
A Simple Explanation of Partial Least Squares

Kee Siong Ng

April 27, 2013

1 Introduction

Partial Least Squares (PLS) is a widely used technique in chemometrics, especially in the case
where the number of independent variables is significantly larger than the number of data points.
There are many articles on PLS [HTF01, GK86] but the mathematical details of PLS do not
always come out clearly in these treatments. This paper is an attempt to describe PLS in precise
and simple mathematical terms.

2 Notation and Terminology

Definition 1. Let X = [x1 . . .xm] be a n×m matrix. The mean-centered matrix

B := [x1 − x̄1 . . .xm − x̄m],

where x̄i is the mean value for xi, has zero sample mean. We will mostly work with mean-centered
matrices in this document.

Definition 2. Suppose X is a mean-centered n × m matrix and Y is a mean-centered n × p
matrix. The sample covariance matrix of X and Y is given by

cov(X,Y) :=
1

n− 1
XTY.

The variance of X is given by

var(X) := cov(X,X).

(The reason the sample covariance matrix has n−1 in the denominator rather than n is to correct
for the fact that we are using sample mean instead of true population mean to do the centering.)
S := var(X) is symmetric. The diagonal entry Sj,j is called the variance of xj . The total variance
of the data in X is given by the trace of S: tr(S) =

∑
j Sj,j . The value Si,j , i 6= j, is called the

covariance of xi and xj . The correlation between X and Y is defined by

corr(X,Y) :=
√
var(X)cov(X,Y)

√
var(Y) (1)

3 Problems with Ordinary Least Squares

To understand the motivation for using PLS in high-dimensional chemometrics data, it is impor-
tant to understand how and why ordinary least squares fail in the case where we have a large
number of independent variables and they are highly correlated. Readers who are already familiar
with this topic can skip to the next section.

1

Fact 1. Given a design matrix X and the response vector y, the least square estimate of the β
parameter in the linear model

y = Xβ + ε

is given by the normal equation

β̂ = (XTX)−1XTy. (2)

Fact 2. The simplest case of linear regression yields some geometric intuition on the coefficient.
Suppose we have a univariate model with no intercept:

y = xβ + ε.

Then the least-squares estimate β̂ of β is given by

β̂ =
〈x,y〉
〈x,x〉

.

This is easily seen as a special case of (2). It is also easily established by differentiating∑
i

(yi − βxi)2

with respect to β and solving the resulting KKT equations. Geometrically, ŷ = 〈x,y〉
〈x,x〉x is the

projection of y onto the vector x.

Regression by Successive Orthogonalisation The problem with using ordinary least squares
on high-dimensional data is clearly brought out in a linear regression procedure called Regression
by Successive Orthogonalisation. This section is built on the material covered in [HTF01].

Definition 3. Two vectors u and v are said to be orthogonal if 〈u,v〉 = 0; i.e., the vectors are
perpendicular. A set of vectors is said to be orthogonal if every pair of (non-identical) vectors
from the set is orthogonal. A matrix is orthogonal if the set of its column vectors are orthogonal.

Fact 3. For an orthogonal matrix X, we have X−1 = XT .

Fact 4. Orthogonalisation of a matrix X = [x1 x2 · · ·xm] can be done using the Gram-Schmidt
process. Writing

proju(v) :=
〈u,v〉
〈u,u〉

u,

the procedure transforms X into an orthogonal matrix U = [u1 u2 · · ·um] via these steps:

u1 := x1

u2 := x2 − proju1
(x2)

u3 := x3 − proju1
(x3)− proju2

(x3)

...

um := xm −
n−1∑
j=1

projuj
(xm)

The Gram-Schmidt process also gives us the QR factorisation of X, where Q is made up of the
orthogonal ui vectors normalised to unit vectors as necessary, and the upper triangular R matrix
is obtained from the projui

(xj) coefficients. Gram-Schmidt is known to be numerically unstable; a
better procedure to do orthogonalisation and QR factorisation is the Householder transformation.
Householder transformation is the dual of Gram-Schmidt in the following sense: Gram-Schmidt
computes Q and gets R as a side product; Householder computes R and gets Q as a side product
[GBGL08].

2

Fact 5. If the column vectors of the design matrix X = [x1 x2 · · ·xm] forms an orthogonal set,
then it follows from (2) that

β̂T =

[
〈x1, y〉
〈x1, x1〉

〈x2, y〉
〈x2, x2〉

. . .
〈xm, y〉
〈xm, xm〉

]
, (3)

since XTX = diag(〈x1, x1〉, . . . , 〈xm, xm〉). In other words, β̂ is made up of the univariate esti-
mates. This means when the input variables are orthogonal, they have no effect on each other’s
parameter estimates in the model.

Fact 6. One way to perform regression known as the Gram-Schmidt procedure for multiple
regression is to first decompose the design matrix X into X = UΓ, where U = [u1 u2 · · ·um]
is the orthogonal matrix obtained from Gram-Schmidt, and Γ is the upper triangular matrix
defined by

Γl,l = 1 and Γl,j =
〈ul,xj〉
〈ul,ul〉

for l < j, and then solve the associated regression problem Uα = y using (3). The following shows
the relationship between α and the β in Xβ = y:

Xβ = y =⇒ UΓβ = y =⇒ Γβ = UTy = α.

Since Γm,m = 1, we have

β(m) = α(m) =
〈um,y〉
〈um,um〉

. (4)

Fact 7. Since any xj can be shifted into the last position in the design matrix X, Equation (4) tells
us something useful: The regression coefficient β(j) of xj is the univariate estimate of regressing y
on the residual of regressing xj on x1,x2, . . . ,xj−1,xj+1, . . . ,xn. Intuitively, β(j) represents the
additional contribution of xj on y, after xj has been adjusted for x1,x2, . . . ,xj−1,xj+1, . . . ,xn.
From the above, we can now see how multiple linear regression can break in practice. If xn is
highly correlated with some of the other xk’s, the residual vector un will be close to zero and,
from (4), the regression coefficient β(m) will be very unstable. Indeed, this will be true for all the
variables in the correlated set.

4 Principal Component Regression

Partial least squares and the closely related principal component regression technique are both
designed to handle the case of a large number of correlated independent variables, which is common
in chemometrics. To understand partial least squares, it helps to first get a handle on principal
component regression, which we now cover.

The idea behind principal component regression is to first perform a principal component
analysis (PCA) on the design matrix and then use only the first k principal components to do the
regression. To understand how it works, it helps to first understand PCA.

Definition 4. A matrix A is said to be orthogonally diagonalisable if there are an orthogonal
matrix P and a diagonal matrix D such that

A = PDPT = PDP−1.

Fact 8. An n× n matrix A is orthogonally diagonalisable if and only if A is a symmetric matrix
(i.e., AT = A).

3

Fact 9. From the Spectral Theorem for Symmetric Matrices [Lay97], we know that an n × n
symmetric matrix A has n real eigenvalues, counting multiplicities, and that the corresponding
eigenvectors are orthogonal. (Eigenvectors are not orthogonal in general.) A symmetric matrix A
can thus be orthogonally diagonalised this way

A = UDUT,

where U is made up of the eigenvectors of A and D is the diagonal matrix made up of the
eigenvalues of A.

Another result we will need relates to optimisation of quadratic forms under a certain form of
constraint.

Fact 10. Let A be a symmetric matrix. Then the solution of the optimisation problem

max
x : ||x||=1

xTAx

is given by the largest eigenvalue λmax of A and the x that realises the maximum value is the
eigenvector of A corresponding to λmax.

Suppose X is an n×m matrix in mean-centered form. (In other words, we have n data points
and m variables.) The goal of principal component analysis is to find an orthogonal m×m matrix
P that determines a change of variable

T = XP (5)

such that the new variables t1, . . . , tm are uncorrelated and arranged in order of decreasing vari-
ance. In other words, we want the covariance matrix cov(T,T) to be diagonal and that the
diagonal entries are in decreasing order. The m×m matrix P is called the principal components
of X and the n×m matrix T is called the scores.

Fact 11. Since one can show T is in mean-centered form, the covariance matrix of T is given by

cov(T,T) =
1

n− 1
TTT =

1

n− 1
(PTXT)(XP) =

1

n− 1
PTXTXP = PTSP, (6)

where S = 1
n−1XTX is the covariance matrix of X. Since S is symmetric, by Fact 9, we have

S = UDUT, where D = diag[λ1 λ2 . . . λm] are the eigenvalues such that λ1 ≥ λ2 ≥ · · · ≥ λm and
U is made up of the corresponding eigenvectors. Plugging this into (6) we obtain

cov(T,T) = PTSP = PTUDUTP. (7)

By setting P to U, the eigenvectors of the covariance matrix of X, we see that cov(T,T) simplifies
to D, and we get the desired result. The eigenvectors are called the principal components of the
data.

Often times, most of the variance in X can be captured by the first few principal components.
Suppose we take P|k to be the first k ≤ m principal components. Then we can construct an
approximation of X via

T|k := XP|k,

where T|k can be understood as a n× k compression of the n×m matrix that captures most of
the variance of the data in X. The idea behind principal component regression is to use T|k, for
a suitable value of k, in place of X as the design matrix. By construction, the columns of T|k are
uncorrelated.

4

Fact 12. One way to compute the principal components of a matrix X is to perform singular
value decomposition, which gives

X = UΣPT,

where U is an n×n matrix made up of the eigenvectors of XXT, P is an m×m matrix made up
of the eigenvectors of XTX (i.e., the principal components), and Σ is an n×m diagonal matrix
made up of the square roots of the non-zero eigenvalues of both XTX and XXT. Also, since

X = TPT = UΣPT,

we see that T = UΣ.

Fact 13. There is another iterative method for finding the principal components and scores of a
matrix X called the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm. It is built on
the observation that a principal component p in P and a vector t in the scores T satisfy:

XTXp = λpp (8)

t = Xp (9)

p =
1

λp
XTt, (10)

where (10) is obtained by substituting (9) into (8). The algorithm works by initially setting
t to an arbitrary xi in X and then iteratively applying (10) and (9) until the t vector stops
changing. This gives us the first principal component p and scores vector t. To find the subsequent
components/vectors, we set

X := X− tpT

and then repeat the same steps. The NIPALS algorithm will turn out to be important in under-
standing the Partial Least Squares algorithm.

5 Partial Least Squares

We are now in a position to understand PLS. The idea behind Partial Least Squares is to decom-
pose both the design matrix X and response matrix Y (we consider the general case of multiple
responses here) like in principal component analysis:

X = TPT Y = UQT, (11)

and then perform regression between T and U. If we do the decompositions of X and Y indepen-
dently using NIPALS, we get these two sets of update rules:

t := xj for some j u := yj for some j

Loop Loop

p := XTt/||XTt|| q := YTu/||YTu||
t := Xp u := Yq

Until t stop changing Until u stop changing

The idea behind partial least squares is that we want the decompositions of X and Y to be done
by taking information from each other into account. One intuitive way to achieve that is to swap
t and u in the update rules for p and q above and then interleave the two sets of update rules

5

inside the loop, resulting in the following procedure:

u := yj for some j

Loop

p := XTu/||XTu||
t := Xp (12)

q := YTt/||YTt||
u := Yq

Until t stop changing

In the case when the Y block has only one variable, we can set q to 1 and the last two steps of
the loop can be omitted.

The above gives the routine for finding the first set of PLS components and loadings. For
subsequent components and vectors, we set

X := X− tpT

Y := Y − uqT

and then repeat the same steps. After l such steps, we obtain two n × l matrices T and U and
matrices P and Q related by (11). To get a regression model relating Y and X, we first fit β for

U = Tβ.

Substituting the resulting model into (11) we obtain

Y = UQT = TβQT = XPβQT.

Given any x, we can use P,Q and β to compute the corresponding y value in the obvious way.

Fact 14. Algorithm (12) is somewhat mysterious. Let’s look at what the computed terms mean,
starting with p.

p = XTu/||XTu||
= XTYq/||XTYq||
= XTYYTt/||XTYYTt||
= XTYYTXp/||XTYYTXp|| (13)

=
1

λ
(YTX)T(YTX)p

In other words, p is an eigenvector of the covariance matrix of YTX. In fact, it’s easy to see that
(13) is exactly the update rule in the Power method [GL96, §7.3.1] used for computing the largest
eigenvalue-eigenvector pair for the symmetric XTYYTX matrix. By Fact 10, we now know p is
the solution to the optimisation problem

arg max
p : ||p||=1

pTXTYYTXp

= arg max
p : ||p||=1

(YTXp)T(YTXp)

= arg max
p : ||p||=1

(cov(Y,Xp))T cov(Y,Xp)

= arg max
p : ||p||=1

(
√

var(Y)corr(Y,Xp)
√

var(Xp))T
√

var(Y)corr(Y,Xp)
√
var(Xp)

= arg max
p : ||p||=1

var(Xp)(corr(Y,Xp))T corr(Y,Xp) (14)

We have used (1) in the above. (14) is the most common statistical interpretation of PLS given
in places like [HTF01] and [FF93]. It is worth noting that in PCA, we are only picking the p that
maximises var(Xp).

6

Fact 15. Another way to look at the above is that we have

cov(YTXP,YTXP) =
1

k − 1
(YTXP)TYTXP

=
1

k − 1
PTXTYYTXP

=
1

k − 1
PT(YTX)T(YTX)P

= PTUDUTP,

where 1
k−1 (YTX)T(YTX) is the covariance matrix of YTX, and U is its eigenvectors and D =

diag(λ1 . . . λm) are its eigenvalues such that λ1 > λ2 > · · · > λm. By the the same reasoning as
in Fact 11, we see that the P matrix in (11) is chosen so that

cov(YTXP,YTXP) = D.

By the same reasoning as above, we can show that q is an eigenvector of (XTY)TXTY and the
whole Q matrix in (11) is chosen so that

cov(XTYQ,XTYQ) = D′, (15)

where D′ = diag(λ′1 . . . λ
′
k), λ′1 > λ′2 > · · · > λ′k, is the eigenvalues of the covariance matrix of

XTY.

6 Some Alternatives to PLS

Techniques like PCR and PLS are designed to deal with highly correlated independent variables.
Highly correlated variables usually manifest themselves in the form of large number of high coef-
ficient values, which are used to offset each other. Another way to solve this problem is to control
the norm of the coefficient vector directly, a technique called regularisation.

Fact 16. A popular form of regularised linear regression is ridge regression, in which we change
the objective function from the standard least squares formulation

min
β

(y −Xβ)T(y −Xβ)

to the following

min
β

(y −Xβ)T(y −Xβ) + λβTβ, (16)

for a given value of λ. The solution to (16) can be shown to be

β̂ridge = (XTX + λI)−1XTy.

Note the similarity to (2). The ‘right’ value of λ for a given problem is usually obtained through
cross validation.

Fact 17. Another popular form of regularised linear regression is lasso, which solves the following
problem:

min
β

(y −Xβ)T(y −Xβ) + λ
∑
i

|βi|.

Experimental and theoretical studies in [HTF01] show that PLS, PCR, and ridge regression
tend to behave similarly. Ridge regression maybe preferred for its relative interpretational and
computational simplicity.

7

References

[FF93] Ildiko E. Frank and Jerome H. Friedman. A statistical view of some chemometrics
regression tools (with discussion). Technometrics, 35(2):109–148, 1993.

[GBGL08] Timothy Gowers, June Barrow-Green, and Imre Leader, editors. The Princeton Com-
panion to Mathematics. Princeton University Press, 2008.

[GK86] Paul Geladi and Bruce R. Kowalski. Partial least squares regression: A tutorial.
Analytica Chimica Acta, 185:1–17, 1986.

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins Uni-
versity Press, third edition, 1996.

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer, 2001.

[Lay97] David Lay. Linear Algebra And Its Applications. Addison Wesley Longman, 2nd
edition, 1997.

8

A R Code Samples

Here are example R code for doing different versions of linear regression. The original author is
Jean-Philippe.Vert@mines.org and the code appears at http://cbio.ensmp.fr/~jvert/svn/
tutorials/practical/linearregression/linearregression.R.

####################################

Prepare data

####################################

Download prostate data

con = url ("http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data")

prost=read.csv(con,row.names=1,sep="\t")

Alternatively, load the file and read from local file as follows

prost=read.csv(’prostate.data.txt’,row.names=1,sep="\t")

Scale data and prepare train/test split

prost.std <- data.frame(cbind(scale(prost[,1:8]),prost$lpsa))

names(prost.std)[9] <- ’lpsa’

data.train <- prost.std[prost$train,]

data.test <- prost.std[!prost$train,]

y.test <- data.test$lpsa

n.train <- nrow(data.train)

####################################

PCR

####################################

library(pls)

m.pcr <- pcr(lpsa ~ .,data=data.train , validation="CV")

select number of components (by CV)

ncomp <- which.min(m.pcr$validation$adj)

predict

y.pred.pcr <- predict(m.pcr,data.test , ncomp=ncomp)

summary((y.pred.pcr - y.test)^2)

####################################

PLS

####################################

library(pls)

m.pls <- plsr(lpsa ~ .,data=data.train , validation="CV")

select number of components (by CV)

ncomp <- which.min(m.pls$validation$adj)

predict

y.pred.pls <- predict(m.pls,data.test , ncomp=ncomp)

summary((y.pred.pls - y.test)^2)

9

####################################

Ridge regression

####################################

library(MASS)

m.ridge <- lm.ridge(lpsa ~ .,data=data.train, lambda = seq(0,20,0.1))

plot(m.ridge)

select parameter by minimum GCV

plot(m.ridge$GCV)

Predict is not implemented so we need to do it ourselves

y.pred.ridge = scale(data.test[,1:8],center = F, scale = m.ridge$scales)

%*% m.ridge$coef[,which.min(m.ridge$GCV)] + m.ridge$ym

summary((y.pred.ridge - y.test)^2)

####################################

Lasso

####################################

library(lars)

m.lasso <- lars(as.matrix(data.train[,1:8]),data.train$lpsa)

plot(m.lasso)

Cross-validation

r <- cv.lars(as.matrix(data.train[,1:8]),data.train$lpsa)

bestfraction <- r$fraction[which.min(r$cv)]

bestfraction <- r$index[which.min(r$cv)]

Observe coefficients

coef.lasso <- predict(m.lasso,as.matrix(data.test[,1:8]),

s=bestfraction,type="coefficient",mode="fraction")

coef.lasso

Prediction

y.pred.lasso <- predict(m.lasso,as.matrix(data.test[,1:8]),

s=bestfraction,type="fit",mode="fraction")$fit

summary((y.pred.lasso - y.test)^2)

10

