
Perspective Rectangle Detection

David Shaw and Nick Barnes

Autonomous Systems and Sensing Technologies Programme

National ICT Australia

Research School of Information Sciences and Engineering

Australian National University

david.shaw@rsise.anu.edu.au nick.barnes@nicta.com.au

Abstract. This paper describes a new detector for finding perspective
rectangle structural features that runs in real-time. Given the vanishing
points within an image, the algorithm recovers the edge points that are
aligned along the vanishing lines. We then efficiently recover the inter-
sections of pairs of lines corresponding to different vanishing points. The
detector has been designed for robot visual mapping, and we present the
application of this detector to real-time stereo matching and reconstruc-
tion over a corridor sequence for this goal.



1 Introduction

Using vision for Simultaneous Localisation and Mapping (SLAM) is a key topic
of research in mobile robotics. While there has been present success with data
received from laser rangefinders[1], cameras provide a cheaper and more infor-
mation rich sensor for determining the nature of the environment. However the
denser nature of visual information makes it harder to extract the discrete land-
mark information to build maps than with rangefinders. With the use of appro-
priate visual feature detectors, information can be extracted for practical use for
robotic applications such as SLAM. Some of the more popular feature detectors
used in general vision applications are the SIFT descriptor[2, 3], the Harris point
detector[4] and variants[5, 6], for use in domains such as recognising locations[7],
objects[2, 8], matching for image retrieval[5], and for our target domain of robotic
navigation[9].

For built environments, such as indoor scenes, the a priori knowledge about
the geometry of the environmental structure can be used as the basis of a higher-
order feature detector. In many such domains, the environment consists of pre-
dominant rectilinear structure. With rectangles making up much of the envi-
ronmental geometry, it is prudent to use this as the basis of a feature detector.
Since most rectangles in the environment will not be aligned parallel to the
camera, standard rectangle detectors such as those used for building extraction
from aerial images[10] are not applicable as rectangular features will appear as
trapeziums to a robot camera.

In this paper, we introduce the perspective rectangle detector for finding
rectangles projected onto the image plane. The detector locates the likely 2D
projection of rectangles in the environment by locating quadrilaterals with sides
aligning with detected vanishing lines within the image. While such features
can be detected with methods such as a generalised Hough transform[11] or via
perceptual grouping[12], the order of complexity of such approaches make them
unsuitable for real-time applications.

The perspective rectangle detector is designed to provide accurate feature
detection within the real-time operational constraint. We provide the outline
of the real-time algorithm behind the detector, and discuss the result of the
detector being run in sample domains.

2 Algorithm Description

Finding all possible quadrilateral features within a scene is not a feasible ap-
proach to constructing a real-time detector, as calculating the full probability
density function is intractable. Neither is a Hough based approach feasible, as
the problem is eight dimensional (two per vertex), and thus too computationally
expensive.

Given that for our application we require only to find the strong features
within the environment, we can make a significant reduction in complexity by
narrowing the domain to perspective rectangular features: those aligned with



vanishing lines within the scene. This geometric assumption presumes that the
environment consists of rectangles on planar walls and ceilings, but this is a
common occurrence in indoor environments. If we are searching for the perspec-
tive rectangles between two given sets of vanishing lines, the problem is reduced
to four dimensions, which makes the problem more manageable, but still too
computationally expensive for a Hough-based approach. To solve this problem,
we have devised an algorithm for finding such perspective rectangular features,
an outline of which is provided below:

1. Vanishing Point Detection: Estimate the position and type of vanishing
points and lines within the image.

2. Perspective Oriented Edge Detection: Determine the directional components
of the gradient aligned with the vanishing points.

3. Line Segment Detection: Estimate the line segments that are potential quadri-
lateral sides based on the perspective oriented edges.

4. Quadrilateral Detection: Determine the quadrilaterals from the intersection
of detected line segments.

2.1 Vanishing Point Detection

Vanishing points and the corresponding sets of vanishing lines provide key infor-
mation about the predominant geometric structure of the environment. While
there are many vanishing point detectors available[13–16], due to the need for
the detector to run real-time in indoor environments, we are using our own van-
ishing point detector, based on the distance of candidate vanishing points from
lines within the image. Other vanishing point detectors can be substituted if
they are real-time and suitable for the task and environment.

2.2 Perspective Oriented Edge Detection

Once the sets of vanishing lines have been determined, the edges that correlate
with these sets need to be found. Edge detection is simply done by applying
a convolution mask such as the Sobel edge detector. Finding the associated
directional edge vector field (which we denote E) culls many points that are
unlikely to be part of a vanishing line. The edge vector field in the direction of
the vanishing lines can be found with the dot product D = E · V; where V is the
vector field consisting of unit vectors in the direction of the vanishing lines. |D|
represents the distance in orientation of the edge point to the vanishing line, and
so gives the likelihood of the vanishing line at that point. Since the Sobel edge
detector blurs edge features this also provides an approximate distance function
over a window of a few pixels.

2.3 Line Segment Detection

To find the vanishing line segments, edge vectors for a particular vanishing point
are scanned with a scan-line algorithm. The blur provided by the Sobel edge



detector makes candidate lines more readily detected by this approach. The
operation of the algorithm is slightly different depending on the type of input
vanishing lines. For parallel lines, the algorithm scans through every possible
discrete parallel vanishing line (aligned with θ); for radial, it scans through each
ray (radiating out from the vanishing point) through a fixed angle step (presently
defined to half a degree).

To deal with noise within the image, |D| is thresholded at a pre-determined
value µp, with all values where |D| ≥ µp being considered viable line points. The
algorithm also allows a fixed number (µg) of consecutive “misses” when scanning
through a ray, with each run of line points with no gaps greater than length µg

considered line segments. This approach may prune some weak candidate lines,
in practice though it finds enough line segments to be suitable for applications.

Fig. 1. The line segments found. left image: vertical line segments; centre image: hor-
izontal line segments; right image: line segments oriented to the vanishing point.

2.4 Quadrilateral Detection

The quadrilateral detection algorithm runs on a pair of sets of vanishing line
segments defined by the two sets of vanishing lines that their sides are aligned
with, which we will denote Sa and Sb. A quadrilateral feature is present if, for
pairs of line segments (a1, a2) ∈ Sa and (b1, b2) ∈ Sb, both of a1 and a2 intersect
both of b1 and b2 from the viable line segments detected previously.

Coordinate Transformation: Each set Si (of Sa and Sb) is translated to its
own coordinate system based on the type of vanishing point (scale is unim-
portant); radial: based on angle orientation from the vanishing point; par-
allel: based on an offset from the zero line, defined as the line that passes
through the image origin. A line segment is represented as a triple using the
coordinate systems of both sets: a segment in Sa is defined (α, β1, β2), where
α is the reference to the vanishing line in Sa, and β1 and β2 are the end
points of the line segment expressed in terms of Sb. This representation aids
in finding the intersections between the sets.



Segment Quantisation: The line segments of the transformed Si are discre-
tised into a 2D array of cells. A line segment is referenced in every cell that
it crosses, so that only those segments which share a cell reference need to
be compared for possible intersections.

Intersection Pairing: A list of all intersections between line segments is con-
structed using the segment quantisation for speed. To find the quadrilaterals,
all intersecting pairs of line segments from Sa with pairs from Sb are found
in the following manner:

– For every line segment a ∈ Sa

• For each b ∈ Sb that intersects a, count the ab ∈ Sa intersect these b

(except for ab = a)
• For each ab that was counted at least twice (i.e. there are at least

two b ∈ Sb that ab intersects), go through each b ∈ Sb and record a
list of which b intersect ab

• For the list of b every combination of pairs of line segments will
intersect both a and ab, and thus these four line segments will be a
valid quadrilateral

A valuation of the likelihood strength of the quadrilateral feature is approx-
imated by summing the strength of its constituent line segments.

Trimming Multiple Features: Due to the nature of the vector edge field, it
is possible for multiple line segments to be detected for a single true edge,
resulting in multiple quadrilaterals being found for a single feature. Thus as
a final step those detected quadrilaterals that have all four of their corner
vertices in the same small neighbourhood (within four pixels) are compared,
and only that with the greatest likelihood strength is kept.

Fig. 2. Recovered perspective rectangular features. left: from vertical line segments
and line segments leading to the vanishing point. centre: from horizontal line segments
and line segments leading to the vanishing point. right: from horizontal and vertical
line segments.



3 Applications and Results

The prototype version of the algorithm (running in Matlab1) performs matching
between stereo images at an average of 2.54 seconds (worst case under 4 sec-
onds), including vanishing point detection, for test video sequences of 320× 240
resolution. For the domain of robotic SLAM, the prototype implementation is
running at speeds suitable for real-time performance. In order to best view the
results of the detector, a video of matched features has been provided as an
attachment. This video of a corridor loop sequence shows the type of features
found by the detector in a real-world environment.

Note that for the results shown the two most predominant sets of infinite
vanishing points are vertical and horizontal lines, due to the design of our build-
ing, so these are used by default as two of three sets of vanishing lines (with
the vanishing point detector providing the third). This can easily be extended
with an additional detection stage which utilises an additional step to find the
predominant sets of parallel lines within an image.

3.1 Sample Perspective Rectangle Features

The test was run over a sequence of 1000 calibrated stereo images taken by
our robot2. Figure 3 shows perspective quadrilateral features in a number of
stereo pairs taken from this sequence (images were processed at 320× 240). The
strongest vanishing point detected is shown in the images as a green ‘X’. All
three sets of features are shown on the same frame for printing space reasons.
Stronger features are shown thicker and in yellow, with weaker features in orange,
weakest in red. As can be seen, much of the structure of the environment is found
as features corresponding mostly to the walls and ceiling of the corridor. Average
processing time is 1.12 seconds.3

3.2 Matching and 3D Reconstruction

A key target domain for the perspective rectangle feature detector is real-time
matching of stereo features for scene reconstruction or mapping. Since there
is much implicit structural information contained within a single feature it is
possible to gain a lot of information about a built environment.

The features found (figure 3) are matched with a simple metric based on
vertex position: two features are considered to be possible matches if all four
vertices are within a vertical difference of three pixels and a horizontal difference
of 20 pixels. If there is a unique match between two quadrilaterals then it is
considered a viable matched feature.

1 At time of publication the detector is being converted into C for fast performance.
2 Nomadics Technology XR4000 Mobile Robot
3 The complete video sequence of the perspective rectangle features

found in the stereo images is provided at time of publication at
http://users.rsise.anu.edu.au/~davids/video/prd-video.zip.



Fig. 3. Perspective rectangle features in a corridor sequences.

The same image sequence is used as in section 3.1. Figure 4 shows sample
images with their matched features. The simulated output of a virtual camera
(located above and to the left of the real cameras) is provided to show where the
position of these features are from a separate angle. As can be seen from figure 4,
even with a simple matching metric and with persistent tracking of the features
throughout concurrent frames in the sequence, there is significant structural
detail being obtained from the raw perspective rectangle feature detector alone.

4 Conclusion

Features based on the structure of built environments are useful for a number of
domains, such as scene reconstruction and SLAM. This paper has presented a
new perspective rectangle feature detector for finding structure based features in
built environments from images that runs in real-time on real world data. Based
on vanishing point information, a perspective rectangle feature contains implicit



Fig. 4. Matching perspective rectangle features in a corridor sequence, samples taken
from the 1000 frames in the video sequence. Centre and right pictures show matched
features in the image. Left pictures show 3D rectangle features viewed from a ‘virtual
camera’



structural information that is of benefit for robotic applications. We show that
the detector can find features that, even with a simple matching metric, provides
significant structural information about a scene.
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