
Tracking Perceptually Indistinguishable Objects
using Spatial Reasoning

Xiaoyu Ge and Jochen Renz

Research School of Computer Science
The Australian National University

Canberra, Australia

Abstract. Intelligent agents perceive the world mainly through images
captured at different time points. Being able to track objects from one
image to another is fundamental for understanding the changes of the
world. Tracking becomes challenging when there are multiple perceptu-
ally indistinguishable objects (PIOs), i.e., objects that have the same
appearance and cannot be visually distinguished. Then it is necessary
to reidentify all PIOs whenever a new observation is made. In this pa-
per we consider the case where changes of the world were caused by a
single physical event and where matches between PIOs of subsequent
observations must be consistent with the effects of the physical event.
We present a solution to this problem based on qualitative spatial repre-
sentation and reasoning. It can improve tracking accuracy significantly
by qualitatively predicting possible motions of objects and discarding
matches that violate spatial and physical constraints. We evaluate our
solution in a real video gaming scenario.

1 Introduction

Image understanding (Sridhar et al. 2011) and object detection (Papageorgiou
et al. 1998) are essential methods for extracting useful information from images.
Equally essential is object tracking (Yilmaz et al. 2006), the ability to identify
the same object in a series of images or in videos and to track its movement and
changes. Existing object tracking methods typically rely on the visual appearance
of objects and on their trajectories to successfully track objects (Cutler and Davis
2000; Yilmaz et al. 2004). Data association techniques (Cox and Hingorani 1996;
Khan et al. 2005) are broadly used for tracking multiple objects. These methods
can handle false and missing observations reasonably. However, they usually have
high computational complexity.

In this paper we look at the problem of tracking perceptually indistinguish-
able objects (PIOs) (Santore and Shapiro 2005), i.e., objects in images or videos
that have the same appearance and cannot be visually distinguished. We want
to be able to identify which PIO at time t2 is identical to which PIO at time t1
without continuously monitoring the changes between t1 and t2. The observa-
tions made at t1 and t2 are not continuous if the time gap between the two time
points is not negligible (> 50 ms). Under the assumption of discrete observations
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we have to be able to re-identify each PIO whenever we obtain a new observa-
tion. While all permutations of identity assignments are theoretically possible,
the task is to find an assignment that is consistent with a physical event that is
responsible for the changes.

Our interest in this problem is motivated by the Angry Birds AI competition
(www.aibirds.org) where the task is to build an AI agent that can play the
popular game Angry Birds as well as the best human players. A major problem
in this context is to accurately predict the outcome of a shot, i.e., to infer how the
game objects move when hit by a bird in a particular way. One way of estimating
consequences of shots is to know which object after a shot corresponds to which
object before a shot. Then we can use this information to learn consequences of
actions by using before and after object locations as input to machine learning
algorithms. Once we can estimate consequences of shots, it becomes possible to
plan good shot sequences that can solve given game levels. Therefore, matching
objects after a shot to objects before a shot is an important step in building a
sophisticated Angry Birds AI agent.

The main contribution of the paper is the successful application of qualitative
spatial reasoning techniques (QSR, see Cohn and Renz 2008 for a survey) to
provide good and efficient solutions to a relevant open problem. We developed
an algorithm that allows us to infer matches of PIOs that are consistent with
the physical effects of a single impact. We evaluated our proposed solution using
the Angry Birds scenario. We took subsequent screenshots of an active Angry
Birds game with varying time gaps and applied our method to match the objects
between successive screenshots. We measure the accuracy of our method by using
the percentage of correct matches out of the total number of possible mismatches.
As expected, it turns out that the smaller the time gaps, the higher the accuracy
of the matches. But overall the quality of our matches is very high.

2 Related Work

There are many intelligent systems using QSR techniques. For example, SOAR
(Laird 2008), a cognitive architecture in pursuit of general intelligence, has a
QSR component (Wintermute and Laird 2007, 2008) that performs spatial rea-
soning with bimodal representations. The component incorporates continuous
motion via simulation with motion-specific models (e.g. the Falling Block Model
). Qualitative physics (Forbus et al. 1991, 2008; Kuipers 1986) uses symbolic
computations to model and analyze physical systems. The modeling processes
often require information about system dynamics (e.g. force), object properties
(e.g. elasticity), and detailed spatial configurations (e.g. contact points). This
information is not usually available in our problem domain and is not necessary
to solve the problem. Another weakness of qualitative physics methods is that
they lack mechanisms to handle occluded objects. The idea of combining logics
with QSR is also relevant here (Aiello et al. 2007; Kreutzmann et al. 2013).

There are also extensive studies on qualitative spatio-temporal reasoning
(QSTR). In recent years, the community has developed various mechanisims
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(Galton 2000; Cabalar and Santos 2011) intended for commonsense reasoning
and reasoning about spatial changes and actions. Some mechanisms are used in
real-world applications, such as planning (Westphal et al. 2011), cognitive vision
(Dubba et al. 2010) and scene analysis (Xu and Petrou 2011). Another related
branch is simulation-based reasoning. (Battaglia et al. 2013) proposed a system
of physical reasoning using probabilistic simulations. However, simulation-based
approaches are not applicable to our problem mainly because of their inability
to deal with incomplete information (unknown physical properties) and lack of
well-defined domain models. (Davis and Marcus 2013) provides an in-depth look
at the limitations of simulation-based approaches.

3 Detection and Representation of Objects in Images

In order to be able to track objects in images, we obviously have to be able to
first obtain objects from images by object recognition techniques (Belongie et
al. 2002; Lowe 1999). In this paper we assume that objects can be detected and
we will use cases where object detection is solved and works. In particular, we
use images taken from the Angry Birds game, as this is the main motivation
of our work in this paper. The basic software provided by the Angry Birds AI
competition organizers includes an object recognition module that detects the
exact shape of all known objects with reasonable accuracy (Ge et al. 2014).

We use exact shapes for the general solid rectangles (GSR), i.e. rectangles
that can have any angle and are impenetrable, and use minimum bounding
rectangles (MBR) to approximate the regions occupied by other shapes. To rep-
resent these objects, we use a qualitative spatial representation in addition to
the real shape and location of the objects. Many rectangle-based qualitative
spatial calculi (Balbiani et al. 1998; Cohn et al. 2012; Sokeh et al. 2013) have
been developed in the context of QSR. These calculi typically deal with one
or more spatial aspects such as topology, size, or direction, and make a num-
ber of qualitative distinctions according to these aspects. There is currently
only one spatial calculus that specifically deals with rectangles of arbitrary an-
gles, the GSR-n calculus proposed by (Ge and Renz 2013). It defines eight con-
tact sectors that correspond to the eight edges and corners of the rectangles.
As shown in Fig. 1.a, we distinguish eight sectors for regular rectangles and
eight sectors for angular rectangles. Given two GSRs o1 and o2 that contact via
s1, s2 ∈ {A1, ..., A8, R1, ..., R8}, the contact relation between o1 and o2 can be
expressed as the constraint o1 (s1, s2) o2 (Fig. 1.b). With the contact relations,
GSR-n allows us to distinguish if and how two objects contact. Since the ob-
jects can only physically interact via contacts, we can further infer the possible
motions of an object from the GSR relations the object holds with others.

3.1 Objects Representation with the extended GSR-n relations

Given two GSRs, we obtain the contact relation by enumerating all the plausible
combinations of the two GSRs’ contact sectors and for each combination calcu-
lating the distance between the two sectors. The combination with the shortest
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Fig. 1. (a) Contact sectors of a normal rectangle (without rotation) and an angular
rectangle. (b) An example scenario where o1(R1, A4)o2, o2(A8, A4)o3. (c) The nine
cardinal tiles (d) An example scenario where o3 (T) o1, o2 (R) o1, and o4 (BL) o1

Fig. 2. EGSR Contact sectors and Cardinal directions of an angular rectangle and
a normal rectangle. (b) A spatial scenario where the four rectangles form a stable
structure under downward gravity and the corresponding QCN

distance constitutes the contact relation. Note, the shortest distance can be non-
zero. A non-zero distance means the two GSRs are separate, otherwise touch.

The problem with GSR-n is that it uses (∅, ∅) to represent the spatial relation
between all non-touching GSRs. Thus, it does not distinguish cases where rect-
angles are disconnected (not touching). To add this distinction, we extend the
original GSR-n by integrating it with the cardinal tiles (Goyal and Egenhofer
1997). We partition the embedding space around a reference object into nine
mutually exclusive tiles (Fig. 1.c). The center tile C corresponds to the MBR
of the reference object and the other eight tiles correspond to the eight cardinal
directions. We call the tiles L, R, B, T the core tiles.

The new spatial representation is called Extended-GSR (EGSR) (Fig. 2.a).
Given a set BGSR of GSR contact relations and a set Bcard of cardinal tiles, we
add ⊥ to both sets to indicate an unassigned relation. An EGSR relation is then
written as (r1, r2), r1 ∈ BGSR ∪{⊥}, r2 ∈ Bcard ∪{⊥}. We abbreviate (r1, r2) by
the cardinal tile r2 or by the contact relation r1 if it is clear which one is meant.

We compute the EGSR relation between two spatial objects by first check-
ing whether their MBRs intersect or boundary touch. If not, one of the eight
cardinal tiles will be used; and if one object’s MBR occupies multiple tiles of
the referred object, we will assign the core tile occupied by the MBR (Fig. 1.d).
If their MBRs boundary touch, a GSR-n relation will used. When their MBRs
intersect, a GSR-n relation will be assigned if both the objects are GSR, other-
wise the center tile will be assigned. All EGSR relations are obviously converse,
e.g. the converse of TL is BR, the converse of (R4, S7) is (S7,R4). A scenario
containing multiple spatial objects can be qualitatively interpreted by EGSR
via a qualitative constraint network (QCN)(Wallgrün 2010). QCN is a labelled
graph where each node corresponds to an object and directed edges represents
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relational constraints that have to hold between the two objects. Fig. 2.b shows
an example of a QCN based on EGSR relations.

4 Efficient Matching by Approximating Movement

Now that we have obtained the relevant objects in images and their qualitative
representation, we formally define the problem we solve in this paper. We call it
the PIO-matching problem with single impact (PIO-1):

PIO-1 Given a set O of object types where objects of the same type are PIOs,
a set Ot1 of objects of given type and their locations at time t1, and a set
Ot2 of objects of given type and their locations at later time t2. We assume
that a single physical impact P between t1 and t2 caused the changes from
Ot1 to Ot2 . The task is to match objects in Ot2 to objects in Ot1 such
that the changes in location of the matched objects is consistent with the
consequences of P .

We refer to objects in an initial scene as initial objects and objects in a subse-
quent scene as subsequent objects. The search space of the problem is large: let
a be the number of initial objects and let b be the number of subsequent objects,

the number of matches of all objects is max(a,b)!
(max(a,b)−min(a,b))! .

However, it is not just the size of the search space that makes this problem
hard, but the potential unavailability of the exact physical properties of the
objects and the physical impact involved. This is a consequence of the fact that
the problem is essentially a visual perception problem that involves processing
and ”understanding” the information contained in the visual observation, and
agents typically do not know the exact physical properties of entities and events
they perceive.

The search space can be reduced by searching through corresponding objects
only in a limited area that depends on the estimated force of the impact. The
search area of each initial object oi should cover only the objects oj in the
subsequent scene that can be potentially matched to the initial object. We use a
circular region to represent this area. The circle’s center is located at the centroid
of oi and the radius of the circle is the maximum shift of the centroid. The radius
is calculated as v × ∆t where v is the maximum estimated velocity of o1 and
∆t is the time gap between the initial and subsequent scene. This calculation
ensures that the circle can adapt to different time gaps. We call this circle the
movement bounding circle (MBC). The relative distance between two objects in
Ot1 and Ot2 can then be allocated to two meaningful classes, namely reachable
and non-reachable. An object o′ ∈ Ot2 is reachable by o ∈ Ot1 if the center of
the MBR of o′ is within the MBC of o, otherwise non-reachable. The MBC can
be divided into four quadrants to further restrict the search area. A quadrant of
an object is said to be active if the object is likely to be in that quadrant at the
next time point after an impact, otherwise the quadrant is inactive. The search
space can be reduced by first searching matching objects in the active quadrants.
If there are no matches, then other quadrants will be considered. Given a MBC
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Fig. 3. (a) The four quadrants of a MBC. The active quadrants (shaded area) of (b) a
stable object (no active quadrants) (c) an unstable object (d) a right leaning object

C, the active quadrants are one or more of C(i,j), i, j ∈ {−,+, ∗} where (+,+),
(+,−), (−,−), (−,+) correspond to the right-top, right-bottom, left-bottom, and
left-top quadrants, respectively (Fig. 3.a). (*, *) refers to an arbitrary quadrant.

We can infer the active quadrants for an object by approximating the move-
ment direction of the object, i.e. by estimating which of the quadrants the object
is most likely to be in at the next time point after an impact. Object movement
can be inferred from the direction of the impact. By estimating the direction
and force of an impact, one can approximate the subsequent movements of the
objects affected by the impact, directly or indirectly. When impact information
is not available, we can still approximate the movement by analyzing structural
properties, e.g. the stability of an object or a group of objects. An object is sta-
ble when it is supported and remains static (Fig. 3.b). The active quadrants of
unstable objects is C(∗,−) (Fig. 3.c). In the Angry Birds scenario, a stable object
may become unstable if it loses a support due to a bird hit. From the bird’s tra-
jectory, we can determine which object will be hit by the bird, and approximate
the stability of the resulting scenario with the removal of that object.

We can get a more restricted area by analyzing the direction in which the
object is falling. For example, a right leaning rectangle will fall to the right if
there is no support at the right side, and the corresponding active quadrant
is C(+,−) (Fig. 3.d). (Ge and Renz 2013) defined four kinds of supports that
can make a GSR stable and provided the corresponding spatial configurations.
Here we illustrate how can we express the rules described in the example using
EGSR relations. We denote the left leaning and right leaning objects as oL,
oR respectively. The active quadrants, e.g. C(+,+), of an object o is written as

C
(+,+)
o . The right leaning (RL) and left leaning (LL) rules can be expressed as:

1. RL: ∀oR1 : ∃o∗2 : oR1 (A5, ∗)o∗2 ∧ ¬∃o∗3 : oR1 (A6, ∗)o∗3 ∧ ¬∃o∗4 : oR1 (A7, ∗)o∗4 ⇒ C
(+,−)

oR1

2. LL: ∀oL1 : ∃o∗2 : oL1 (A5, ∗)o∗2 ∧ ¬∃o∗3 : oL1 (A3, ∗)o∗3 ∧ ¬∃o∗4 : oL1 (A4, ∗)o∗4 ⇒ C
(−,−)

oL1

5 Handling Common Movement by Spatial Reasoning

A further challenge is to determine a match between PIOs that are close to each
other and have similar trajectories, as these are typically all equally reachable.
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Fig. 4. (a)(b) The initial and subsequent scene (c) The EGSR constraint network of
the initial scene (only retain the edges indicating contacts) and the SCO (d) Objects
of the same SCO are highlighted by the same color

Fig. 4.a shows a scene where objects A and B form a slope and three indistin-
guishable squares, o1, o2 and o3, are lying on the slope. Fig. 4.b is a subsequent
image where the three squares have rolled down slightly. There are 6 ways in
total to match the squares but only {o1 ∼ o4, o2 ∼ o5, o3 ∼ o6} makes sense (∼
is an operator that matches one object to another). If we were to find a match
by minimizing centroid shift, we would tend to match o2 with o6.

Humans can solve this case efficiently using spatial reasoning. Since we know
the objects are moving at a similar velocity, the relative spatial changes among
them are subtle. Hence the spatial relations between those objects are unlikely
to become converse while they are moving. When matching, humans try to keep
the original spatial relations among the subsequent objects. We emulate this
commonsense reasoning in testing a match by first identifying those objects that
are following a similar trajectory and then determining whether any relation has
become converse at the next time point.

Objects are likely to follow a common trajectory if they are all in contact
with the same other objects and the contact relations are the same. The objects
may be influenced in the same way since their interactions are through the
contacts with the same other objects. We say that such objects form a spatially
correlated objects set (SCO). Fig. 4.d shows an example of SCOs in an Angry
Birds scenario.

Given a set of initial objects, we obtain the SCOs by checking node equiva-
lence in the corresponding EGSR network. A node is equivalent to another if the
two nodes have the same contact relations with other nodes. Thus the slope ex-
ample has only one SCO: {o1, o2, o3} (Fig. 4.c). Having identified a SCO, we then
check the spatial relations between the matched objects in the subsequent scene.
Formally, let R be a set of EGSR relations. The converse of a relation r ∈ R is
written as r′ ∈ R. Given a SCO in the initial scene O = {o1, o2, ..., ok} and a set
of subsequent objects O′ = {o′1, o′2, ..., o′k} with a match, ∀i ≤ k, oi ∼ o′i, between
them, the spatial constraints can be written as ∀oi, oj ∈ O,∃r ∈ R such that
oi(r)oj ⇒ o′i(r

′)o′j does not hold, for i, j ≤ k. If a match violates the constraints,
we will try all the other possible matches for the SCO until the violation is
resolved. If all matches violate the constraints, we keep the original match. In
the slope example, the match {o1 ∼ o4, o3 ∼ o5, o2 ∼ o6} violates the constraint
because o2(L)o3 and o6(R)o5 where R is the converse of L.
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Algorithm 1 The Object Tracking Algorithm

1: procedure MatchObjects
2: sol ← {}, iniobjs ← PIOs in the initial image
3: for iniobj ∈ iniobjs do
4: pobjs←{}, subobjs ← PIOs in the subsequent image
5: Compute the active quadrants of iniobj
6: Add obj ∈ subobjs to pobjs if obj is within the quadrants and of the same

type with iniobj
7: pmatches←pmatches ∪ {(iniobj, pobjs)}
8: end for
9: CreatePreference(iniobjs,pmatches), freeobjs←iniobjs

10: while freeobjs is not empty do
11: iniobj ← dequeue(freeobjs)
12: Get the next preferred obj from iniobj ’s preference list
13: if obj is not assigned yet then sol ← sol ∪ {(iniobj,obj)}
14: else obj has been assigned to some object iniobj′

15: if obj prefers iniobj to iniobj′ then
16: sol← sol ∪ {(iniobj, obj)}, freeobj ← freeobj ∪ {iniobj′}
17: else freeobjs← freeobjs ∪ {iniobj}
18: end if
19: end if
20: end while
21: Build the QCN on iniobjs, get SCOs by node equivalence
22: for sco∈SCOs do
23: Check sco for the violation of spatial constraints, resolve conflicts if any
24: end for
25: end procedure

6 A Method for Tracking PIOs

We propose a method (sketched in Alg.1) for solving PIO-1 that uses all the
above mentioned techniques. It first estimates the active quadrants of initial
objects according to their spatial relations (Alg.1 line 5). The list of possible
matches for each initial object is set so that it contains only the subsequent
objects that are of the same type and within the quadrants (Alg.1 line 6). The
method then creates a preference list from the possible matches of each of the
initial objects: the subsequent objects in the preference list are sorted by the
size of the centroid shift from the initial object in ascending order. The method
matches using a stable marriage algorithm (Gale and Shapley 1962) with the pre-
computed preference lists (Alg.1 line 9–20). The algorithm ensures that no pair
of objects would prefer each other over their matched partners. Then, it finds
all SCOs from the initial objects and gets their corresponding objects from the
match (Alg.1 line 21). The method checks to see whether the spatial constraint
has been violated. If it has, it resolves this accordingly (Alg.1 line 23). Our
inference rules to estimate stability of objects and to predict their quadrants
is application specific, all others can be generalized to other domains, provided
that objects do not move independently but are subject to physical forces.
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Fig. 5. (a) The vision detects the real shapes of the objects (b) The object with ID 5
is broken into pieces by a hit (c) The object with ID 4 is partially occluded (d) The
object with ID 10 is damaged and detected as two separate blocks

7 Implementation

We implemented our method and applied it to Angry Birds where the vision
system (Ge et al. 2014) can detect the exact shapes of the objects (Fig. 5.a). The
objects’ visual appearance are restricted to a finite number of types. However,
occlusion or fragmentation are not accounted for in the vision system. It has the
following limitations: (1) Debris is not recognized so that it cannot determine
whether an object, say a stone, is a real stone or just a piece of debris from a
previously destroyed stone (Fig. 5.b). (2) Damaged objects may be detected as
several separate smaller pieces (Fig. 5.c). (3) Objects can be occluded by debris or
other game effects e.g. scores (Fig. 5.d). All these cases generate object fragments
that can severely affect the matching accuracy. There are several techniques for
tackling fragmentation and occlusion (Adam et al. 2006; Bose et al. 2007). Most
of them largely depend on their underlying tracking algorithms and their own
ad-hoc occlusion reasoning models e.g. inference graph, Bayesian network. We
present an approach that can effectively deal with this problem in the Angry
Birds domain. As a side effect, our approach can also identify which objects
have been destroyed.

7.1 Handling Fragmentation and Complete Occlusion

We classify the initial and subsequent objects according to their type. For each
type T , there is a set Tini of initial objects and a set Tsub of subsequent ob-
jects with the same type. We treat all objects in Tsub as potential fragments if
Tsub contains more objects than Tini. Fragments are arranged into groups where
all the fragments in a group can form one of the types. The shape formed by
the fragments is an oriented minimum bounding rectangle (OMBR) containing
all the fragments (Fig. 6.a). We treat the OMBR as one object in the subse-
quent image, so that it can be matched with an initial object. Once the OMBR
is matched, the fragments from the corresponding group are also matched. A
fragment is not allowed to be in more than one OMBR.

We label the unmatched fragments as debris. Destruction of an object will
create debris around the object’s location. The debris can be of any shape and
will diffuse until it disappear after 1–3 seconds. Given an object o in the initial
scenario, we search for its debris if no subsequent objects can be matched with o
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Fig. 6. (a) OMBRs are indicated by the dotted rectangles (b) o1 has been destroyed
by a bird hit, and the blue dots are recognized as debris

(including the OMBRs created from the fragments). We first draw the MBC of
o. The set of potential fragments are those fragments within the MBC excluding
those that have been matched. The set of objects is labelled as debris of o and
o is marked as destroyed (Fig. 6.b). An object can also be completely occluded.
Before the matching, we cache the spatial configurations of the initial objects. At
the end of the matching, we update the cache by replacing each initial object’s
configuration with that of the matched subsequent object so that the cache
always maintains the latest configurations. If an occluded object recurs in a
subsequent image, we match the object by searching through the cache for an
unmatched initial object. The occluded object will be matched if it lies in the
MBC of that initial object. The method determines an object as destroyed if
it detects the debris of the object, or when the object has been occluded for n
second(s). n is tunable and we set n to 1 in the evaluation.

8 Evaluation

Matching an object can be trivial if the object has a unique appearance or
stays stationary across images. We measure the accuracy of the method by the
percentage of correct matches out of the possible mismatches. Given a set n of
objects in an initial scenario and assume m of them are either of unique type or
stationary across images, we count the correct matches c of the n - m possible
mismatches. The accuracy is c

n−m . We also show the percentage (TPercent) of
the number of correctly matched objects out of the total number of objects. The
evaluation has been done in two steps. We first collected samples from active
angry birds scenarios using the maximum sampling rate (20 screenshots per
second) ; for each sample, we obtained the ground truth by manually labelling
initial objects and their correspondence in the end screenshot. Then we evaluated
the method by varying the time gaps and obtaining the accuracy by comparing
against the ground truth.

We collected samples by running an angry-birds agent that always aims at
a random pig on poached-eggs levels (chrome.angrybirds.com). The agent starts
to capture screenshots once a shot is made, and stops after 10 seconds. For each
level, the agent records the screenshots of at most four shots. We obtained 72
non-trivial samples. Each sample contains 50–200 screenshots and around 30
objects. We apply our method to the whole sequence so that the method will
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Fig. 7. The method tracks through the images and labels the matched objects with
the same ID.

Table 1. Results with different gaps (QSR: the proposed method, BASIC : the basic
optimization strategy). TPercent, Accuracy, Mismatch are average of all the samples

Time gap (ms) TPercent Accuracy Mismatch

QSR QSR BASIC QSR BASIC

50 0.95 0.89 0.57 1.81 6.32
100 0.91 0.83 0.48 2.67 7.41
200 0.87 0.78 0.44 3.41 8.14
300 0.84 0.74 0.42 4.02 8.72
500 0.81 0.68 0.38 4.89 9.12
1000 0.79 0.66 0.36 5.34 9.44

keep tracking the objects through all of the screenshots, from the first until the
last (Fig. 7). We determine the accuracy by comparing the matching between the
first and the end screenshots with the ground truth. This accuracy approximates
the lower-bound accuracy of matching between a pair of screenshots with the
specified time gap, because any incorrect matches made in the intermediate stage
may yield mismatches between the first and end screenshots.

We evaluate our method with varying time gaps, namely 50 ms (the time
taken to request a screenshot), 100 ms, 200 ms (the maximum delay in get-
ting screenshots in the competition), 300 ms (the time taken by requesting a
screenshot plus the vision segmentation), 500 ms, and 1000 ms. For a partic-
ular time gap, say 200 ms, the method will start from the first screenshot, go
through every 200/50 = 4 screenshots of the original sequence, until the last. To
illustrate the significant improvements achieved by the reasoning techniques, we
compare our method with a basic optimization strategy (BASIC ) that matches
PIOs by minimizing the centroid shift between initial and subsequent objects,
i.e. without spatial reasoning. BASIC is a modified version of our method with
the movement approximation, and common movement handling disabled. The
results are summarized in Table 1. Using the smallest time gap, the method can
match most of the objects with less than 2 mismatches per sample. The method
achieves real-time performance with 7–10 ms per pair of images for all the time
gaps. As expected, the accuracy drops down when applying larger time gaps.
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Fig. 8. The SOD of (a) the unstable objects that have no contacts, (b) the objects that
have the conact relation (A5, R2), (c) the locally stable objects that have the contact
relations (R6, R2) and (R2, R6).

We qualitatively evaluate the rules (see Sect.4) used for predicting active
quadrants. We group the initial objects in the samples by their contact relations.
For each group, we show the subsequent objects’ distribution (SOD) by drawing
their centroids in one MBC. Fig. 8.a depicts the SOD of the initial objects
that have no contacts. Having no contacts implies the objects are unstable and
are most likely free-falling. Therefore most of the subsequent objects appear in
C(∗,−). Fig. 8.b shows the SOD of a sub-configuration of the left leaning rule.
Fig. 8.c shows the SOD of the initial objects that are locally stable. Most of the
subsequent objects are close to the center of the MBC. As there are some dots
spreading horizontally, it suggests that the locally stable objects are likely to
move horizontally instead of vertically.

9 Conclusion and Future Work

We analyzed the problem of tracking PIOs in discrete observations. We developed
a method for solving this problem based on a qualitative spatial representation of
different object properties. We tested our method in the Angry Birds domain and
showed that it is very accurate in identifying which PIOs before a shot correspond
to which PIOs after a shot. Our method is useful for the long term goal of
building an AI agent that can play Angry Birds better than the best human
players. It allows researchers to automatically identify how objects are affected
by a shot, which is essential information for learning consequences of shots and
for planning successful shot sequences. It also allows us to test the success and
predicted outcome of Angry Birds game playing strategies, such as the structural
analysis developed by Zhang and Renz (2014). Apart from Angry Birds there are
a number of domains where tracking PIOs is useful. This includes areas such as
traffic monitoring, surveillance, the study of animal movement patterns, crime
scene investigation, or analyzing the impact of projectiles or explosions. One of
our goal is to further increase the time gap between observations, but with large
time gaps the problem of matching objects is getting extremely hard as there
are fewer and fewer cues. We did some initial cognitive studies and asked people
to match objects in before and after Angry Birds images. When the time gaps
were greater than 2 seconds, people were mostly unable to find or to explain a
correct match.
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