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Abstract. We present our complete study involving comparisons of three spatio-temporal
used in the estimation of optical flow for continuous mobile robot navigation. Previous
comparisons of optical flow and associated techniques have compared performance in terms
of accuracy and/or efficiency, and only in isolation. These comparisons are inadequate for
addressing applicability to continuous, real-time operation as part of a robot control loop. In
recent work [11], we presented a comparison of optical flow techniques for corridor navigation
through two biologically inspired behaviours: corridor centring and visual odometry. In that
study, flow was predominantly constant. In this paper we give new results from comparisons
for flow-divergence based docking, where flow is non-constant. Results for traditionally used
Gaussian filters indicate that long latencies significantly impede performance for real-time
tasks in the control loop.

1 Introduction

Biologically-inspired visual behaviours such as corridor centring [5], visual odom-
etry[17] and docking[14] have all been demonstrated using visual motion for closed
loop control of a mobile robot. Despite encouraging results, mobile robot research
has not broadly adopted this paradigm. A perceived lack of robustness, and the ab-
sence of any defined systematic approach to the implementation of such behaviours
are likely reasons for this. The choice of optical flow method is perhaps the most
important case in point. While visual motion is central to these behaviours, no
systematic choice of optical flow technique currently exists.

Past comparisons have primarily assessed flow methods on accuracy and/or effi-
ciency, and only in isolation [2,8,10]. These studies have not considered performance
when embedded in a system, performing real-time tasks. Quantitative comparisons
of accuracy and efficiency alone do not provide sufficient information on which to
base a choice for mobile robot navigation. We emphasise the importance of in-system
evaluation when comparing optical flow techniques for such an application.

In recent work [11], we conducted a comparison of optical flow techniques for
corridor navigation. It was found that the choice of spatio-temporal filter applied



2 C. McCarthy and N. Barnes

with gradient-based methods significantly effected in-system performance. Filters
are used to reduce image signal noise before estimating image gradients. Temporal
filters differ in required temporal support, latency and accuracy. It is important to
consider temporal filters when evaluating flow methods for robot navigation.

In this paper we present our complete study in the comparison of temporal filters
for robot navigation, including new results obtained for docking. We focus only on
behaviours involving continuous motion, thus excluding such behaviours as hovering
where motion changes are necessarily sharp and discontinuous. Corridor navigation
comparisons examine performances when flow is constant or near constant. Dock-
ing comparisons examine performances when flow is not constant, but exhibiting
increasing levels of divergence. The temporal filters for comparison are: Gaussian
filtering with central differencing, Simoncelli’s matched-pair derivative filters [15],
and Fleet and Langley’s recursive temporal filter [7]. These are applied with Lucas
and Kanade’s gradient-based optical flow method [9], chosen on the basis of strong
performances in [11]. We give an overview and theoretical comparison of these tech-
niques before setting out our methodology for comparison. We then present results
from on and off-board comparisons and then our conclusions.

2 Theoretical Overview

In this section we introduce all techniques and provide theoretical comparisons of
the filters for robot navigation. Refer to the cited references for their full details.

Optical Flow Method: Lucas and Kanade[9] This method applies a model of
constant velocity on small local neighbourhoods (ω) of the image by minimising:

∑

x∈ω
W 2(x)((∇I(x, t) · v) + It(x, t))

2, (1)

where W (x) denotes a window function. Thresholding eigenvalues of the least-
squares matrix can improve accuracy, however, this was not applied.

Gaussian Filtering Gaussian filtering (std dev 1.5) and central differencing are
the traditionally used filters for optical flow estimation. An isotropic Gaussian filter
is applied in convolution for spatio-temporal pre-smoothing. A central differencing
kernel (typically size 5) is then applied to estimate derivatives. We include two
Gaussian filters with standard deviations 1.5 (Gaussian 1.5) and 0.5 (Gaussian 0.5).
Central differencing (size 5) is then applied.

Simoncelli’s Matched-Pair Filters[15] Simoncelli proposed a filter design for
obtaining accurate multi-dimensional derivative estimates using a small low-pass
filter and derivative filter. These are related by their simultaneous design and applied
as a matched pair through convolution. The implementation used here employs a
size three pre-filter before applying the 5-tap matched-pair filters.
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Recursive Temporal Filter[7] Fleet and Langley proposed a recursively applied
causal temporal filter. Images are filtered via a cascaded implementation of an order
n filter, where n is the number of cascades used. A time constant, τ−1, gives the
duration of temporal support. We use an order three filter (n=3, τ−1=1.25).

2.1 Theoretical Comparisons

To assist discussion of experimental results, theoretical comparisons are given below.

Accuracy: The Simoncelli filter by its design, is the strongest filter for angular flow
accuracy [15]. Gaussian 0.5 accuracy will be low due to increased noise levels. The
recursive filter is known to be less accurate on synthetic image sequences than the
Gaussian 1.5 filter[7]. Of interest is how accuracy effects on-board performance.

Efficiency: For a 192x144 pixel image sequence, Table 1 shows computation times,
storage requirements and latencies for all filters. Of the temporal filters, the Gaus-
sian 1.5 requires the largest explicit frame support and frame delay. Frame delay is
likely to influence in-system results significantly.

Robustness: Sensitivity to changing conditions is important, however, robustness
to small fluctuations due to robot ego-motion is also desirable. The relatively large
temporal support of the Gaussian 1.5, and the implicit support given to the recursive
filter, suggests both should be robust to such noise. Simoncelli and Gaussian 0.5
may exhibit higher sensitivity due to their reduced temporal support. Increased
noise levels with the Gaussian 0.5 are likely to further impede robustness.

Responsiveness: The recursive filter’s large implicit temporal support may inhibit
responsiveness to changes. Large frame delay with the Gaussian 1.5 will also impede
responsiveness. Simoncelli and Gaussian 0.5 should exhibit high responsiveness
given reduced frame support and therefore increased weighting on the current frame.

3 Methodology

In this section we present three navigational behaviours implemented for this com-
parison: corridor centring, visual odometry and docking. We outline the methodology
and performance indicators used in our comparison of temporal filters.

Filter time (ms) support (frames) latency (frames)
Gauss 0.5 116 9 4
Gauss 1.5 170 15 7
Recursive 110 3 3
Simoncelli 106 7 3

Table 1. Efficiency data for temporal filters. Times taken on an Intel x86 866 MHz machine
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3.1 Corridor Centring

Corridor centring, inspired by honeybee behaviour [16], is achieved by differencing
average flow in the outer thirds of an image from a forward facing camera:

θ = τl − τr, (2)

where τl and τr are the average flow magnitudes in the left and right peripheral views
respectively. θ can be directly used for directional control.

Given constant motion and a straight corridor, the flow field response should ex-
hibit consistent average flow magnitude. The robot should be free of short period di-
rectional oscillation resulting from noise introduced through the robot’s ego-motion.
Frequent and current flow updates are needed to maintain behaviour stability. Long
period directional oscillation through reduced responsiveness is the likely side effect
of such latencies. Off-board comparisons over an image sequence depicting near
constant motion of the camera can examine temporal cohesion. On-board trials in a
static corridor can demonstrate the level of stability in robot directional control.

3.2 Visual Odometry

Distance travelled can be estimated by accumulating flow in the peripheral regions
of the image. At a discrete time t, the visual odometer, dt, is given by [17]:

dt =
t∑ 4

[ 1
τl

+ 1
τr

]
. (3)

Odometry estimates will vary in different environments for the same distance.
In the same environment, however, the estimate should be repeatable. To compare
methods, variance in average distances travelled can be examined for multiple on-
board trials in the same environment. On-board trials are subject to oscillatory
directional control, lateral drift, and environmental changes. To account for such
in-system influences, off-board performances can also be examined.

A real image sequence with ground truth allows a quantitative comparison. If
the distance measure dt is repeatable, we expect it to differ by only a scale factor,
s, from a ground truth visual odometer gt. Under constant motion, this scale factor
should remain approximately constant over time such that:

s =
gt
dt

=
gt−1

dt−1
= .. =

g1

d1
. (4)

3.3 Docking

Flow divergence is the measure of image expansion, given by:

div =
∂u

∂x
+
∂v

∂y
, (5)
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Fig. 1. Sample frame (boxed) and flow
field from side wall sequence.

Fig. 2. Sample frame and flow field from
looming wall sequence.

where u and v are components of a flow vector in the x and y directions respec-
tively. It has been used extensively in the literature for obtaining time-to-contact
estimates[12,4,1]. Docking can be achieved by reducing forward velocity in inverse
proportion to increasing flow divergence. To maintain constant flow divergence on
approach, forward speed is proportionally reduced.

Typically, divergence is calculated in one or more patches applied at the same
image location over time. This assumes the looming surface is fronto-parallel, where
in such a case divergence is constant across the image. During docking, minor
rotations of the robot will lead to a lateral shift of the focus of expansion (FOE),
which would considerably disturb the calculation of divergence if not accounted for.
We therefore place divergence patches on a set radius originating from the FOE.
The patches are above the FOE, at 45 degrees on either side. An approximately
fronto-parallel docking surface is still assumed, however FOE tracking allows for
small shifts giving more accurate divergence estimates.

Temporal filters must provide adequate responsiveness to rapidly increasing flow
divergence as the wall approaches. Robustness to noise is also important. This can be
assessed in off-board comparisons using a looming wall image sequence. On-board
docking trials will assess system responsiveness, stability and reliability.

4 Off-board Comparisons and Results

For off-board comparisons, two real, heavily textured image sequences were con-
structed as shown in Figure 1 and 2. Figure 1 shows a side wall image sequence,
depicting the motion of a wall moving 5mm per frame in a near parallel direction
to the optical axis of the camera. Figure 2 shows a looming wall sequence. It was
constructed by moving a camera 15mm per frame towards an approximately fronto-
parallel wall. In both sequences, the visual motion with respect to the camera is
subject to small frame-to-frame fluctuations. Ground truth flow fields were gener-
ated for all images in both sequences using a calibrated camera and a projective
warping technique described in [10]. The model fitting technique RANSAC [6] was
used to exclude outlying image correlation points. Comparisons are presented below.

4.1 Corridor Centring

Figure 3 shows average flow magnitudes obtained for each filter across the sequence.
No latencies are accounted for, allowing a direct comparison of flow magnitude con-
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Fig. 3. Average flow magnitudes.
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Fig. 4. Average flow magnitudes with latencies.

sistency across the sequence. The recursive and Gaussian 1.5 filters show near
identical results. The Simoncelli filter performs slightly worse with sharper fluctu-
ations most evident between frames 19 and 20, and frames 28 to 30. The Gaussian
0.5 exhibited the sharpest fluctuation between frames. Further distinctions are made
when their respective frame delays are considered as shown in Figure 4. The larger
temporal delay of the Gaussian 1.5 response is clearly evident.

4.2 Visual Odometry

Table 2 shows average scale factor errors (av(s), where s is defined in (4)) and its
variance (σ) for each filter against ground truth. Scale factor errors were calculated
using the value of the ground truth visual odometer at each corresponding odometer
update. Given constant motion, s should ideally remain constant over time.

All filters exhibit similar levels of deviation. The last column in Table 2 shows
variances of scale factor error when calculated from the straight line approximation
to the ground truth visual odometer (sav). The recursive filter shows marginally less
variance in s and sav. The Gaussian 0.5 exhibits the most deviation on both metrics.

4.3 Docking

For off-board docking comparisons, the looming wall sequence was used. Divergence
was calculated in two 40x40 pixel patches, centred on a 25 pixel radius from the
FOE. Divergence was calculated for each pixel in both patches, then averaged to
produce a final output value. Figure 5 shows divergences calculated at each frame,
for all filters. All filters, except Gaussian 0.5, produce similar divergence growth.

4.4 Discussion

Across the side wall sequence, all filters except the Gaussian 0.5, exhibited similar
consistency. Frame latency is likely to effect Gaussian 1.5 in-system performance.
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Table 2. Odometry error analysis.

Filter av(s) σ(s) σ(sav)

Gauss 1.5 1.06 0.10 0.12
Gauss 0.5 0.87 0.14 0.14
Recursive 1.07 0.09 0.11
Simoncelli 1.03 0.11 0.13
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Fig. 5. Divergence over looming sequence.

Large temporal support, however, appears advantageous under near constant motion.

Visual odometry results give little distinction between filters. All filters appear
likely to be reasonable. Some advantage may exist in having large temporal support
(i.e. recursive and Gaussian 1.5), thereby reducing sensitivity to noise during motion.

In divergence comparisons, results indicated no lack of responsiveness to diver-
gence increases in the Gaussian 1.5 or recursive filter, despite their large temporal
support. With the exception of Gaussian 0.5, differences only become apparent from
frame 28 onwards. Consistency appears to diminish in all filters at this point, par-
ticularly with the Simoncelli filter. At this point it is likely that flow is beginning to
exceed measurable levels.

5 On-board Comparisons and Results

All techniques were integrated into the robot control software, running on an Intel
x86 866MHz PC with radio link to a mobile robot. A forward-facing on-board
camera was tethered to the PC. Frames were sub-sampled to 192x144 pixels, at a
rate of 12.5 frames/sec. Robot tracking was achieved using a calibrated overhead
camera. In all comparisons, surfaces were textured as in off-board comparisons.

5.1 Corridor Centring

Trials were conducted for each filter using a straight corridor, 2.5 metres in length,
and 0.6 metres wide. Forward velocity was kept constant at 0.15m/s and rotation
governed by a proportional control scheme. A proportional gainKp, was chosen for
each filter based on multiple trials in a straight and curved corridor. Due to varying
filter latencies, a singleKp for all filters was deemed inadequate to accurately gauge
relative performances. Figure 6 shows a sample on-board frame and flow field.

Table 3 shows average deviations from corridor center (centring error). The
recursive filter achieves the lowest centring error. The Gaussian 1.5 achieves the
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Fig. 6. Sample on-board frame and flow.

Filter flow centring std dev
updates error (stop pos)

Gauss 0.5 38 4cm 7cm
Gauss 1.5 35 6cm 10cm
Simoncelli 38 5cm 6cm
Recursive 45 3cm 3cm

Table 3. Centring and odometry results.

highest error. Notably, both Gaussian filters recorded collisions during trials. Figure 7
shows typical path plots for all filters.

5.2 Visual Odometry

On-board visual odometry trials were conducted using the same straight corridor and
centring behaviour. For each filter, five trials were conducted. The robot started from
the same position each trial, and moved down the corridor until the accumulated
visual motion exceeded a preset threshold. The final column of Table 3 shows the
variance of stopping positions recorded for each filter. The recursive filter shows
significantly lower variance than all others.

5.3 Docking

In docking trials, the robot approached an approximately fronto-parallel wall, at-
tempting to decelerate and safely dock with the wall. Travel distance was 1 metre at
an initial speed of 0.4 m/s. Forward velocity control was achieved using:

vt = vt−1 +Kp(divref − divt), (6)

where vt is the current velocity, Kp is a proportional gain, divt is the current flow
divergence and divref is the desired divergence which was set to 0.03 for all trials.
For each filter,Kp was chosen to be the smallest value for which safe docking could
be achieved four times consecutively.

Figure 8 shows typical velocities recorded with all but the Gaussian 0.5 filter for
which docking was never achieved. A wide range of Kp values were used to verify
this. Stopping distances were found to be similar for all filters. The Gaussian 1.5 ex-
hibits a delayed response compared with other filters. The Simoncelli filter exhibited
rapid deceleration, with brief periods of near constant velocity. Notably, noKp value
could be found for which the Simoncelli filter succeeded four times consecutively1.
The recursive filter shows early response and consistent deceleration.

5.4 Discussion

On-board results suggest the recursive filter is best suited to use in the control loop
for continuous motion navigation. This appears a result of large temporal support
and low frame delay.

1 Kp = 0.04 achieved docking three times consecutively and so is shown in Figure 8.
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In centring trials, the Gaussian 1.5 filters large frame delay seen in off-board
results, appears to cause long phase oscillatory motion when centring. The Gaussian
0.5 centring error results appear reasonable, however several failed attempts were
observed. Systematic noise and unresponsiveness appear the main causes of this.

Visual odometry trials exhibited more variation in results than off-board com-
parisons showed. The recursive filters stability in centring control, and high update
frequency are likely reasons for its superior performance. The lack of stability in
centring appears the likely reason for the poor performance of the Gaussian 1.5.

Divergence-based docking was reliably achieved using the recursive and Gaus-
sian 1.5 filters. The Simoncelli filter exhibits less stable deceleration. This is possibly
due to flow exceeding measurable levels as suggested in off-board results. Reduced
temporal support will also heighten sensitivity to noise from large, unmeasurable
flow. Future work will investigate this issue further. The Simoncelli filter maybe
better suited to navigation under non-continuous motion, such as in hovering. Frame
latency in the Gaussian 1.5 appears to have caused delay in divergence response.
Where more controlled docking is required, it is likely the Gaussian 1.5 would
perform worse than the recursive filter.

6 Conclusion

In this paper, we have presented on and off-board comparisons of temporal filters
for gradient-based optical flow estimation in continuous mobile robot navigation.
We have emphasised the need for in-system comparisons of vision techniques.

Over all comparisons conducted, the strongest performances were achieved using
the recursive filter. Low frame delay and large implicit temporal support appear to be
the main reasons for this. This is an encouraging result for the use of gradient-based
optical flow in real-time, real-world conditions. Strong performances in corridor
centring were also achieved using the Simoncelli filter. The Simoncelli filter appears
better suited to navigation under non-continuous motion, such as hovering. Off and
on-board results suggested the traditionally used Gaussian 1.5 filter is impeded by
high frame delay, causing instability in centring and delayed response in docking.
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