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Abstract. Route navigation is one of the most widely used every-
day application of spatial data. In this paper we investigate how a
qualitative representation of route networks can be derived from map
data and how this representation can be used to reason about route
descriptions. We introduce a concept of route graph that provides an
abstract layer on top of metric map data and thus allows for a com-
pact representation of route information. We present selected queries
and reasoning tasks that can be expressed in this abstraction layer.

1 Introduction
Route navigation is one of the most central everyday application of
spatial data. With the broad availability of GPS receivers, people
can record their own routes and upload them to navigation services.
There is a wide range of possible uses for these GPS data: they al-
low for improving classical navigation services for street networks,
but also for generating user-centric route maps that take into account
individual preferences or maps that are tailored to specific activities
(e.g., mountain biking). One area that seems particular useful is the
generation of route descriptions that are easy to understand, be re-
membered, and processed by users. Since qualitative representations
promise to offer these features, it seems natural to have a qualitative
representation of routes and route networks.

There are several approaches on how graph-like structures can be
used to reason about spatial data. For example, in [1] so-called travel
graphs (labeled weighted graph representing streets, crossings, and
distance information) are introduced to deal with the route planning
problem and the problem of inferring a map layout for a street net-
work from noisy GPS data. More closely related to our work is the
concept of route graph presented in [3], which can be used for repre-
senting route instructions in the context of human-robot interaction.
Cognitive results on qualitative route instructions are reported in [2].

In this paper we will sketch some first ideas how qualitative rep-
resentation and reasoning techniques can be applied to solve tasks
related to route navigation and route descriptions. Thereto, we in-
troduce a concept of route graph that provides a qualitative, abstract
layer on top of metric map data.

2 From Maps to Route Graphs
Geodata as for example stored on OpenStreetMap define a map-like
graph structure that represents parts of the street network. That is,
they specify nodes associated to some point in the network and paths
between nodes associated to some navigable way between points in
the network. From these data, one can extract (directed) arcs (vi, vj)
between nodes in the street network. We assume that distinct arcs
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(vi, vj), (v′
i, vj) represent distinct possibilities to enter vj in the rep-

resented street network (and accordingly for different arcs starting in
the same node). Then, an intersection node can be defined as a node
that is incident to at least three other nodes, i.e., these nodes occur
in arcs that start or end at the intersection node. All other nodes may
be referred to as connection nodes (or: contour nodes). A path arc is
a sequence (x,�c, y) of nodes defining a directed path, where x and
y are intersection nodes and �c = (c1, . . . , cn) is a possibly empty
sequence of contour nodes. In the format of OpenStreetMap, for ex-
ample, such path arcs (x, c1, . . . , cn, y) occur as sub-sequences of
so-called way specifications. To cast this into a concept, one can
define: Given a set of map data D, a map graph on D is a tuple
GD = 〈I, C, PA, ρ〉, where I is the set of intersection nodes in D,
C is the set of its contour nodes, PA is the set of its path arcs (i.e.,
each path arc is a an element of I × Cn × I for some n ≥ 0), and
ρ : PA → 2PA is the function that assigns to each path arc (x,�c, y)
the (possibly empty) set of path arcs (y,�c′, z) in which the intersec-
tion y can be left, when entered from (x,�c, y).

Map graphs offer a representation that is very close to the actual
geodata. However, when representing a route and describing it to
a user, the most important information is when and where to turn
when driving along the route. A route instruction at an intersection
could include action terms that refer to qualitative direction relations,
such as “turn sharp left”, “turn right”, “turn around”, “go straight”.
Our goal here is to define a qualitative representation of route net-
works that abstracts from the concrete geodata as used in map graphs
and directly builds on such qualitative relations. This allows for a
straight-forward derivation of route descriptions and for reasoning
about route instructions on a symbolic level. Hence, the idea is to
generate a graph structure that only contains the intersection nodes
used in map graphs, but employs the geometric information about
contour nodes (in fact, the first and last contour node in a path arc) to
determine the qualitative spatial relations that can be used to express
spatial actions at an intersection.

Qualitative relations occurring in such route descriptions can be
defined in terms of spatial relations as discussed in the field of Qual-
itative Spatial Reasoning [6]. Here we are particularly interested in
spatial relations defined on points in the Euclidean plane (given some
standard projection of the geodata into the plane). Let R be a set of
jointly exhaustive and pairwise disjoint direction relations that de-
scribe the position of a point z relative to a directed line (x, y). Then,
a route graph GR over R is a tuple 〈V, A, r〉, where V is a nonempty,
finite set of nodes, A is a set of arcs on V , and r is a function that as-
signs a spatial relation from R to each pair of arcs (x, y), (y, z) ∈ A.

Route graphs can be defined from map graphs in a straight-forward
way. Moreover, there are several reasoning problems that are related
to route graphs, for example: Given a route graph GR, is there a map
graph whose corresponding route graph is GR? This problem can
be simply cast as a constraint satisfaction problem with variables for
intersection nodes, auxiliary variables for contour nodes, and con-
straints with relations from R.
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3 A Qualitative Representation of Routes

The most common qualitative direction relations over points in the
plane depend on the angles formed by the points, where angles that
yield the same direction relation belong to a common direction sector
bounded by different angles. There exist two families of qualitative
formalisms (calculi) that allow for defining sectors with different an-
gles: the STAR calculi [5] for absolute direction relations and the
OPRA calculi [4] for relative direction relations. For a given STAR
calculus, the direction sectors are the same for every point p on the
plane, while the sectors of a given OPRA calculus depend on the
orientation of p. These sectors plus p itself (which forms the 0 sec-
tor) are the base relations of the STAR or OPRA calculus S, we
assume the sectors are numbered in clockwise direction from 1 to
m. Any two points q, r that are in the same sector i with respect to
p are in the same qualitative direction relation with p. The number
of sectors m and their angles can be arbitrarily chosen based on the
requirements of the application and can then be applied to all points
in the plane. For the purpose of this paper, we assume that all sectors
are point symmetric and each covers a range of 360/m degrees (see
Figure 1(a)). Even though we deal with relative direction relations,
in this paper we use STAR calculi for representing direction sectors
in order to have a consistent sector arrangement for every intersec-
tion node. OPRA would require different sector arrangements for the
same intersection node whenever there are multiple incoming paths.

For a given STAR calculus S we can easily compute the STAR
relation of a path arc a = (x, c1, . . . , cn, y) ∈ A with respect to
either intersection node x or y as the sector of x that contains c1 or
the sector of y that contains cn, respectively. We write the STAR re-
lation of a wrt a node v as s(a, v). If v is not part of a, then s(v, a)
is undefined. Since a STAR calculus allows the definition of differ-
ent sector arrangements, one task is to determine the STAR calculus
that is best suited for a given map graph GD . This can be formu-
lated as the following reasoning task: Given a map graph, determine
the coarsest STAR calculus S that allows for distinguishing different
outgoing edges in GD in a unique way.

In order to use S for qualitative turn descriptions of a route, we
have to define a mapping t : V ×V ×V �→ L that maps an incoming
arc ai = (x, v) and an outgoing arc ao = (v, y) at an intersection
node v (in fact, the two corresponding STAR relations s(ai, v) and
s(ao, v)) to an element of a set of qualitative turn labels L. When an
arc enters an intersection v from a sector s(ai, v) then each sector is
assigned a qualitative turn label according to which turn it represents
with respect to s(ai, v), for example, “left”, “right”, “slightly left”,
“sharp left”, “back”, “straight”, and “stop”. Different sectors can be
mapped to the same label (see Figure 1(b) for an example). Since
this mapping is rotation invariant (see Figure 1(c)), we can define a
function f(ai, v, ao) = s(ao, v) − s(ai, v) mod m that considers s
as the numerical value of the sectors. If f(ai, v, ao) = i then ao is
i sectors in clockwise direction from s(ai, v). The mapping t only
depends on the value of f except for when s(ao, v) = 0 in which
case t(x, v, y) =“stop”. For instance, if f(ai, v, ao) = m/2, then
t(x, v, y) should be “straight”. The set of qualitative turn labels L
and the mapping t can now be used to define a route graph GR =
(V, E, r) where R = L and r = t.

A qualitative route description T of a route R = (p1, . . . , pn)
is then a sequence of turn labels T = (t(p1, p2, p3),
t(p2, p3, p4),. . . , t(pn−2, pn−1, pn)). In situations where we are
only interested in turns, we can restrict a qualitative route description
to those intersection points where an actual turn occurs. We call such
a reduced qualitative route description a qualitative turn description.
By counting how many “straight” labels occur between turns, we can
also extract descriptions such as “turn left at the 5th intersection”.

Figure 1. (a) STAR relations, (b) qualitative turn labels assigned to STAR
relations, (c) an incoming arc and three possible outgoing arcs.

4 Reasoning about Qualitative Route Descriptions
Related to route descriptions, there are different reasoning tasks or
queries of interest, for example, given a route graph GR:

• Given a qualitative route/turn description, find one/all routes in
GR that match this description.

• Given a qualitative route/turn description and a starting point,
what are the possible end points of the route (and vice versa)?

• Given a start and end point, what is the route with the least turns?

The most basic query, however, is the (decision) problem whether
a route description d = (d1, . . . , dn) can be instantiated in a route
graph (given a fixed start arc (v0, v1) as well as a goal node vg).
This problem can be tackled, for example, by using a queue that
stores pairs of arcs and trailing sequences of d. Initially this queue
just contains ((v0, v1), d). As long as this queue is not empty, we se-
lect and delete one element from the queue ((vi, vj), (dl, . . . , dn)),
and try to execute dl at vj . If that is possible, we add those pairs
((vj , vk), (dl+1, . . . , dn)) to the queue where (vj , vk) is in fact an
arc in the graph. Otherwise, we add pairs ((vj , vk), (dl, . . . , dn)) to
the queue and do the same for each node that is in the ”straight”
direction w.r.t. the arc (vi, vj). If we reach the goal node with an
empty route description, we can stop and return “yes”. Otherwise, if
the queue becomes empty without reaching the goal node, we return
“false”. If one ensures that an arc-description pair is never processed
twice (e.g., by marking processed pairs), this algorithm is guaranteed
to terminate and runs in time O(e · n) where e is the number of arcs
in the graph and n is the length of the route description.

5 Future Work
We have mentioned a number of interesting reasoning tasks and
queries that can be analyzed within our framework. In addition, our
approach forms the basis for other qualitative representations, such
as relations between routes and route segments. We expect that this
leads to more intuitive route descriptions and eventually to improved
and more user-friendly navigation systems.
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