B. Intersection of two lines

The output of the log-Hough transform is a list of
recognised lines defined by two parameters ρi and θi:

r =
ρ1

cos(θ1 − ψ)
, (10)

r =
ρ2

cos(θ2 − ψ)
.

The corner for any line pair lies at their intersection. For
non-parallel lines (θ1 6= θ2), an intersection can be obtained
in polar coordinates from the standard equations:

r =

√

ρ2

1
+ ρ2

2
− ρ1ρ2 cos(θ1 − θ2)

sin(θ1 − θ2)
, (11)

ψ = cos−1

[

ρ2 sin θ1 − ρ1 sin θ2
√

ρ2

1
+ ρ2

2
− ρ1ρ2 cos(θ1 − θ2)

]

. (12)

However, Equation (12) only gives the magnitude of ψ,
the sign requires substitution into the line Equations (11) to
check for consistency and obtain r.

(a) (b)

Fig. 7. Illustration of foveal voting bias. Note that the high-resolution
fovea is partially shown: (a) Cartesian image domain, and (b) Log-polar
image domain.

C. Control

The intersection from the previous section provides the
target corner position. The algorithm converts this point
to relative pan-tilt coordinate and dispatches a positional
command to the motor control sub-system. As a whole,
the proposed fixation algorithm forms a closed-loop visual
feedback control structure.

V. ADVANTAGE OF THE LOG-POLAR FOR VOTE BASED

ALGORITHMS

Visual attention for vote-based algorithms is computa-
tionally simplified using the log-polar sensor. The high-
resolution fovea naturally gives rise to a higher pixel count
when a corner is close to centre. This inherent bias fits
well with the log-Hough transform process, which will find
the line with more votes first (see Figure 7). Due to the
logarithmic drop-off in towards the periphery, any line that
is close to the centre will have a much greater pixel count
for the same projected length. In the majority of cases, the
two most dominant lines correspond to the lines that fall
closest to the camera centre.

An important benefit of using the log-polar sensor with
log-Hough line detection is the automatic bias for corners
closer to fovea. This removes the need for explicit search
through all detected corners, possibly a large number for
cluttered scenes, to locate the corner closest to the centre.
Each corner to be checked requires an explicit resolution
of the position of the intersection of the component lines.
Such a search would be necessary for a Cartesian sensor.

VI. IMPLEMENTATION

Control calculation: We take the n lines with the highest
vote count. The intersections of all pairs of these n lines are
solved using Equations (11 and 12). If multiple intersections
exist, the algorithm may take the one with the smallest radial
component (r) as the estimated fixation point. This does not
guarantee that a correct corner will always be found, but in
most cases is sufficient to implement stable fixation. The
results demonstrate stability in multi-corner scenes.



(a) (b) (c) (d)

Fig. 8. False peaks around a true peak in Hough space causes detection of
erroneous lines around edges. (a) Cartesian remapped image, (b) log-polar
image, (c) edge map image and (d) Hough vote map.

Hough quantisation: The Hough space dimension of
60 (ρ) x 100 (θ) was chosen empirically to be a good
compromise between computation expense and quantisation
error. This Hough space dimension translates to a minimum
resolvable line orientation (3.6◦ in this case).

Hough peak finding and non-maximal suppression:
Since the image space is discrete, quantisation errors cause
a number of votes to fall into Hough bins that neighbour
a peak. See [24], [13] for an analysis of the problem and
some possible approaches to dealing with it.

We apply smoothing of Hough space to assist with this
problem. However, edges of real world objects are often
accompanied by shadows that appear as edges nearby. This
problem is more important with fixation for real scenes.
These two problems can combine to lead to multiple edges
from a single object edge overwhelming other lower but
significant local peaks, as shown in Figure 8. To overcome
this problem, non-maximum suppression is applied around
the current global peak. We clear a number of rows (θ) in
both directions. The range of the non-maximal suppression
could have been limited in ρ, but widely separated parallel
lines will not have a corner, and so can be discarded. For
the trials shown in this paper this was set to be around 14◦.
The setting that should be used depends on the thickness
of lines in the operating environment, and the narrowness
of corners that are required to be tracked. If edges were
always thin this would not be necessary.

VII. RESULTS AND ANALYSIS

Extensive experiments have been conducted to evaluate
the performance of the fixation algorithm. We conducted a
series of trials with simple clean corners, such as Figure
1, to evaluate the quantitative accuracy of corner localisa-
tion. We also tested different corner angles, more complex
scenarios of multiple corners, and short corners to ensure
stable fixation. Lastly, the real-time fixation performance
was verified.

All trials were conducted with the Giotto camera and
a custom pan tilt platform mounted on a Pioneer robot
as shown in Figure 4. Current non-optimised performance
with an Intel Pentium III 600MHz is around 20 frames per
second, which is adequate for real-time fixation. Video of

Fig. 9. Estimation errors versus radial distance (moving the camera left).
Note that four outliers, three approximately 10

◦ and one 14.5
◦, are not

shown for formatting clarity, but are included in the trend-line calculation.

Fig. 10. Average estimation errors versus radial distance from the centre
point.

the system demonstrating its closed-loop performance can
also be seen at:

http://www.nicta.com.au/˜nmb.

A. Quantitative Verification

In order to evaluate the precise error in estimation, we
disabled the control system. The first trial examined stability
with respect to distance from the image centre. A corner of
90 degrees, as shown in Figure 1, was moved to the left
of the image across 39 trials. Figure 9 plots the position
estimation error against radial distance. The error shown is
the visual angular distance between the manually estimated
corner point and the point estimated by the system. Visual
angle from camera calibration gives a clearer result than the
pixel count, which is non-linear. This reducing estimation
error trend appears to be approximately logarithmic, which
corresponds to camera sampling resolution as expected.
High precision fixation at the fovea is an advantage of the
log-polar sensor. Results for moving right were comparable.
Thus, generally, an accurate estimate of corner position is
obtained when a single clean corner is present.



Fig. 11. Unstable fixation for a 190
◦ corner target causes platform to

oscillate around the centre.

To verify performance with different corner shapes and
different directions of motion away from the image centre,
we trailed 14 differently angled corners ranging from 15◦ to
340◦. Each was moved to four standard positions between
the fovea and 15 degrees from it, at four 90◦ intervals
around the centre. The direction that the lines of the
corner extended from the corner was also varied. Figure 10
shows the error at each position, averaged across all trials,
demonstrating stability.

1) Corner angular dimension limit: Within the above
trial, we tested nine different corner angles ranging from 15◦

to 165◦. For this range the error estimates were acceptable
for fixation. Between 0◦ to 15◦ and 165◦ to 180◦ corners
were not stably tracked, as shown in Figure 11. This corre-
sponds to the minimum line orientation difference allowed
by non-maximal suppression. Note that the range from 180◦

to 360◦ is symmetric to this and shows similar performance.
Under low illumination, there was also instability close to
minimum corner angle. This appeared to be due to slight
edge blurring under low lighting.

B. Special cases: multiple and short corners

We trailed many cases of fixating a corner in multiple
corner scenes. In the majority of cases where a significant
corner is visible (see Figure 12, 13), the intersection of the
two major lines is correctly detected. However, in some
ambiguous situations such as Figure 14, there are multiple
corners close to the centre. Here the camera may move to
either (whichever appears closer) but once it has moved,
fixation will be stable.

Nevertheless, there exist degenerate cases, such as Figure
14, where the centre-most line intersection is not a real cor-
ner. This can cause instability by saccading to the fictitious
corner point. However, generally, this will not be a stable
solution and will disappear given camera motion towards
the non-existent corner, leading to stable fixation. With the
camera being an active observer, prolonged erroneous states
are rarely encountered. Figure 14(c) shows a case where
incorrect fixation may be prolonged. This case could be
corrected by additional processing to reject corners with no
edge pixels close to the intersection.

For short corners, the algorithm maps all pixels of the

(a) (b)

(c) (d)

Fig. 12. Multi-corner scene - a dominant corner exists and is recognised
correctly.

(a) (b) (c)

Fig. 13. Multi-corner scene - multi-intersection cases: (a), (b) are
determinate cases due to proximity to the centre of one corner, whereas
for (c) either corner may be selected.

edges that make up a corner, thus corners with adequate
spatial extent are fixated stably (see Figure 15).

C. Office scene

In addition to these controlled cases, we also verified the
system performing closed-loop with robot motion through
many extended trials, including in two indoor scenes: the
corner of a door window (Figure 16); and, the corner of
a room (Figure 17). For both scenes fixation was run for
several minutes and despite occasional poor estimates the
fixation was stable.



(a) (b) (c)

Fig. 14. Multi-corner scene - degenerate cases: (a) and (b) will disappear
as soon as the camera moves, however for (c) the incorrect fixation may
be stable.

Fig. 15. Cartesian remapped images of short corners, demonstrating
correct recognition of centre-most corners.

Figure 16 shows images taken at random intervals during
this trial, displaying the estimated lines and corners. It can
be seen that for the first sequence (see Figure 16), one
fifth of the images show that the corner was not accurately
detected. However, this did not prevent stable fixation. Fig-
ure 17 shows a difficult case for corner fixation where one
edge is wide, due to self-shadowing under low illumination.
Again, fixation was stable, even though a quarter of the
cases verified were in error. For both trials the incorrectly
detected corners are due to dominance of near parallel
lines. This could be improved by tuning the algorithm,
such as broadening non-maximal suppression. However,
the absence of such tuning demonstrates robustness of the
algorithm without parameter tuning. Fixation was stable
despite many corner features being present and the fact
that the algorithm is given no information to discriminate
between them other than favouring central corners with
spatial extent.

VIII. CONCLUSION

This paper presented a new log-polar corner fixation al-
gorithm. Fixation is critical to the see the benefits of the log-
polar sensor in robot vision. The paper also demonstrates
the advantages of the log-polar sensor for fixation, that there

Fig. 16. Fixation on an indoor scene of a window.

Fig. 17. Fixation on the corner of a door. Note the strong shadowing
around the edge of the door.

is a reduced computational load for supporting high accu-
racy fixation at the fovea (reduced error in corner position
estimation), while still maintaining a wide field of view.
It also demonstrated advantages for vote-based algorithms
in terms of the distance weighting of sensing elements
aiding focus of attention. This advantage eliminated the
need for explicit search through all corners in an image
to locate the centre-most. In the course of developing the
fixation algorithm, we fully derived the Hough transform
voting equation in log-polar domain for real images. A full
hardware and software closed-loop system was developed



to implement the algorithm. Experimental verification has
shown that the system is stable and has demonstrated real-
time performance. This is an important result because it
confirms the advantages of the log-polar sensor for this
application. This paper has demonstrated that the log-polar
sensor is highly suitable for fixation tasks where the focus
of attention is at the high-resolution image centre.
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