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Abstract—This paper proposes a new merging (stitching)
scheme for distributed localization of wireless sensor networks. In
splitting-merging localization techniques, the network is first split
into small sub-networks and each sub-network self-localizes itself,
possibly in its own rather than a global coordinate basis. Then
by using a stitching strategy they are merged back to compute
the position of the nodes in a global coordinate basis. Unlike the
existing techniques in which the stitchable sub-networks must
have at least 3 nodes in common for the stitching to succeed, the
proposed method can systematically address all possible scenarios
(even when the two sub-networks are disjoint) while keeping the
computational complexity fairly low. The scheme puts the idea of
four-bar linkage mechanism and bilateration together in tackling
the problem. Therefore, theoretically the proposed method can
localize a broader class of networks which are localizable by
any splitting-stitching technique. Simulation comparisons with
trilateration and wheel graphs show a considerably higher
percentage of the localized nodes in this technique. This technique
in conjunction with some existing distributed splitting technique,
provides a total distributed localization algorithm.

Index Terms—Sensor Networks, Distributed Localization,
Merging-based localization, Bilateration, Four-bar linkage

I. INTRODUCTION

The focus of this paper is on distributed range-based local-
ization techniques. The network is modeled by its grounded
graph where each vertex corresponds to a node and there
is an edge between two vertices if the distance between
the corresponding nodes is known. Generally the distributed
localization techniques are categorized into two classes: (a)
sequential localization techniques; (b) clustered localization
techniques. In sequential localization techniques, at each step,
all non-localized nodes with at least three neighbors with
known positions, localize themselves by using the distance
measurements to those neighbors. This is generally known
as trilateration and the networks which can be localized by
these techniques are called trilateration networks. Clustered
localization techniques generally work in three steps: (1)
(splitting) using some technique the network is split into some
small clusters; (2) (local localization) each cluster is localized
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Figure 1. (a) A wheel graph (black node is called hub); (b) None-wheel
uniquely localizable.

up to its local coordinate basis via a known localization
technique; (3) (stitching or merging) the small clusters are
stitched together to form the whole network by translating the
location of the nodes into the global coordinate basis.

There are several clustered localization algorithms proposed
in the literature ([5], [8], [6]). The main benefit of clustered
localization techniques demonstrated was to limit the propa-
gation of error while reducing the complexity of localization.
Despite the difference between the localization approaches
in these techniques, they all follow the same scheme when
it comes to the stitching step: any pair of locally localized
sub-networks can be stitched (or merged) together only when
there are at least 3 nodes in common between them. This
of course imposes a minimum density requirement on the
network to ensure the success of the third step. Most of
these techniques also require the 1-hop neighborhood of any
node to be uniquely locally localizable. To ensure the 1-hop
local localizability, as studied in [10], the underlying model
of the network must be a wheel graph which is superior
to trilateration model (Figure 1). However, they are not the
only class of sub-networks that can be stitched together to
form a single uniquely locally localizable sub-network. For
example, consider the two sub-networks G1, G2 in Figure
1. Suppose that the nodes in G1 are all localized up to the
global coordinate basis, while evidently no node in G2 has a
wheel graph neighborhood which includes 3 nodes from G1.
Therefore, these graphs are marked as non-stitchable by wheel
graph approach. However, as we will show later, all the nodes
in G2 are uniquely localizable.

In this paper, we propose a new stitching scheme that
enables the localization of a broader class of networks. As
is shown in [11], it is possible (in theory) to stitch two sub-
networks with fewer than 3 vertices in common, given that
there are enough edges joining them. By virtue of this result,
the scheme proposed in this paper not only allows us to merge
any pair of sub-networks with common vertices but also two
disjoint sub-networks are joined with a sufficient number of
edges between them.

Since in the existing clustered techniques in [5], [6], [8],
each sub-network is effectively the 1-hop neighborhood of
each node, the splitting step is trivial and efficient. However,



for other merging scenarios where there are less than three
nodes in common between two sub-networks (e.g. when the
sub-networks are all required to be disjoint), the splitting is
no longer trivial. Despite the complexity of splitting a network
into almost equally-sized sub-networks, there exist some fully
distributed approximation techniques that can well split the
network. To show the practicality of the proposed scheme we
use the TASC technique ([9]) as it can split the network into
disjoint sub-networks of almost equal sizes with the benefit of
ensuring a minimum size for each cluster (unique localizability
requires at least 4 nodes to prevent degenerate cases).

Section II introduces the background techniques, theories
and notations we will be using throughout the paper. Section
III gives a clear definition of the problem explaining the
distinct cases that need to be addressed whereas Section IV
provides merging solution for those cases. Section V and
Section VI provide empirical evaluation of the technique as
well as its implementation.

II. BACKGROUND

The main focus of the paper is on localization in a 2D, but
wherever it is possible we provide a general definition valid
for any d-dimensional (d ∈ {2, 3}) ambient space.

A. Network Abstraction and Global Rigidity

To model a network we first need to introduce the notion
of frameworks. The grounded graph of the network is a
graph G = (V,E), n = |V | where each vertex v ∈ V
corresponds to a node and there is an edge (v1, v2) ∈ E
if the distance between the nodes corresponding to v1 and
v2 is known. A configuration p = {p1, ..., pn} is a finite
collection of n labeled points in Rd where d is the dimension
d ∈ {2, 3}. A configuration is generic if all pi are algebraically
independent from each other. A framework F = (G,p) is a
graph G = (V,E) together with a corresponding configuration
p = {p1, ..., pn} in Rd. In this framework, p is the mapping
p : V → Rd where each vertex vi ∈ V, i = 1..n is assumed
to be located at a corresponding point pi ∈ p. Sometimes this
framework is called a realization of the graph G.

In the context of network localization, a network of n sen-
sors therefore can be modeled by the framework F = (G,p)
where G = (V,E) is the grounded graph of the network and
p is a mapping p : V → Rd. We use the terms framework
and network interchangeably throughout the paper.

We say that two frameworks F1 = (G,p) and F2 = (G, q)
are equivalent (shown by F1 ≡ F2) if for all pairs i, j where
(i, j) ∈ E, |pi − pj | = |qi − qj |. Two configurations p and
q are called congruent, denoted by p ∼= q if for all pairs
i, j ∈ V , |pi − pj | = |qi − qj |. A framework (G,p) is globally
rigid in Rd if (G,p) ≡ (G, q) implies p ∼= q for any generic
configuration q with |q| = |p|. In other terms, a graph G is
said to be globally rigid if any set of its equivalent frameworks
(G,p) can be obtained by the translation, rotation or reflection
of the whole framework.

A globally rigid networks is potentially locally localizable.
In [3] (Theorem 1) it is stated that a network (of at least
d + 1 nodes) modeled by the framework (G,p) is uniquely
localizable in Rd if and only if there are at least d+1 anchors

in it1 and its grounded graph G is globally rigid. Anchors
convert local localizability to localizability in reference to a
global coordinate basis.

B. Merging Conditions

We now restrict attention to the case d = 2. Merging is
the task of introducing a set of links between two locally
localizable networks in order to form a single locally localiz-
able network. This has been studied in detail in [2], [11]. In
terms of global rigidity, this problem is equivalent to merging
two globally rigid graphs by adding a set of edges so that
the union is a single globally rigid graph. It is possible that
the two networks share some nodes. However, as shown in
[11], these are special cases of the situation where there is
no common node. Therefore, from now on we assume that
the sub-networks are node-disjoint unless explicitly specified
(Subsection IV-C will later address all other cases including
degenerate one).

The following important theorem discusses the necessary
(from [11]) and sufficient (proved in [2]) conditions for a
possible merging, in terms of global rigidity.

Theorem 1. Suppose that two disjoint globally rigid graphs
G1 = (V1, E1) and G2 = (V2, E2) with |Vi| ≥ 3, are
connected by a set of links, denoted by L. Then G = G1 ∪
G2 ∪G(L) is globally rigid if and only if (a) |Vi ∩ V (L)| ≥
3, i = 1, 2 and |L| ≥ 4, where G(L) is the graph induced
by the edge set L and V (L) is the set of end vertices of the
edges in L.

This theorem only provides the conditions to ensure that the
merging leads to a globally rigid graph but does not say how
to actually accomplish the computations for merging-based
localizations. We will address this by providing a distributed
algorithm for merging two locally localizable sub-networks.

C. Bilateration and Trilateration

A network is a bilaterative network if its grounded graph
has a bilateration ordering. The class of trilaterative networks
is a proper subset of the class of bilaterative networks.

Definition 2. A graph G = (V,E) with |V | ≥ 3 (|V | ≥ 4)
has a bilateration (trilateration) ordering if its vertices can be
ordered as v1, .., vn (n = |V |) so that the subgraph induced
by v1, v2, v3 is a triangle and each vi, 3 ≤ i ≤ n (4 ≤ i ≤ n)
is connected to at least two (three) vertices vj , j < i [4].

The bilateration operation is the operation of localizing
the position of a node up to a set of finite possibilities by
considering its distances to at least two neighbors. This can
be done by solving the equations obtained from these distance
constraints (intersection of multiple circles each one around a
neighbor) in addition to the position (global or relative) of
those neighbors.

D. Four-bar linkage Mechanism

We will use the idea of four-bar linkage mechanisms (refer
to [1] for details of the mechanism) later to address one of the
merging scenarios which has been described in [4] as unsolved

1Anchors must be non-collinear in case d = 2, non-planar in case d = 3



Figure 2. A traditional four-bar mechanism problem setup.
by any existing bilateration-based localization technique. The
four-bar linkage mechanism has been used in [7] for the first
time in the context of localization. Figure 2 shows a typical
four-bar linkage. Assume that the vertices A-E are joints and
the edges between them are bars with fixed length. If we fix
the position of the vertices A and B, and allow the other nodes
to move freely in the plane, the position of the node D will
follow a curve called a coupler curve [1], [7]. Assuming that
joint A is the origin and joint B is on the positive side of x-
axis, this curve can be explicitly expressed by the degree-six
equation (1) where (x, y) is the position of the vertex D [7]:
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As is mentioned in [1], the intersection of this equation with
a circle will have a finite number of solutions (at most 12).

III. PROBLEM STATEMENT

Assume that we have a large network which has already
been split into small sub-networks with the condition that each
of them is uniquely localizable up to at least a local coordinate
basis, i.e. the grounded graph of each sub-network is globally
rigid. Also assume that each sub-network has at least 3 nodes.
We are interested in a step-by-step merging process in which
each sub-network is merged into one of its neighboring sub-
networks to form a single post-merged locally localizable sub-
network and this merging continues until the whole network is
localized up to a single (possible the global) coordinate basis.

We will not discuss in this section the conditions required
for a network to be splittable in the above manner. It is
also fairly easy to see that trilateration networks can be
treated by this technique as an special case where the merging
subnetwork is a single vertex. As the nodes are locally
localized prior to the merging step, it is reasonable to assume
that the distances between all pairs of nodes in any locally
localized sub-network are known (we assume that every node
in a sub-network knows the location information of the other
members).

The main step of the process (merging two neighboring
locally localizable sub-networks) can then be formally defined
as follows:

Assume there are two sub-networks F1 = (G1,p1) and
F2 = (G2,p2) where both have been locally (or maybe
globally if there are at least three anchors in them) localized
by an arbitrary localization algorithm with F1 localized in
the reference basis and F2 localized in its local basis. Also
assume that there are enough links (and/or common nodes)
between Fi satisfying the conditions of Theorem 1. Apply
a merging technique (detailed subsequently) to localize the
nodes in F2 into the reference coordinate basis. Once the
nodes involving in the merging are localized, the other nodes in

Figure 3. (a) 3-by-3 configuration. nk is the kth node in the bilateration
ordering. (b) 4-by-4 configuration.

F2 can be localized by simply computing the transformation
matrix between the reference coordinate basis and the local
basis of F2.

A. Possible configurations

According to Theorem 1, there must be at least four distance
measurements between disjoint F1 and F2 in order for a
merging algorithm to succeed. In the absence of noise, four
distance measurements (|L| = 4) are enough to carry out the
merging. If there are more links available, we just pick the
best four and proceed with the merging. As it is necessary
for each Fi to involve at least three vertices, there are 4
possible configurations if the Fi do not share a common
vertex: (1) |Vi ∩ V (L)| = 3; (2) |V1 ∩ V (L)| = 4 and
|V2 ∩ V (L)| = 3; (3) |V1 ∩ V (L)| = 3 and |V2 ∩ V (L)| = 4;
(4) |Vi ∩ V (L)| = 4.

Allowing the Fi to share some nodes, results in three
different scenarios detailed in [11]: (1) |V1 ∩ V2| = 1 and
|L| = 2; (2) |V1 ∩ V2| = 2 and |L| = 1; (3) |V1 ∩ V2| ≥ 3 and
|L| = 0.

IV. PROPOSED MERGING SCHEME

When V1∩V2 = ∅, among the 4 possible configurations the
first three can be addressed using bilateration while the last
one requires four-bar linkage mechanism.
A. Bilateration-based cases

We explain the procedure for the case |Vi ∩ V (L)| = 3
(Figure 3a) and skip the other cases as the method is the
same. All the three nodes in F1 are already localized into
the reference basis and acting as anchors. In this case there is
always a node in F2 (n3 in Figure 3a) which is connected
to exactly two nodes in F1 (n1, n2 ∈ V1). Applying the
bilateration operation (using these links) gives two possible
positions for this node. Following the figure, the node n4
is connected to n3 and n2 and hence by further applying a
bilateration operation, we obtain up to 4 possible positions
for n4. Similar process produces 8 possible positions for n5.
However, the distance between n5 and n6 is also known, and
generic global rigidity of the whole network implies that only
one of the 8 possibilities is consistent. This unique position of
n5 is obtained from unique positions of n4 and n3 and hence
we can identify the unique positions of all these nodes in F2.

B. Four-bar linkage case
Four-bar linkage mechanism is required for the case

|Vi ∩ V (L)| = 4 (Figure 3b) as there is no node in F2

with more than one neighbor in F1 and bilateration operation
cannot be performed. Note that in the figure, the 4 vertices
in each Fi form a complete graphs as all the nodes in each
Fi know their pair-wise distances. In [7], the authors solved
a similar problem using the semi-definite programming (SDP)
technique which requires a high computational capability an



Figure 4. Two possible 4-bar linkages in a 4-by-4 configuration. Each node
ni, 1 = 7, 8 lies on the intersection of a coupler curve and a circle.
may be beyond the processing capabilities of most sensors.
Our approach instead, can be easily carried out by sensors
with low computational capabilities.

The four links joining the sub-networks of Figure 3b can
actually form two separate four-bar linkages as shown in
Figure 4. According to [1], the structure in Figure 4a (Figure
4b) leads to a coupler curve for node n7 (n8). In both cases,
the nodes n1, n2 are the fixed bases in the four-bar linkage
mechanism. Assume that n1 is at the origin and n2 lies on the
positive side of the x-axis. The equation for the position of the
node n7, denoted by K(x, y), can be obtained by substituting
k = l0, r = l1, R = l2, a = l6, b = l5 in Equation 1.
There is also another coupler curve, called K ′(x, y), which
can be obtained by mirroring K(x, y) against l0 ( K ′(x, y) =
K(x,−y)). The position of the node n7 must also satisfy
the circle equation C3(x, y) : (x − x3)

2 + (y − y3)
2 = l23

corresponding to link l3 and the position of n3.
Therefore the position of n7 must be on the intersection of

the two curves K(x, y) and C3(x, y). The real intersections
of the curves can be obtained easily by using any numerical
technique (details are removed to cope with space limitation).
As is explained in [1] the intersection of above equations can
have at most six possible solutions (instead of 12). Intersecting
K ′(x, y) and C3(x, y) also gives at most six other possible
positions for n7. Therefore, we may have a total of maximum
12 possible positions for n7. We will denote this solution set
by P = p1, ..., ps, 2 ≤ s ≤ 12. By a similar procedure, we
will obtain a maximum of 12 numerical values for the position
of node n8, denoted by Q = {q1, q2, ..., qt} , 1 6 t 6 12).
Since the distance l9 between n7 and n8 is known, for each
i ∈ 2, ..., s and j ∈ 2, ..., t we calculate ‖pi − qj‖ and compare
it with l9. If the configuration of the network is generic and
the measurements are exact (no noise), then out of these
s× t possibilities for (i, j), there must be exactly one pair of
positions for n7, n8 consistent with the distance l9. Therefore,
the distance l9 will resolve the unique position of nodes n7
and n8. If there is noise we simply choose the pair pi, qj which
minimizes |‖pi − qj‖ − l9|. These unique positions can help
to resolve the unique position of the nodes ni, i = 5, 6 as well.

One issue with this technique is that there may be up
to 144 different possible (i, j) pairs which is high and the
presence of any noise can lead to a wrong decision on correct
positions. Therefore, it is important to see if we always get this
worst-case in real scenarios. We studied the average number
of solutions for each 4-bar linkage over several randomly
generated networks in 2D. The unit square is split into two
same-sized rectangles by a vertical line. Each side includes 4
uniformly randomly generate nodes representing Fi, i = 1, 2.
Then, the coupler and circle equations are derived and solved
to obtain the possible positions of n7 and n8. This whole

Figure 5. (a) one common vertex; (b) two or more common vertices; (c)
|V2 ∩ V (L)| = 2

process is repeated 50 times to get the average number of
solutions.

According to the results, he average number of solutions
for each 4-bar linkage is 4.56 (with σ = 2.21). This states
that the total number of possibilities for (i, j) is expected
to be around 20 which is far less than the theoretical worst
case of 144 obtained earlier. It is also worth mentioning that
in our simulations, we never encountered a case where 12
possible positions occurred for either n7 or n8 and the worst
case encountered was 8.

C. Other cases

Figure 5a shows an example where one node (n1) is shared
between the Fi. Since n1 is in F1, n3 is connected to two
vertices from F1 and therefore we can apply the bilateration
operation to find 2 possible positions for it. Therefore, by
a similar bilateration-based method as of Subsection IV-A
n3 and n4 can be uniquely localized. If there is more than
one vertex in common, the bilateration reduces to a simple
trilateration (Figure 5b).

If there are less than three nodes in Fi (degenerate cases)
the conditions of Theorem 1 are not satisfied. Without loss
of generality, let us assume that |F1| ≥ 3 and |F2| ≤ 2.
As is shown in [5], a necessary condition for a graph to be
globally rigid is that the graph is 3-connected. This implies
that |V1 ∩ V (L)| ≥ 3 (at least three vertices in F1 must be
connected to the vertices in F2) or otherwise the the union
of F1 and F2 is not globally rigid. If F2 has one vertex, its
position can be obtained by trilateration (|L| ≥ 3). Figure 5c
shows the case where |V2 ∩ V (L)| = 2. Since the degree of
each vertex ni, i = 1, 2 in F2 is 1, each ni must also be
connected to at least two vertices in F1. This simply means
that we can apply the bilateration operation starting from F1

and localize the position of each ni. The unique position is
then derivable by using the extra constraint between n1, n2
(Figure 5c).

V. PERFORMANCE EVALUATION

As mentioned above, most sequential localization tech-
niques are based on trilateration while the clustered ones
can be mainly modeled by wheel structures. To compare the
benefits of the new stitching scheme, we compare it with tri-
lateration and wheel. We generate networks of 100 uniformly
distributed nodes in the unit square. We also randomly choose
three neighboring nodes as the 3 anchors in the network.
Figure 6 compares the percentage of the nodes marked as
localizable by each scheme for different sensing radii. As can
be seen the proposed merging scheme outperforms all existing
techniques. For example when the sensing radius is 0.15, the
proposed technique can localize around 70% of the nodes
while both trilateration and wheel structures can only localize
40% percent.



Figure 6. Percentage of localizable nodes marked by the proposed scheme
vs. Wheel and Trilateration

Figure 7. Classification of network topologies.
Figure 7 shows different categories of localizable networks.

Trilateration networks, despite their vast popularity in the
existing localization algorithms, are rather dense and might
be considered as a small subclass of uniquely localizable
networks. Bilateration networks on the other hand, form a
broader class of networks for which some efficient localization
algorithms exist. By introducing the four-bar linkage tech-
nique, we have proposed an even broader class of networks
than bilateration which still can be localized by efficient
algorithms (Figure 7). Notice that there are still algorithms
that can localize all networks with globally rigid grounded
graphs but they require central calculations.

VI. IMPLEMENTATION OF THE SCHEME

The proposed scheme in this paper is a template of three
steps required in clustered localization techniques. This means
that the user has a choice over the set of all possible splitting
alternatives existing in the literature as well localization tech-
niques for each sub-network. The scheme proposes different
methods for the merging step based on the existing config-
uration. However, in order to propose an actual localization
algorithm, we briefly introduce some techniques that can be
used for splitting and localization steps (steps 1 and 2 in
clustered localization). To perform the first step of the algo-
rithm we use the TASC splitting technique [9]. This algorithm
splits the network into almost balanced clusters not only for
isotropic networks but only with anisotropic ones which are
more probable in real scenarios. This technique has several
benefits: (1) it splits the networks into disjoint clusters where
every node is within the 2-hop neighborhood of the cluster
head (as desired by our stitching scheme); (2) the minimum
size of each cluster can be guaranteed; (3) the number of nodes
in each cluster is always small (which guarantees that each
cluster can be localized efficiently).

Since TASC guarantees that the size of these clusters are
small, most localization techniques can be used for the second
step. For the localization of each sub-network, we propose
the Sweeps algorithm mentioned in [4] (which can localize
networks with bilateration orderings) as most small sub-
networks resulted from the splitting phase, have a bilateration
ordering and Sweeps is very efficient on these networks. For
the stitching step we use the following algorithm based on the
proposed merging scheme:

For each pair of neighboring (disjoint) clusters, they cooper-
atively decide if they can be merged into a single sub-network.
This can be done in a distributed manner as all the proposed
configurations in Section IV are within 2-hop neighborhood of
the involving nodes (Figure 3). Then using either bilateration
or 4-bar linkage mechanisms the networks merge themselves
into a single sub-network. These steps repeat until no further
change is possible.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a new splitting stitching scheme
for distributed localization of wireless sensor networks. Unlike
the existing techniques in which any pair of split clusters
must have at least 3 nodes in common in order to be merged,
the proposed method uses used the bilateration and four-bar
linkage mechanisms to address all mergeable scenarios (even
when the clusters are disjoint) while keeping the computational
complexity fairly low. Comparing to the underlying models of
the existing splitting-merging techniques, namely wheel and
trilateration structures, this scheme can localize a considerably
higher percentage of the nodes when the network is sparse, a
claim validated through simulations as well. To propose a total
localization algorithm, we also provided a distributed splitting
algorithm and a typical localization technique to localize the
sub-networks. These techniques have existed for several years.
However, this is the first time they are put together in the
context of clustered localization techniques.

We are currently investigating the error propagation in
this scheme and the actual implementation of the proposed
localization algorithm. This involves further comparison with
the accuracy of state-of-the-art techniques in presence of noise.
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