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Abstract—In this paper we study the robustness of information
architectures to control a formation of autonomous agents. If agents
are expected to work in hazardous environments like battle-fields, the
formations are prone to multiple agent/link loss. Due to the higher
severity of agent loss than link loss, the main contribution of this paper
is to propose information architectures for shape-controlled multi-agent
formations, which are robust against the loss of multiple agents. A
formation is said to be rigid if by actively maintaining a designated set of
inter-agent distances, the formation preserves its shape. We will use the
rigidity theory to formalize the robust architecture problem. In particular
we study the properties of formation graphs which remain rigid after
the loss of any set of up to k−1 vertices. Such a graph is called k-vertex
rigid. We provide a set of distinct necessary and sufficient conditions for
these graphs. We then show that 3-vertex rigidity is the highest possible
robustness one can achieve by just adding a small number of edges to
a minimally rigid graph, i.e. retention of rigidity given the loss of 3 or
more agents of a formation requires many more inter-agent distances to
be specified than when maintaining rigidity with no, one or two agent
losses. Based on this result, we further focus on 3-vertex rigid graphs and
characterize a class of information architectures (with minimum number
of control links) which are robust against the loss of up to two agents.

Index Terms—Formation Control, Robustness, Rigidity, Redundant
Rigidity

I. INTRODUCTION

Recently, autonomous agents and specifically UAVs (unmanned
aerial vehicles) have found significant interests among researchers.
UAVs have become an enabling technology in military application
such as surveillance and reconnaissance over several decades [4],
[12]. Today, there is also an increasing interest in UAVs for civil
application such as environmental monitoring and exploration [1], [7].
In many applications it is desirable to have several autonomous UAVs
flying in a formation [7]. The formation control task is to control,
normally in a distributed manner, a set of inter-agent distances such
that a prescribed shape is achieved and the formation moves as a
cohesive whole [1], [5]. The reason is that when these agents, engaged
in surveillance or exploration missions, move in a formation with a
specific shape, they usually synthesize an antenna of magnitude far
larger than a single agent [1], [14]. For certain distributed antenna
shapes, this can lead to better sensitivity in target detection or
localization over the area of interest.

Many of these missions for UAVs enforce the existence of a
high level of autonomy of the vehicles, specifically in hazardous
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environments or in the presence of communication blackouts [9]. This
autonomy can provide higher precision, fault tolerance and reliability
in the mission accomplishment.

In hazardous environments such as battle-fields, the robustness of
the formation is of high importance [9], [4]. Robustness here, means
ensuring a successful accomplishment of the mission in different
operational scenarios, when both some agents and communication
links may be lost due to mechanical failure, enemy attack, jamming,
an agent leaves the formation deliberately, etc.

In [4], as cited in [17], some vulnerability issues of UAVs are
studied based on the actual records of the past and the potential
issues are mainly classified as
• communication link loss as a result of jamming or occlusion
• enemy attack of one or more UAVs in the formation
• loss of an agent or communication link as a result of a mechan-

ical or electrical failure, without enemy attack but possibly due
to environmental changes (heat, wind, etc.).

Based on the above study the authors concluded the necessity of
reducing the vulnerability of UAV to such threats.

It is evident that the robustness of the formation to an agent loss
demands more than robustness to a single link loss, as the loss of one
agent implies the loss of all control links incident to it. Therefore,
we focus on the multiple agent loss problem throughout this paper.
The issue can be dealt with in many different ways [15]. However,
in this paper we incorporate a proactive approach. We introduce
the robustness into the information architecture a priori , by using
redundant links, in order to mitigate the effect of multiple agent loss.
The measure of robustness here, is the number of agents the formation
can afford to lose while preserving its cohesiveness.

We assume a graphical abstraction of the multi-agent formation, via
an undirected graph G = (V,E), in which each vertex corresponds to
an agent and an edge corresponds to a bidirectional distance control
law, actively maintaining the distance between the corresponding
agents. This enables us to study the robustness of these formations
via rigidity of the formation graph (an area of graph theory that
deals with the characterization of graphs corresponding to formations
which are rigid). Generally speaking, a formation, and by extension
its underlying graph, is termed rigid if the distance between each
pair of agents remains constant over time, normally through a subset
of the inter-agent distances being actively maintained at prescribed
values. It has been shown that this property is generic, in the sense
that the rigidity of almost all formations with the same graph depends
only on the topology of its graph and not the actual distances between
the agents. This implies that having enough well-distributed control
links within the formation will lead to a rigid formation no matter
what the actual distances are between agents.

The rigidity of graphs has been extensively studied in the past
[3], especially those corresponding to formations in an ambient two-
dimensional space. However, robustness to multiple agent/link loss
is a very new topic. In [17], robustness is defined by introducing
the notion of k-edge/k-vertex rigidity of a graph: the graph remains
rigid after the loss of up to k− 1 edges/vertices; [17] also derived a
collection of general properties of such graphs. In [18], a character-
ization is derived for k-edge rigidity. The author in [13] introduced



birigid graphs, which are graphs remaining rigid after the loss of one
vertex. In a different direction [15] proposes a procedure to restore
the rigidity property of a rigid formation, when one of its agents is
lost.

The main contribution of this paper is to parallel the path posed
in [17], [18] and [15], focusing on the loss of more than one agent.
In a related study [10], we have derived some distinct necessary and
sufficient conditions for graphs which are k-vertex globally rigid, a
stronger condition than rigidity. The similar results for rigidity will
be provided here as a partial characterization of k-vertex rigid graphs,
i.e. graph which remain rigid after the loss of up to k − 1 vertices.
As it turns out, for k ≤ 3 a size independence property holds, i.e. the
cost, in terms of extra edges required to secure the k-vertex rigidity
property as opposed to mere rigidity, is very small and independent of
the number of agents in the formation. As is later explained, this low
cost property is lost when robustness against the loss of more than
2 agents is sought. This observation reinforces our focus on 3-vertex
rigid graphs with the minimum edge count. A partial characterization
of these graphs will be derived, followed by a constructive approach
through which one can obtain a 3-vertex graph on arbitrary number
of vertices. This characterization enables the formation designer to
embed the robustness into a formation prior to any actual mission.

The structure of the paper is as follows. In Section II, some basic
definitions are provided. Section III contains the main contribution
of the paper and is followed by the concluding remarks in Section
IV.

II. BACKGROUND

Rigidity theory has been well studied in the literature [3], [16].
In this section, we introduce some basic definitions and properties
required for the main contribution. The interested reader may refer
to [3] for further details. Throughout this paper we assume that the
formation lies in an ambient two-dimensional space and is modeled
by a graph whose rigidity implies the rigidity of the formation and
all generic formations with the same graph [3].

A. Rigidity and Minimal Rigidity

As mentioned earlier, a graph is called rigid if the only smooth mo-
tions are those corresponding to translation and rotation of the whole
formation (see [3] for a precise definition). According to [16], a graph
is minimally rigid if it is rigid and removing any one of the edges
results in a nonrigid graph (for which any corresponding formation
would have the possibility of flexing motions, apart from translation
and rotation). There is a celebrated theorem, called Laman’s Theorem
[6], which gives a fully combinatorial characterization of minimally
rigid graphs. In [6], it is also proved that every rigid graph contains
a minimally rigid subgraph with the same vertices.

B. Redundant Rigidity

A graph is said to be redundantly rigid, if it is rigid and after
removing any of the edges it still remains rigid. This notion can
be generalized to the loss of k edges and/or k vertices. A graph
will be termed k-edge rigid if after deletion of any set of up to
k − 1 edges, a rigid graph always results. With the same notion a
graph is k-vertex rigid if after deletion of any set of up to k − 1
vertices, the resulting graph is still rigid. As mentioned before, we
are interested in addressing multiple agent loss. Therefore, in the
remainder of the paper we study k-vertex rigidity of the underlying
graphs. The following theorem and lemma were first proved in [17]
and due to their relevance are restated here (we provide the proof of
Lemma 2 as it summarizes several observations in [17]):

Theorem 1. If G = (V,E) is a k-vertex rigid graph, then each
vertex has a degree of at least k + 1.

Lemma 2. In a k-vertex rigid graph G = (V,E), |V | ≥ k + 3
except for Kk+2, the complete graph on k + 2 vertices.

Proof: Suppose to obtain a contradiction that |V | ≤ k + 2 and
G is not Kk+2. The k-vertex rigidity of G implies δG(v) ≥ k + 1
(degree of vertex v ∈ V ) which implies that |V | cannot be less
than k + 2. However, the only graph with |V | = k + 2 in which
δG(v) ≥ k+1 holds is Kk+2. This contradiction implies |V | ≥ k+3.

A graph is called minimally k-vertex (k-edge) rigid, if it is k-vertex
(k-edge) rigid but after removing any one of the edges the resulting
graph is no longer k-vertex (k-edge) rigid.

In the case of mere rigidity, the definition of minimal rigidity is
proved to be equivalent to an alternative statement: a rigid graph
is called minimally rigid if it has the minimum number of possible
edges among all rigid graphs with the same number of vertices.
Unfortunately, for general redundant rigidity (k-edge rigidity or k-
vertex rigidity), these two notions are no longer equivalent; there are
some graphs which are minimally redundantly rigid but the number of
edges is not the minimum possible one among such graphs with the
same vertex count. This property of redundant rigidity leads us to two
different notions: strongly minimal and weakly minimal redundant
rigidity [15].

• A k-vertex (k-edge) rigid graph is said to be strongly minimal if
it has the minimum possible number of edges on a given number
of vertices.

• A k-vertex (k-edge) rigid graph is said to be weakly minimal
if it has more than the minimum possible number of edges on
a given number of vertices, but has the property that removing
any edge destroys k-vertex (k-edge) rigidity.

Later, we will need the characterizing conditions for 2-vertex rigidity
as an special case. The remainder of this section contains the results
to characterize strongly minimal 2-vertex rigid graphs [13]. Figure 1,
originally from [13], depicts examples of strongly minimal 2-vertex
rigid graphs.

(a) (b)

Figure 1. Examples of the 2 possible partitions of the edge set for strongly
minimal 2-vertex rigid graphs: (a) the degree 3 vertices are adjacent, (b) the
degree 3 vertices are non-adjacent

Lemma 3. If G = (V,E) is a 2-vertex rigid graph on 5 or more
vertices, then |E| ≥ 2 |V | − 1.

Theorem 4. Let G = (V,E) be a strongly minimal 2-vertex rigid
graph on 5 or more vertices. Then G has exactly 3 vertices with
degree 3 and the remaining vertices have degree 4, which implies
|E| = 2 |V | − 1.

Theorem 5. A graph G = (V,E) is strongly minimal 2-vertex rigid
if and only if G has exactly two vertices of degree 3 and there is a
partition of the edge set E

E = E1 ∪ E2 ∪ ... ∪ Ek

such that the graph induced by E\Ei is minimally redundantly
rigid (i.e. the removal of any edge destroys redundant rigidity) for
all i, and either



• E1 and E2 are the edges incident to the two non-adjacent
vertices of degree 3, respectively, and Ei is a single edge for
3 ≤ i ≤ k , or

• E1 is the union of the edges incident to the two adjacent vertices
of degree 3, and Ei is a single edge for 2 ≤ i ≤ k.

III. RESULTS

In this section we start by studying a sufficient condition for
k-vertex rigidity (Section III-A). This will enable us to propose
formation structures which are robust against the loss of up to k− 1
agents. Then, from a different perspective, the structure of k-vertex
rigid graphs is studied and a distinct necessary condition is obtained
(Section III-B). We will show the size independence property for
k ≤ 3 and display the optimality of structures which are 3-vertex
rigid (highest value of k with size independence property). Therefore,
we will some characterization of the special case of 3-vertex rigidity.
It will be done by introducing some results on the relation between
vertex and edge counts and vertex degrees of these graphs. Starting
from |V | = 6, we will propose a constructive approach which can
grow such graphs to arbitrary size via an extension operation.

A. Sufficient Condition for k-Vertex Rigidity

The notion of k-connectivity has been well studied in the literature
and there are efficient algorithms to check this property on a given
graph [11]. The idea here is to find a (k+ j)-connectivity condition
which is sufficient to k-vertex rigidity. The motivation comes from
[8] where it is shown that in 2D, 6-connectivity implies rigidity and
6 is the least possible number for this condition (k-connectivity with
k < 6 is not sufficient for rigidity). The following theorem is derived
from a stronger theorem we first proposed in [10].

We can extend this result to the case of k-vertex rigidity, as the
following theorem shows:

Theorem 6. Assume that G = (V,E) is a (k+5)-connected graph.
Then G is k-vertex rigid.

The importance of this result is that it shows that the more
complicated and awkward-to-verify property of k-vertex rigidity can
be reduced to a well-known and easier to study property of k-
connectivity.

B. Necessary Condition for k-Vertex Rigidity

In this subsection we derive a necessary condition similar to what
we have derived in [10] but for k-vertex rigidity. This result gives a
lower bound on the number of edges of such graphs. From [6], [13]
we know that the minimum required number of edges for a graph to
be rigid and 2-vertex rigid are |E| = 2 |V | − 3 and |E| = 2 |V | − 1,
respectively. This observation leads us to an important question: since
in both the above lower-bounds the number of edge is twice the
number of vertices (|V |) plus a constant, can we conjecture that for
any k ≥ 2, the edge count of any strongly minimal k-vertex rigid
graph satisfies the condition |E| = 2 |V |+ c(k) (c is independent of
|V |)? Unfortunately, the answer is no and, as we show in Theorem
8, this property is only valid for k ≤ 3. For such values of k we say
that the k-vertex rigid graph, has the size independence property,
meaning that the number of edges required to obtain a k-vertex rigid
graph from a rigid graph is independent of the number of vertices
(|V |).

Theorem 7 gives a lower bound on the edge count of a k-vertex
rigid graph. We should mention that the same result is valid for k-
edge rigid graphs as well.

Theorem 7. In a strongly minimal k-vertex rigid graph, with k ≥ 2,
the edge count is under-bounded by the formula |E| ≥

⌈
k+1
2
|V |
⌉
+

c(k), where c(k) is an integer (c is independent of |V | but depends on
k) and for k ≥ 3, if the equality holds (i.e.|E| =

⌈
k+2
2
|V |
⌉
+ c(k)),

then c(k) ≥ 0.

Proof: Assume that G = (V,E) is a strongly minimal k-vertex
rigid graph of |V | ≥ k + 3 vertices, whose number of vertices is
|E| = a |V | + c(k) (according to Theorem 11 in [10] such a graph
exists), where c(k) is independent of |V |. According to Theorem 1,
δi ≥ k+1 holds. Therefore, the average degree in G is δavg ≥ k+1.
On the other hand, δavg = 2|E|

|V | = 2a+ 2c(k)
|V | . Hence, 2a+ 2c(k)

|V | ≥
k + 1⇒ k ≤ (2a− 1) + 2c(k)

|V | .
Since the property must hold for graphs of arbitrary size and in

particular arbitrarily large |V |, assuming|V | > 2(c(k), we will have
k ≤ 2a−1 or a ≥ k+1

2
. Therefore, |E| ≥

⌈
( k+1

2
) |V |

⌉
+ c(k) holds

for |V | > 2c(k).
Now suppose that for some |V | the equality holds (i.e. |E| =⌈
k+1
2
|V |
⌉
+ c(k)). We prove that for such a strongly minimal k-

vertex globally rigid graph c(k) ≥ 0 always holds.
First suppose k is odd. Then, we will have δavg = k+1+ 2c(k)

|V | ≥
k + 1, which implies c(k) ≥ 0.

If k is even, then |E| = k
2
|V |+

⌈ |V |
2

⌉
+ c(k) which gives |E| <

k
2
|V |+c(k)+ |V |

2
+1. Therefore, δavg < k+ 2c(k)

|V | +1+ 2
|V | holds.

This implies k + 1 < k + 1 + 2c(k)
|V | + 2

|V | which gives −1 < c(k)

and so c(k) ≥ 0 holds.

Theorem 8. The highest value of k which the k-vertex rigid graph
Gk = (V,E) can have the size independence property is k = 3.

Proof: As is shown in the proof of Theorem 7, the inequality
k ≤ 2a−1 holds. On the other hand, if Gk has the size independence
property, then we necessarily must have a = 2 (as for rigidity
and 2-vertex rigidity a = 2). This implies k ≤ 3. Therefore
argmaxk(Gk) = 3 holds for size independent graphs Gk and the
proof is complete.

From this result we can conclude that a formation designer can
embed the robustness to the loss of up to two agents into a formation
of any agent count, by adding only a fixed set of control links with
possible redistribution of some edges to be incident on different vertex
pairs. Actually by studying 3-vertex rigid graphs in the next section,
we will derive the exact number of required control links to obtain
such a robustness level (Lemma 9).

The size independence property is not true when there is robustness
to the loss of more than two agents. Table I shows an example of
a formation with 100 agents and the required number of control
links for any desired level of robustness. As is evident, there is a
considerable increase in the required number of control links when
we want to obtain robustness to the loss of more than two agents.

# of agent losses tolerated # of required links
0 197
1 199
2 202
3 250 + c+

Table I
THE REQUIRED NUMBER OF CONTROL LINKS IN A 100-AGENT FORMATION

WITH DIFFERENT ROBUSTNESS PROPERTIES. c+ IS A POSITIVE INTEGER.

C. Relations between edge count, vertex count and vertex degrees

In this subsection, we study 3-vertex rigidity by presenting some
results linking the vertex and edge counts and vertex degrees. The



first result underbounds the edge count in a 3-vertex rigid graph in
terms of the vertex count.

Lemma 9. If G = (V,E) is a 3-vertex rigid graph with |V | ≥ 6,
then |E| ≥ 2 |V |+ 2.

Proof: First we prove that the inequality |E| ≥ 2 |V |+1 holds.
It is then enough to show that there is no 3-vertex rigid graphs on
|E| = 2 |V |+ 1 edges.

For the inequality, to obtain a contradiction, suppose G is a 3-
vertex rigid graph and has |E| ≤ 2 |V | edges. In this case the average
vertex degree is at most 4. Since all vertex degrees must be at least
4, this implies that the degree of each vertex is precisely 4, so that
|E| = 2 |V |.

Now consider v1, v2 ∈ V of degree 4 which are not adjacent to
each other (and always exist since |V | ≥ 6) , and remove them from
G to produce a graph G′ = (V ′, E′). Then |E′| = 2 |V | − 8 =
2 |V ′| − 4. Obviously G′ is not rigid, which contradicts the fact that
G is 3-vertex rigid.

To prove that |E| = 2 |V | + 1 is impossible, suppose that the
equality holds and set n = |V |. The average vertex degree in G is∑

δi

n
= 2|E|

n
= 4n+2

n
= 4+ 2

n
> 4. Therefore, there is at least one

vertex with degree of more than 4. Now suppose v1, v2 ∈ V with
degrees k1 and k2, respectively. Observe that G−v1−v2, obtained by
removing v1, v2 and all their incident edges from G, has n−2 vertices
and at most |E| = 2n+1−(k1+k2−1) = 2(n−2)−(k1+k2−6)
edges (the bound being achieved when v1, v2 are neighbors). Since
G−v1−v2 is rigid, |E| ≥ 2(n−2)−3 must hold. So k1+k2−6 ≤ 3
or k1 + k2 ≤ 9. By considering k1 ≥ 4, k2 ≥ 4 we conclude that
4 ≤ k1 ≤ 5 and 4 ≤ k2 ≤ 5. Finally, if there are m vertices of
degree 5, we have 5m+4(n−m) = 2(2n+1), which gives m = 2.
This means that such a graph (if it exists) should have exactly two
vertices of degree 5 which are adjacent and the others with degree 4.

Now we prove that such a graph cannot be 3-vertex rigid. First
consider the case that n = 6. In this case all vertices of degree 4
are connected to vertices of degree 5 (figure 2). It is obvious that by
removing vertices with degree 5, the resulting graph is not rigid. Now
consider n ≥ 7. In this case there are at least one pair (v1, v2) with
degrees 4, 5 which are not adjacent. G−v1−v2 has 2n+1−5−4 =
2n − 8 = 2(n − 2) − 4 edges which contradicts the fact that it is
rigid. This completes the proof.

Figure 2. A graph with two 5-degree and four 4-degree vertices.

Figure 3 shows an example of a strongly minimal 3-vertex rigid
graph with |E| = 2 |V |+2 on 6 vertices. Later in Section III-D, we
will show that this class of graphs is an infinite set, by introducing an
extension operation which can grow a strongly minimal 3-vertex rigid
graph by one vertex. In the following theorem an in anticipation of
the demonstration of existence of such graphs for arbitrary |V | ≥ 6,
we present a condition on the vertex degrees of these graphs.

Theorem 10. There exists a strongly minimal 3-vertex rigid graph
G = (V,E) with |E| = 2 |V |+ 2 for any |V | ≥ 6. In G, there are
exactly 4 vertices with degree of 5 which are all adjacent (forming
a K4 subgraph) and all other vertices have degree of 4.

Proof: This graph has an average degree of 4+ 4
n

(taking |V | =
n). Therefore, there is at least one vertex with degree of more than
4. Now suppose v1, v2 ∈ V with degrees k1, k2, respectively. Then,
G − v1 − v2 has n − 2 vertices and at most |E(G− v1 − v2)| =

2n + 2 − (k1 + k2 − 1) = 2(n − 2) − (k1 + k2 − 7) edges (when
v1, v2 are neighbors). Since G−v1−v2 is rigid, |E(G− v1 − v2)| ≥
2(n − 2) − 3 holds. Hence, k1 + k2 − 7 ≤ 3 or k1 + k2 ≤ 10. By
considering k1 ≥ 4, k2 ≥ 4 we conclude that 4 ≤ k1 ≤ 6 and
4 ≤ k2 ≤ 6.

Finally, if there are m vertices of degree 6 and t vertices of degree
5, we have 6m + 5t + 4(n − m − t) = 2(2n + 2), which gives
2m+ t = 4. There are 3 possible cases:

a. m = 1, t = 2: in this case if we remove the 6-degree vertex
in addition to a 5-degree one, the number of edges will be at most
|E(G− v1 − v2)| = 2n + 2 − (6 + 5 − 1) = 2n − 8 = 2(n −
2) − 4 which contradicts the fact that G − v1 − v2 is rigid and
|E(G− v1 − v2)| ≥ 2(n−2)−3. Therefore, this case cannot occur.

b. m = 2, t = 0: with the same argument as the case a, by
removing two vertices with degree of 6 we have|E(G− v1 − v2)| =
2n+2− (6+6− 1) = 2n− 9 = 2(n− 2)− 9 and it is obvious that
the resulting graph is not rigid. Hence again, this case cannot occur.

c. m = 0, t = 4: The proof of this case is trivial. The only
important condition is that all 5-degree vertices should be adjacent.
Otherwise, removing any 2 of them results in a non-rigid graph
(|E(G− v1 − v2| = 2(n− 2)− 4 < 2(n− 2)− 3). Figure 3 shows
such a graph with 6 vertices.

Figure 3. Strongly Minimal 3-vertex rigid graph with |V | = 6.

Remark 11. Observe that the condition provided by theorem 10 is not
sufficient to ensure strongly minimal 3-vertex rigidity. As a counter
example, consider the graph G shown in Figure 4 (left side). It is easy
to observe that this graph satisfies Theorem 10. However, as shown
in the right side of the figure, removing vertices shown by unfilled
circles results in a non-rigid graph. Therefore, G is not 3-vertex rigid.

Figure 4. No 3-vertex rigid graph which satisfies Theorem 10

D. Growing strongly minimal 3-vertex rigid graphs

In this section we will show an infinite class of strongly minimal 3-
vertex rigid graphs. The approach is to propose an extension operation
which can be applied in any strongly minimal 3-vertex rigid graph and
increases its vertex count by one. This operation is a special case of X-
replacement operation [15] used before for extending weakly minimal
2-vertex rigid graphs - we call this new one 4-5 X-Replacement, for
reasons which are about to become apparent. Suppose that the original
graph is G = (V,E). Choose two edges e1 = {a, b} and e2 = {c, d}
and e1, e2 ∈ E so that a, c have degree 4 and are non-adjacent and
b, d have degree 5 (that such a choice is in fact possible is proved
below). Remove e1, e2 and add a new vertex called z. Connect z to
a, b, c, d. In 4-5 X-Replacement operation the degree of the original
vertices remains the same and a new vertex of degree 4 is added



to G. Therefore, the new graph satisfies the conditions of the above
theorems.

It remains to prove that this operation preserves strongly minimal
3-vertex rigidity. First we provide a lemma which guarantees that
there are always appropriate edge choices for 4-5 X-replacement
operation.

Lemma 12. If G = (V,E) is a strongly minimal 3-vertex rigid
graph, there are always two vertices, a, c say, with degree of 4 which
are not adjacent, yet are connected to two different vertices, b and d
say, with degree of 5.

Proof: Since the vertices of degree 4 which are connected to the
core (vertices of degree 5) can only be adjacent to at most 3 other
vertices of the same degree 5, if the number of vertices of degree 4
is more than 4, there are at least two of them which are not adjacent.
Therefore, the theorem is proved for |V | > 8. Since |V | ≥ 6 holds
in general, we need to prove the lemma for |V | = 6, 7 and 8. From
Figure 3 it is evident that in the only strongly minimal 3-vertex rigid
graph with 6 vertices, the only two 4-degree vertices are not adjacent.
Finally, it is trivial to see that (up to isomorphism) the graphs in
Figure 5 are the only possible strongly minimal 3-vertex rigid graphs
of size 7 and 8 respectively.

a b

Figure 5. Strongly minimal 3-vertex rigid graphs of size 7 (a) and 8 (b).
Vertices depicted by unfilled circles are 4-degree but not adjacent.

Theorem 13. Suppose G = (V,E) is a strongly minimal 3-vertex
rigid graph. After applying the 4-5 X-Replacement operation on G,
the resulting graph G′ is strongly minimal 3-vertex rigid on |V |+1
vertices.

Proof: In this proof we show that by removing any pair of
vertices from the graph G′ after 4-5 X-replacement, the resulting
graph is still rigid. Suppose (a, b) and (c, d) are two candidate edges
to be removed from G in 4-5 X-replacement, with δa = δc = 4 and
δb = δd = 5. The new vertex to be connected to all of a, b, c, d is e
(Figure 6).

a

b

c

d

e

a

b

c

d

G G’

Figure 6. 4-5 X-replacement operation. b, d have degree 5 while a, c have
degree 4.

There are 6 distinct cases based on different choices for the vertex
pair to be removed from G′. For further reference we call these
vertices x and y.

a. x, y ∈ V \{a, b, c, d}: We know that G − x − y is rigid. In
this case, none of the edges connecting e to one of {a, b, c, d} is

removed. Therefore, one can interpret G′− x− y as an extension of
G − x − y by an ordinary X-replacement operation. This has been
proved to preserve rigidity of G′ − x − y [15]. Hence, in this case
the result of the operation is still a rigid graph.

b. x ∈ {a, b} (or x ∈ {c, d} which are the same by the symmetry
property) and y ∈ V \{a, b, c, d}: Without loss of generality suppose
that for this case x = a (Figure 7). Therefore, G′ − x − y can be
obtained from G−x−y by a standard edge splitting operation which
preserves rigidity [16]. Since G− x− y is rigid, G′ − x− y is also
rigid.

b

c

d

e

b

c

d

G G’

Figure 7. Removing x = a and y ∈ V \{a, b, c, d} from G and G′. The
operation reduces to the edge splitting operation on (c, d) edge.

c. x ∈ {a, b} and y ∈ {c, d} (one vertex from each edge). Again
suppose that -without loss of generality- x = a and y = c (Figure
8). One can simply observe that G′ − x − y can be produced by
applying a vertex addition to G′ − x − y which preserves rigidity
when applied to a rigid graph [16]. Therefore, G′ − x− y is rigid.

bd

e

bd

G G’

Figure 8. Removing x = a and y = c. The operation reduces to vertex
addition operation in which e is connected to b, d by 2 edges.

d. x = a and y = b (both are the extremes of one edge): Without
loss of generality suppose that x = a and y = b (Figure 9). After
removing vertex b, the resulting graph (G′ = G− b) is still 2-vertex
rigid and has |E′| = 2 |V |+2− 5 = 2 |V ′| − 1 edges. According to
theorem 4 and 5, it is strongly minimal 2-vertex rigid with exactly
two vertices of degree 3 (which had been 4-degree vertices connected
to b before it was removed). Since vertex a is one of the 3-degree
vertices in this graph, according to theorem 5, removing it and all
of its incident edges ensures that the resulting graph is redundantly
rigid. Therefore, G − x − y − (c, d) is still rigid. One can easily
conclude that adding e with two edges to this graph, which forms
G′ − x − y, is a case of vertex addition extension of a rigid graph
and therefore G′ − x− y is rigid.

e

c

d

G G’

c

d

Figure 9. Removing x = a and y = b.

e. x = e. In this case if y ∈ {a, b, c, d}, we can observe that the
difference between G− y and G′− x− y is that G− y has an extra



edge (c, d). Since G− y is 2-vertex rigid, we can conclude that it is
2-edge rigid [18]. Therefore, by removing one edge like (c, d) from
it, the result (G′ − x− y) is still rigid (Figure 10).

If y /∈ (a, b, c, d}, the difference between G′−x−y and G−y is
in two edges (c, d) and (a, b) (Figure 11). From theorem 5 we know
that G−y− (c, d) is minimally redundantly rigid (since Ei = (c, d)
in one possible partition of G−y). Therefore, G−y− (c, d)− (a, b)
is rigid. By looking at Figure 11 one can easily realize that G− y−
(c, d)− (a, b) is G′ − y − x. Hence, G′ − y − x is rigid.

G G’

c

d b

c

d b

Figure 10. Removing x = e and y = a.

G G’

c

d

a

b

c

d

a

b

Figure 11. Removing x = e and y ∈ G\{a, b, c, d}

This completes the proof of Theorem 13.

IV. CONCLUSIONS

In this paper we studied the robustness of information architectures
to control the formation of autonomous agents. As these agents
sometimes operate in hazardous environments like battle-fields, they
are prone to multiple agent and/or link loss. Due to the higher severity
of agent loss than link loss, the main contribution of this paper is to
propose information architectures for multi-agent formations, which
are robust against the loss of multiple agents, in the sense of retaining
rigidity of the formation when such loss occurs. By adopting the
notion of k-vertex rigid graphs (corresponding to formations which
are tolerant to the loss of up to k − 1 agents, we derived some
distinct necessary and sufficient conditions. We also established the
size independence property for k ≤ 3, i.e. the cost, in terms of extra
edges required to secure the k-vertex rigidity property as opposed to
mere rigidity, is very small and independent of the number of agents
in the formation. As explained before, this low cost property is lost
when robustness against the loss of more than two agents is sought.
This observation motivated the detailed study of 3-vertex rigid graphs
with the minimum edge count. A partial characterization of these
graphs was derived, followed by a constructive approach through
which one can obtain a 3-vertex rigid graph on arbitrary number of
vertices. This characterization enables the formation to be designed
with the robustness against the loss of up to two agents prior to any
actual mission, a proactive approach.

The main assumption in this paper was that the control operation is
cooperative in the sense that both agents at the ends of a control link,
cooperate to maintain the desired distance. This enabled us to model
the formation with an undirected graph. However, there are other
schemes in which only one of the agents is responsible to maintain
a distance. These problems and the robustness of such formations
can be studied via the definition of persistent formations [2] as an
extension of this work.

Finally, although we provided some necessary and sufficient con-
ditions on k-vertex rigid formations, it is still an open problem to
fully characterize such architectures. This is one possibility for future
work.
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