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Abstract. Qualitative spatial and temporal calculi are usually formulated on a
particular level of granularity and with a particular domain of spatial or temporal
entities. If the granularity or the domain of an existing calculus doesn’t match
the requirements of an application, it is either possible to express all information
using the given calculus or to customize the calculus. In this paper we distinguish
the possible ways of customizing a spatial and temporal calculus and analyze
when and how computational properties can be inherited from the original calcu-
lus. We present different algorithms for customizing calculi and proof techniques
for analyzing their computational properties. We demonstrate our algorithms and
techniques on the Interval Algebra for which we obtain some interesting results
and observations. We close our paper with results from an empirical analysis
which shows that customizing a calculus can lead to a considerably better rea-
soning performance than using the non-customized calculus.

1 Introduction

Qualitative Spatial and Temporal Representation and Reasoning (QSTR) [1]] is often
useful when exact properties of spatial or temporal entities (e.g. exact location) are not
important, but when we are interested in the relationships between different entities.
A qualitative spatial or temporal calculus typically takes a particular set of spatial or
temporal entities as its domain and defines relations over it to represent an aspect of
space or time on a particular level of granularity.

Reasoning over these relations is usually done by exploiting composition of relations
and the main reasoning problem is the consistency problem which asks if a given set of
constraints over a set of relations has an instantiation which satisfies all the constraints.
The consistency problem is NP-hard for most calculi if all relations are allowed, but in
some cases tractable if only the base relations are used. Many spatial and temporal cal-
culi have been defined in the literature [[1]] and they are all based on the same principles
of having a particular domain and base relations over a particular aspect of space and
time on a particular level of granularity. Some of these calculi have been intensively
analyzed and computational properties are known for many of them.

Let us assume an application for which we want to represent qualitative spatial or
temporal information and want to efficiently reason about this information. One prob-
lem we might face when selecting an existing calculus is that our application has a
different domain than the existing calculus or requires relations on a different level of
granularity. One way of dealing with this problem is to use the existing calculus and
to ignore the differences. This is not very useful as the computational properties of the
existing calculus only hold for the given domain and granularity. Another possibility is
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to develop a new calculus which is tailored towards our application. In this paper we
look at a third possibility, namely, to customize an existing spatial or temporal calculus
to a given application or to some given requirements. The result will also be a tailored
calculus, but in many cases it will be possible to simply inherit known computational
properties from the existing calculus.

Customizing calculi is not new and there are several examples where customizations
of spatial or temporal calculi have been suggested. The best known example is proba-
bly RCC5 which is a subcalculus of RCC8 on a coarser level of granularity [3]]. In this
paper we go a step further and analyze customization in general. We distinguish differ-
ent ways of customizing calculi, discuss properties which customized calculi have to
satisfy, present algorithms for generating coarser calculi which satisfy these properties,
and show when and how computational properties of coarser calculi can be inherited
from existing calculi. We demonstrate our algorithms and methods on the Interval Alge-
bra (IA) and derive some interesting results and observations. The advantage of using
the IA is that we know all maximal tractable subsets of the IA [[6] and can therefore
easily test our general methods.

2 Qualitative Spatial and Temporal Calculi

A binary qualitative spatial or temporal calculus takes a domain of spatial or temporal
entities D and defines a set of base relations 5 that partition D x D into jointly ex-
haustive and pairwise disjoint sets. Between any two values of the domain, exactly one
of the base relations holds. Indefinite information can be expressed by using the union
(V) of base relations, one base relation of the union must hold, but it is not yet known
which of them. The set of all relations is therefore the powerset of the base relations
2B, Usually the operators converse (~—, or conv()), intersection (M), complement (—),
and most importantly composition (o) are defined. Composition of two relations R, S
is the relation defined as follows: R o S = {(a, ¢)|3b.(a,b) € R and (b,c) € S}. Spe-
cial relations are the universal relation U which is the union of all base relations, the
empty relation ) and the identity relation id. A spatial or temporal calculus is a set of
relations 2% which is closed under the operators, i.e., applying the operators to all rela-
tions always results in relations of the same set. Due to the definition of the relations, it
is clear that 25 is always closed under converse, union, intersection, and complement,
but it might not be closed under composition. For some calculi it is therefore neces-
sary to use weak composition (o,,) instead of composition, which is defined as follows:
Ro, S={T €B|TN(RoS)+#0}. 25 is always closed under weak composition.
Spatial and temporal information is usually represented using constraints over the
relations, e.g., the constraint Ry, where x,y are variables over the domain D and
R € 258, is satisfied if there is an instantiation of = and y with values a,b € D such
that (a,b) € R. Given a set @ of such constraints, an important reasoning problem is
whether © is consistent, i.e., whether there are instantiations of all variables in © such
that all constraints are satisfied. We write the consistency problem as CSPSAT(S) to
indicate that only relations of the set S are used in ©. This is a constraint satisfaction
problem which is NP-hard in general. In order to enable efficient solutions to the con-
sistency problem, the minimum requirement is that CSPSAT(15) is tractable. Ideally,
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DC(x,y) EC(x,y) PO(x,y) TPP(x,y) TPP'(x;y) NTPP(x,y) NTPP'(x,y) EQ(x,y)

Fig. 1. Illustrations of the base relations of the Interval Algebra and of RCC8

we can identify large tractable subsets 7 C 27 for which CSPSAT(7) is tractable[18].
A maximal tractable subset is a tractable subset 7 such that CSPSAT is NP-hard for
each superset of 7. If a tractable subset contains all base relations, it can be used to
considerably speed up solving CSPSAT(25) [4].

A simple way of approximating consistency of a set © is to use the path-consistency
algorithm which makes © path-consistent by applying the following operation to each
triple of variables x, y, z of © until either a fixed point is reached or the empty relation is
obtained (R, is the relation between = and y): Vz, y, 2 : Ryy := Ryy N (Rez0 Ray). If
a calculus uses weak composition instead of composition, we have to use weak compo-
sition (o,,) in the given operation, and the corresponding algorithm is called algebraic-
closure algorithm [3]]. If weak composition is equal to composition, then algebraic-
closure is equal to path-consistency. This operation can be performed in cubic time in
the number of variables. If the empty relation occurs, then @ is inconsistent, otherwise
the resulting set @’ is path-consistent/algebraically closed.

The best known spatial and temporal calculi are RCCS8 and the TA [[7]] (see Fig-
ure[T). The domain of RCC8 are extended spatial regions, defined as regular subsets of
a topological space. RCCS8 consists of eight base relations that distinguish topological
relationships between spatial regions: DC (disconnected), EC (externally connected),
PO (partial overlap), TPP (tangential proper part), NTPP (non-tangential proper part),
their converses TPP~" and NTPP !, and the identity relation EQ (equal).

The domain of the IA are intervals, defined as convex sets of a one-dimensional di-
rected space. The IA consists of thirteen base relations: before (<), meets (m), overlaps
(0), during (d), starts (s), finishes (f), their converse relations msi, oz, di, si, fi, and the
identity relation equal (=). The IA is closed under composition and there is one max-
imal tractable subset (ORD-Horn) that contains all base relations and 17 maximal
tractable subsets which do not contain all base relations [6].

3 Customizing Spatial and Temporal Calculi

Qualitative spatial and temporal calculi use a particular domain D and partition D x D in
a particular way into a set of base relations. The computational properties of a calculus
hold only for the given choice of domain and base relations. If we have an application
for which we want to use a spatial or temporal calculus it is possible that our application
uses a different domain or requires different distinctions than those made by an existing
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calculus. This means that the computational properties of the existing calculus might not
apply to our application; we have to develop a new calculus and prove its computational
properties. In many cases, however, it is possible to customize an existing calculus to
meet some more restricted requirements on domain or distinguished relationships, and
to inherit computational properties from the existing calculus.

Assume that we have an application where we want to represent relations between
intervals but where all the interval endpoints have to be distinct. As Golumbic and
Shamir point out [9], this assumption is frequently made in combinatorics and has also
been proved useful in applications of temporal reasoning. Under this assumption, we do
not need the granularity offered by the Interval Algebra and would like to use coarser
relations. There are two ways of how we can customize the Interval Algebra:

1. We use what Golumbic and Shamir call macro relations [9]], i.e., unions of base
relations. We combine IA base relations and use these macro relations as base rela-
tions of our customized calculus. For example, we could combine {m, o}, {mi, oi},
{s,d, f}, {si,di, fi} and use them together with the relations {<}, {>}, and {=}
as our new base relations. This corresponds to the algebra A7 defined in [9].

2. We use only the relations we need, namely, the interval relations <, >, d, dt, o, ot,
= and do not use m, mi, s, st, f, fi which correspond to intervals with common
endpoints. This is similar to the algebra Ag defined in [9] with the exception of the
identity relation which we include in order to be able to use the standard constraint
satisfaction algorithms.

In both cases we use only seven “base relations” and their unions (i.e., 27 relations).
But in both cases we get unwanted relations if we close these sets under composition,
intersection and converse which happens if we compute path-consistency or apply other
reasoning methods for the given set of constraints. In the first case, the composition
of {<} and {s,d, f}, for example, gives the relation {<,d, 0o, m, s} which is outside
the relations we wanted to use as f is not included. In the second case we get the
same behavior, the composition of < and d gives the relation {<,d, 0, m, s} which
includes the base relations m and s which we did not want to use. In both cases, the
relations are not closed under the operators and we end up having to use the full Interval
Algebra again. This shows that even though it is straightforward to use a finer calculus
for representing coarser information, we need to do a proper customization in order to
benefit from having to represent only coarser information.

A good example is the RCCS5 calculus consisting of five base relations: DR (discrete),
PO (partial overlap), PP (proper part), its converse PP ™! and the identity relation EQ.
RCCS is closed under weak-composition and also under the other operators. Two of the
RCCS5 relations, PO and EQ are the same as the RCC8 relations, DR, PP, and PP~ are
macro relations: DR = DC U EC, PP = TPP UNTPP, PP~ = TPP~' UNTPP .
RCCS5 uses the same domain as RCC8 but uses base relations on a different level of
granularity. RCC5 can be regarded as a customized version of RCC8 and many of the
computational properties of RCC5 can be derived from computational properties of
RCCS as all 2° RCCS5 relations are contained in RCCS.

But it is not always that simple. Consider the RCC7 calculus [2]] which is a cus-
tomized version of the RCC8 calculus where regions cannot overlap. The base relations
of RCC7 are the same as those of RCC8 with the only difference that the RCCS8 base
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relation PO is not allowed and not used. It has been shown that the consistency problem
for RCC7 is NP-hard even if only the RCC7 base relations are used.

Another example are the 9-intersection relations [10]. RCC8 and the 9-intersection
relations have a similar meaning and the composition tables are identical. However, the
domain of RCCS are regular regions of an arbitrary topological space while the domain
of the 9-intersection relations a 2-D regions which are homeomorphic to disks, i.e., they
consist of one piece and have no holes. The 9-intersection relations can be regarded as
a customized version of RCCS for a particular kind of spatial entities.

The previous examples can all be considered as customized versions of other calculi.
We have seen three different kinds of customizations: (1) Combining base relations
to form macro relations, (2) Excluding some of the base relations, (3) Restricting the
domain. We can now summarize and formalize the different kinds of customization,
and what basic requirements must be met by a customized calculus.

Definition 1 (Coarser Calculus). Given a qualitative spatial or temporal calculus F
with base relations Bx over a domain Dx. A calculus C with base relations Be and
universal relation Ug over a domain D¢ is called coarser than F, written as C < F,
iff (1) for each base relation Bp € Bx there is a base relation Bc € Be such that
(BF NU¢) € Be, (2) De € D, and one of the following conditions holds:

(a) macro relations: there exists a base relation B in Bz such that (BpNU¢) C B,
(b) unused relation: rhere exists a base relation B in By such that (Br NU¢) = 0),
(¢) reduced domain: De C Dr.

In this paper we define the customization of an existing calculus F as the process
of finding a coarser calculus C which better matches particular requirements about do-
main and granularity than F. Note that here we lift the requirement that base relations
are jointly exhaustive in order to allow the possibility of having unused relations inde-
pendently of restricting the domain. This is done by assuming that the universal relation
U of a calculus is the union of all the base relations which can be smaller than the cross-
product of the domain D x D which typically defines the universal relation. Furthermore
the coarser calculus has all the properties of a normal calculus, i.e., it is closed under
the operators, and is therefore different from tractable subsets of a calculus.

4 Customization Using Macro Relations

We have seen in the previous section that we cannot use any partition of base relations
into macro relations in order to obtain a coarser calculus because the new calculus might
not be closed under the operators. We implemented an algorithm which enumerates all
possible partitions of a given set of base relations into macro relations and tests whether
they are closed under the operators or not.

Proposition 1. Given a set B of base relations which consists of two types of relations:
(1) the relations Sy, ...,S, € B are equivalent to their own converse relation, i.e.,
conv(S;) = Si, (2) the relations Cy,...,Cy € B have a converse relation among
themselves, i.e., conv(C;) = Cj for some i # j. All macro relations R of a valid
partition of B must satisfy the following properties:
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— If R contains a relation S;, then for every relation B; which is contained in R, the
relation conv(B;) must also be contained in R.

— If R contains only relations C; and R # conv(R) then conv(R) must also be
contained in the partition.

It is a mathematically interesting question to compute the number of partitions that
satisfy the proposition, i.e., the number of partitions for any number h, k with h +
k = n, but this is outside the scope of this paper. In Figure [2] we give an algorithm
for computing all partitions of a set of base relations 3 which are closed under the
operators. All the resulting partitions can be used as customized calculi. For the IA it
turns out that there are only 16033 partitions which satisfy the proposition and only 117
of them are closed under the operators.

Algorithm: FINDMACROCALCULI(P, R)
Input: a partial partition P of the base relations B and the remaining base relations R

1.if R = 0 then

2. ifclosed(P) then print P;

3. select one base relation B € R;

4. for all macro relations S of R for which B € S do

5. ifSnNconv(S) # b and S # conv(S) then continue;

6.  FINDMACROCALCULI(P U {S, conv(S)}, R\ {S, conv(S)})

Fig. 2. The recursive algorithm FINDMACROCALCULI computes all partitions of /3 which are
closed under the operators when started with P = () and R = B

What we are interested in now, is when and how we can inherit computational prop-
erties from an existing calculus F to a customized calculus C. We can only refer to
computational properties if they are known for the original calculus, so we assume that
we know one or more tractable subsets of the original calculus. For the case of having
macro relations, inheriting computational properties is simple as all macro relations are
also contained in the powerset of the original base relations . Whenever the base re-
lations B of a customized calculus C are contained in a tractable subset of the original
calculus, the intersection of C with any tractable subset of F is also tractable.

Lemma 1. Given a calculus F with base relations Br over a domain D and a known
tractable subset Tx of F. If a calculus C has the same domain as F, C < F, and all
relations of B¢ are macro relations of Br, then C 0N Tx is a tractable subset of C. If
algebraic closure decides CSPSAT(1x), then it also decides CSPSAT(C N Tx).

The algorithm in Figure2lcan be modified to check if a customized calculus is contained
in the known tractable subsets and to compute the intersection with the known tractable
subsets. If the base relations of a customized calculus are macro relations of an existing
calculus F and not contained in a known tractable subset of F, then it is only possible to
derive its complexity if all tractable subsets of F are known. Otherwise, its complexity
has to be proved independently.
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Table 1. All partitions of the Interval Algebra where deciding consistency is tractable

Mi={=,<doms,>dioimisi, f,fi} Mz ={=,<doms,> dioimisi, f fi}
Mz ={=,<>ddiooimmissi, f, fi} Mas={=,<>ddiooimmissi, [ fi}
Ms ={=,<doms f,>dioimisi fi} Me={=,s,si,>doimif,<diom fi}
M7 ={=,ssi,>doimif, < diom fi} Msg={=,>dioimisif,<domsfi}
Mo ={=,>doimisi f,< dioms fi} Mio={=,>doimisf,<diomsifi}
M ={=,s,si,<>ddiooimmi f fi} Miz = {=,ssi,<>ddiooimmif fi}
Mg ={=,<>ddiooimmissif fi} Mis={= ssi,>doimif, <diom fi}
Mis = {= ssi,<>ddiooimmi f fi} Mic ={<doms,>dioimisi,= f fi}
Mz ={<>ddiooimmissi,= ffi} Mis={=<>ddiooimmissif fi}

For the TA all maximal tractable subsets are known [6] and we can determine the
computational properties for all 117 customized calculi we identified above. We ap-
plied our modified algorithm to the IA and tested for all 117 coarser calculi whether
they are contained in any of the maximal tractable subsets. The result was surprising:
(1) For 18 of the 117 valid partitions, all base relations are contained in a maximal
trabtable subset. (2) For all 18, the powerset of the relations is also contained in a max-
imal tractable subset, i.e., the 117 customized calculi of the IA are either completely
tractable or completely NP-hard. (3) All 18 are contained in ORD-Horn, the only max-
imal tractable subset which contains all base relations. Table [I] gives all 18 tractable
partitions.

5 Customization by Unused Relations

For every spatial or temporal domain D, we can find base relations which are jointly
exhaustive and pairwise disjoint, i.e., for any two entities there will be exactly one base
relation which holds for every pair. The universal relation, which is the union of all base
relations is then equal to D x D. If one or more of the base relations R; cannot occur
due to requirements of an application, then there are two possibilities of modifying a
set of base relations B. The first possibility is to say that the relations R; are forbidden,
i.e., they can not occur in any solution of the consistency problem over 25. We have to
make sure that whenever we are forced to use a relation R;, then our set of constraints
is inconsistent. Alternatively, the second possibility is to say that the base relations R;
are empty and can be removed. This has the consequence that the base relations are
not jointly exhaustive anymore and that the universal relation is not equal to D x D
anymore, but it has the advantage of making reasoning simpler as we can just remove
the unused relations. In the following we will always remove unused relations.

Given a calculus F with the base relations Bz, there are 28 _ 1 possibilities of
removing unused base relations in order to obtain a coarser calculus C. If we remove
one or more base relations, we have to make sure that these relations are removed from
all the compositions of relations of C. All the relations which we do not remove are
exactly the same relations as those of 7. When we remove base relations, the universal
relation Ue of C is the union of all remaining base relations. Composition of relations
C;, Cj of C is therefore defined as follows: C; o¢ C; = (C; or Cj) N Ug, where o¢ is
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Algorithm: FINDUNUSEDCALCULI(B)
Input: a set of base relations 3

1. for all relations U € 25 with U = conuv(U)
N=10
for all relations B € B
if{B}NU # 0 then N := N U{B, conv(B)}
for all pairs of relations N;, N; € N with i # j do
if (N; o N;)NU = () then N' = (); break;
N =N U {conv(N;)} U({N;} N {N;}) U (N; o N;)
if N # 0 then print NV

NN RPN

Fig. 3. Algorithm FINDUNUSEDCALCULI computes all customized calculi of 3 which have un-
used relations and which satisfy Proposition 2]

the composition of relations of C while o is the composition of relations of F. Since
the relations (and their converses) which we remove with this operation are empty, it is
obvious that this way of computing composition is correct.

Another requirement a coarser calculus has to satisfy is that the composition of two
relations must not give the empty relation. This can occur if the composition of two
relations contains only unused relations. The following proposition lists the properties
that a coarser calculus resulting from unused relations has to satisfy.

Proposition 2. Given a set Br of base relations from which we remove the unused
relations Sy, ...,Sy € B, resulting in the new set of base relations Be. The relations
R;, R; € C must satisfy the following properties:

(1) If R; € C then conv(R;) € C;  (2) R;oc R; # 0.

The algorithm in Figure 3] computes all coarser calculi C of a given calculus F which
can be obtained by removing unused relations and which satisfy Proposition 2 We
applied the algorithm to the IA and found that 63 calculi satisfied the requirements.

We cannot just compare the coarser calculi C with the tractable subsets of the original
calculus F. The reason for this is that the closure of subsets of C will be different from
the closure of the same subsets of F, and therefore it is possible that the same set of
relations has different computational properties depending on whether it is a subset of C
or of F. But we are able to derive some properties if we look at what the actual closure
of a set of relations of C is.

Lemma 2. Given a calculus F and known tractable subsets T} of F for which alge-
braic closure decides consistency. Let C be a coarser calculus of F with base relations
Be which results from F by removing unused base relations. If the closure Z/S’Z of Be is
contained in one of the sets T, then CSPSAT( B’E ) is tractable and can be decided by
the algebraic closure algorithm.

Proof. Given a set © of constraints over 1/32 and let ©' be the result of applying alge-
braic closure to ©. If the empty relation occurs while computing algebraic closure, then
O is inconsistent. Since B¢ is closed, all constraints of @ will also be from Be. All
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R =1{=}LRi ={<,>})L R ={=,<, >} R3s = {d,di}, Ra = {=,d,di}, Rs = {o,0i},
Re = {=,0,0i}, Ry = {d,di,0,0i}, R§ = {=,d,di,o,0i}, R = {<,>,d,di,o,o0i},
Rio = {=,<,>,d,di,0,0i}, Ri; = {=,<,>,d,di,o0,0t,m,mi}, Ria = {s,si}, Riz =
{=,s,s1}, Riu = {<,>,s8,s1}, Ris = {=,<,>,s,si}, Rie = {d,di,s,si}, Rir = {=
,d,di, s, si}, Rig = {0,0i,s,si}, Rig = {=,0,0i,s,s1}, Ryg = {d,di,o0,0i,s,si}, R3; =
{=,d,di,o,0i,s,si}, R3s = {<,>,d,di,o,0i,s,si}, Rz = {=,<,>,d,di,o,o0i,s,si},
R = {=,<,>,d,di,o,0i,m,mi,s,si}, Rss = {f, fi}, Ras = {=, [, fi}, Ror =
{<7>7f7f7:}$ R28 = {:7<7>7f7fi}$ RQQ = {d,dl,f,fl}, Rg() = {:7d7di7f7fi}$
Ra1 = {o,0i, f, fi}, Rs2 = {=,0,0i, [, fi}, R33 = {d,di,o,o0i,f, fi}, Rz, = {=
,d,dijo, 01, f, fi}, R3s = {<,>,d,di 0,01, [, fi}, R3s = {=,<,>,d,di,o,01, f, fi},
Rir = {=,<,>,d,di,o,0i,m,mi, f, fi}, Rig = {d,di,o,0i,s,si,f, fi}, R3g =
{=,d,di,o,0i,s,si, f, fi}, Rio = {<,>,d,di,o,o0i,s,si,f, fi}, Riy = {=<,>
,d,di o, 01,8, si, f, fi}, Rio = {<,>,d,di,o0,0t,m,mi, s, si, f, fi}

Fig. 4. The 43 customized calculi of the Interval Algebra with unused relations and tractable base
relations. The closure of the sets marked with * are contained in ORD-Horn.

relations of l/gz are exactly the same relations as the corresponding relations of F, so let
O = O’ be the corresponding set of constraints over F. Since R; oc R; C R; or Rj,
O is also algebraically closed. Since E’E is contained in a tractable subset of F for
which algebraic closure decides consistency, @ = @’ is consistent.

Note that if l/gz is contained in a tractable subset of F for which algebraic closure does
not decide consistency, then CSPSAT(Z?Z) is still tractable. We added this test to our
implementation of the algorithm of Figure 3land applied it to the IA. It turned out that
for 25 of/tlle 63 coarser calculi 1/32 is contained in ORD-Horn, and for 18 further coarser
calculi, B¢ is contained in one of the other maximal tractable subsets of the IA. The 43
tractable calculi are given in Figure @l We can obtain larger tractable subsets of our
coarser calculi simply by intersecting them with the known tractable subsets of F. This
can be proved in the same way as Lemmal2l

6 Customization by Restricting the Domain

The computational properties of a qualitative calculus strongly depend on the used do-
main, as can be seen with RCC8 and 9-intersection. 9-intersection has a much more
restricted domain than RCCS, but until recently it was unknown if the consistency prob-
lem for the 9-intersection problem is decidable at all [I1]]. This shows that reducing the
domain does not necessarily make a calculus simpler. Other restrictions of the RCC8
domain that have been analyzed are the restriction of the domain to convex regions [12]
and to closed disks [[13]. A well-known example for a domain restriction in the interval
domain is to use only intervals whose endpoints are integers.

Due to the strong dependence of computational properties to the domain, there are no
general methods as in the previous sections for inheriting complexity results to coarser
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calculi. Instead each customization requires a separate analysis. In the following we
will give guidelines about how to inherit complexity results from a calculus F to a
coarser calculus C with a reduced domain. First of all, we have to analyze how the
composition is affected by removing values from the domain. (1) If it turns out that some
base relations will not be used anymore, we can first apply the methods discussed in the
previous section and then continue our analysis using the calculus and the results we
obtain by applying these methods. (2) If the weak composition of the relation stays the
same, we can test if the reduced domains allow us to refine some of the base relations to
non-overlapping sub-relations. This is a method introduced and discussed in more detail
in [[14]. If this is not possible (as in the case of intervals over integer endpoints), then
the computational properties of the coarser calculus C are the same as those of F. If it is
possible, then algebraic closure does not decide consistency even for the base relations
of C and the computational properties of F can not be inherited . (3) If only some of
the compositions change without completely removing some of the base relations of F,
then we have to make a new analysis and cannot inherit results from F.

7 Benefits of Customization

Having a calculus with a smaller number of base relations has several benefits over
using a calculus with a larger number of base relations. For larger calculi such as the
Directed Intervals Algebra it might not be possible to store the complete compo-
sition table in memory. Instead we might always have to compute composition from
the basic composition table, which leads to slower reasoning. Independent of compo-
sition tables, using the smaller calculus is much more efficient because of the way the
reasoning algorithms work, namely, by splitting relations into sub-relations and back-
tracking over the different sub-relations [[16]. For a smaller calculus, relations can be
split at most into the coarser base relations, but for larger calculi they are split into the
finer base relations leading to much bigger backtracking trees and consequently much
slower reasoning.

We empirically compared the reasoning performance of a coarser calculus with that
of a finer calculus on exactly the same instances, i.e., we randomly generated only
instances that can be expressed by the coarser calculus and then expressed the same
instances with the finer calculus. We used a coarser calculus of the IA where intervals
cannot have endpoints in common and compare it with the IA. The coarser calculus has
seven base relations <, >, o, 0i, d, di, = and we call it IA7. It is obtained from the TA
by removing all unused relations. Deciding consistency is tractable for the IA7 base re-
lations, but NP-hard for the full calculus. We randomly generated 100 IA7 instances for
different sizes. The constraints between the nodes of an instance were chosen randomly
from IA7 and had an average density of d = 5(+2) constraints per node, which marks
the phase transition region for TA7. For our experiments we used the SFB/TRS8
Generic Qualitative Reasonetl] for checking consistency. The experiments where im-
plemented on a Linux-PC with a 1,5Ghz VIA C7 CPU and 1GB RAM.

! https://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Resources/GQR
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As we can see from the graphs, we can solve the same instances much faster if we use
IA7 for solving them instead of IA. In most cases we are more than twice as fast. This
shows that customizing a calculus to a particular application can lead to considerable
performance gains and is therefore highly recommended.

8 Conclusions

Sometimes applications require a coarser representation of spatial or temporal infor-
mation than what existing calculi offer. In this paper we show different possibilities of
how existing calculi can be customized to form coarser calculi which might be more
suited for a given application. We present general algorithms for generating coarser cal-
culi. We show when and how we can derive computational properties for coarser calculi
from existing results and demonstrate empirically that using customized calculi leads
to a much better reasoning performance than using non-customized calculi. We demon-
strate our general methods on the TA for which we identify several coarser calculi and
easily derive their computational properties.
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