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Abstract

The capability to predict changes of spatial regions
is important for an intelligent system that interacts
with the physical world. For example, in a disaster
management scenario, predicting potentially endan-
gered areas and inferring safe zones is essential for
planning evacuations and countermeasures. Exist-
ing approaches usually predict such spatial changes
by simulating the physical world based on specific
models. Thus, these simulation-based methods will
not be able to provide reliable predictions when the
scenario is not similar to any of the models in use
or when the input parameters are incomplete. In
this paper, we present a prediction approach that
overcomes the aforementioned problem by using a
more general model and by analysing the trend of
the spatial changes. The method is also flexible to
adopt to new observations and to adapt its prediction
to new situations.

1 Introduction
Spatial changes that characterise events and processes in the
physical world are ubiquitous in nature. As such, spatial
changes have been a fundamental topic in different research
areas such as computer vision, knowledge representation and
geographic information science.

In this paper, we are interested in predicting the spatial
changes of evolving regions, which is an important capabil-
ity for decision makers. For example in a disaster manage-
ment scenario, it is essential to predict potentially endangered
regions and to infer safe regions for planning evacuations
and countermeasures. A more commercial example are so-
lar power providers who need to estimate solar power output
based on predicted cloud coverage.

Existing approaches to predicting changes of spatial regions
typically use simulations tailored to a specific application do-
main, e.g., wildfire progression and urban expansion. The
models behind such simulations are based on physical laws
that require a detailed understanding of microscopic phenom-
ena of the given application domain and rely on specific do-
main parameters that need to be known. If not all parameters
are known, or if the underlying model is not fully understood,
predictions based on simulations might fail.

This shortcoming is particularly problematic in disaster
situations, where time is often the most critical factor. An
immediate response can save lives and prevent damage and
destruction. An immediate response might not leave enough
time to build a domain model, to adjust it to the situation at
hand, or to collect and apply the required domain parameters.
What is needed is a system that provides fast and reliable
predictions, that can be quickly applied to any new domain
and new situation, that can adopt to new observations, and that
does not require intimate domain knowledge.

We present a general prediction method with all these de-
sired properties. Our method can be applied to any kind of
evolving regions in any application domain, as long as the
regions follow some basic principles of physics. Our method
only requires a sequence of “snapshots” of evolving regions
at different time points that allow us to extract the boundaries
of the observed regions. This could be, for instance, aerial
or satellite images, but also data from sensor networks, or a
combination of different sources. Our method then samples
random points from the region boundaries of each snapshot
and infers the trend of the changes by trying to assign boundary
points between snapshots. We developed a hybrid method that
combines a probabilistic approach based on a Kalman filter
with qualitative spatial reasoning in order to obtain accurate
predictions based on the observed trend.

In the following we first present some related work before
discussing the specific problem we are solving and the assump-
tions we are making. We then present our method for inferring
the trend of changes and for predicting future changes. We
evaluate our method using real world data from two com-
pletely different domains, which demonstrates the accuracy of
our predictions. We conclude the paper with a discussion.

2 Related Work
Reasoning about spatial changes has been a fundamental topic
in geographic information science, in knowledge representa-
tion as well as in computer vision.

In geographic information science, most prediction meth-
ods in the literature are tailored to a specific application area
and are not based on trend-analysis of spatial change. For
example [Alexandridis et al., 2008; Ghisu et al., 2015] predict
wildfire progression and [Santé et al., 2010; Singh et al., 2015]
urban expansion based on cellular automata simulations which
cannot adopt sensor data to guide the prediction. Rochoux et
al. [2014] on the other hand use a data assimilation method



(extended Kalman filter) to estimate certain environmental
parameters in a wildfire simulator, the parameters including
seven biomass fuel properties and the wind. Peng et al. [2014]
track cloud movement based on a constant velocity model for
forecasting short-term solar irradiance.

From the perspective of a general prediction method Jung-
hans and Gertz [2010] propose a general method to track
evolving regions in disaster scenarios which uses minimum
bounding rectangles to represent the tracked regions. The
method estimates the bounding rectangles of the future re-
gions by means of linear regression.

In knowledge representation and reasoning, qualitative spa-
tial change [Galton, 2000; 2009] has been identified as a ve-
hicle for commonsense reasoning about space, where predic-
tive reasoning plays an essential role [Bhatt, 2014]. Despite
this importance, research mainly focused on detecting spatial
changes [Worboys and Duckham, 2006; Jiang et al., 2009;
Liu and Schneider, 2011] but not on predicting them.

In computer vision, the active contour model has been used
to track and predict regions with smooth and parametrisable
shapes [Blake and Isard, 1998]. In this model, region bound-
aries are approximated by splines and their positions and
shapes are tracked by means of a Kalman filter. The active
contour model approach is similar to our approach in that the
target objects are region boundaries and the Kalman filter is
used for tracking and prediction. However, the active contour
model is more focussed on tracking splines by using a default
shape information of the target region and is not suitable for
prediction tasks where no such default shape information is
given (e.g. in wildfire or cloud movement prediction).

3 Problem Description and Approach
Our aim in this paper is to predict future changes of evolving
regions by only considering information about past changes.
A regionR at time t in this context is defined as a setRt ⊂ R2

that can consist of multiple connected components with holes.
Each hole can recursively contain other connected components
of the region. We assume that the interior of regions is homo-
geneous and that changes of regions are entirely captured by
changes to their boundaries. We now describe the problem
and the assumptions in more detail.

Input As input we use a series of snapshots of evolving re-
gions at different times. Each snapshot must allow us to detect
the boundary of the observed regions (see Fig. 1). Hence, snap-
shots could be obtained, for example, from remote sensing
images, sensor networks (cf. [Duckham, 2013]), or a combina-
tion of different sources. We denote the boundary of a region
Rt as ∂Rt, which is a finite set of closed curves, one for each
connected component and one for each hole.

Trend Analysis Given these snapshots and the correspond-
ing boundaries, we now try to infer the trend of observed
changes. In order to do this, we randomly sample a set of k
boundary points zt ∈ ∂Rt and are interested in the movement
of these boundary points over time. To this end, for every pair
of consecutive snapshots we assign to each boundary point
zt ∈ ∂Rt a boundary point zt+1 ∈ ∂Rt+1. This assignment
is given by a map ft : ∂Rt → ∂Rt+1 that minimises the total

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

Figure 1: A wildfire progression example. The boundaries of
fire regions Rt are indicated in red.

distances1 of the point movements, i.e.

ft = arg min
f

∑
zt∈∂Rt

‖f(zt)− zt‖. (1)

Function ft yields a reliable assignment if each of the bound-
aries ∂Rt and ∂Rt+1 consist of one closed curve as is the case
in Fig. 1. However, it does not always lead to a meaningful as-
signment, if their topological structures are more complex. In
Section 4.1 we will resolve this issue by analysing the topolog-
ical structures of the boundaries and adjusting the assignment
accordingly.

Once we have ft, we can repeatedly apply ft to ∂Rt and
construct a sequence z0, z1, . . . , zT of observed points from re-
gion boundaries ∂R0, ∂R1, . . . , ∂RT . This sequence is, how-
ever, only an approximation of the true movement of boundary
points pt and the locations of zt are therefore subject to noise

zt = pt + bt, (2)
where bt is a zero mean Gaussian noise. We assume that this
noise is random and is negatively correlated with the density
D of sampled boundary points in a given area, i.e. the noise
decreases with increasing D.

Prediction Model The main assumption we make on the
change of region boundaries is the following: If there is no ex-
ternal cause, any point p of a region boundary ∂R ⊂ R moves
with a constant speed. We assume that there is always a noise
in the model owing to the ignorance of physical parameters
such as acceleration. Formally, for each pt ∈ ∂Rt that moves
in direction vt ∈ R2 with speed ‖vt‖ its position after ∆t is
given by

pt+∆t = pt + ∆t · vt + at (3)
where at is a zero mean random noise. The covariance of
at is positively correlated to the distance ∆t · ‖vt‖ that pt is
going to travel and to the recent prediction result ‖zt − pt‖.
The latter correlation is a mechanism to modify the prediction
noise depending on its prediction performance so far, i.e. the
more agreement with the prediction and the observed data, the
less is the prediction noise.

Output The output of our approach is an approximation of
region boundary ∂RT+∆t. Our approximation ensures that
with a high probability the real region will be inside the approx-
imated region. The method also determines the topological
change of regions (e.g. merge, split, disappearance).

1The rationale behind equation (1) is that physical entities seek to
move as efficiently as possible, which is also known in physics as the
principle of least action [Feynman et al., 1965].



(a) R0 (b) R1

Figure 2: Depicted is region Rt for t = 0 and t = 1.

(a) An overlay of R0

and R1. Assignments
are without adjustment.

(b) An overlay of R0

and R1. Assignments
are after adjustment.

Figure 3: An example of the trend identification between
evolving regions. The boundary points are indicated by the
red dots. Each individual assignment between two points zt
and zt+1 is highlighted by a blue line.

4 Trend-Based Prediction Algorithm
In this section we present the prediction algorithm in detail.
We first describe how the trend of a change is identified from
two consecutive snapshots of a region boundary. Then we
describe how this information is used to predict changes.

4.1 Qualitative Adjustment of Trend
Equation (1) in Section 3 is an instance of the assignment
problem that can be solved by the Hungarian method [Kuhn,
1955] in O(n3) time. However, as mentioned in Section 3,
equation (1) does not always lead to meaningful assignments,
particularly if the the topology of the boundaries is complex.
An example is illustrated in Fig. 2. In this example region
boundary ∂Rt consists of four closed curves C1

t , C2
t , C

3
t , C4

t ,
where C1

t contains C2
t and C3

t contains C4
t at time t = 0

(Fig. 2a). At time t = 1 the topological structure of region
boundary ∂Rt remains the same, but each of the curves C1

t ,
C2

t , C
3
t , C4

t has either shrunken or expanded (Fig. 2b). As a
result a one-to-one assignment of points in C1

0 , C2
0 , C

3
0 , C

4
0 to

their counterparts in C1
1 , C2

1 , C
3
1 , C

4
1 is not possible, leading

to false assignments of boundary points (Fig. 3a).
Our method solves this problem qualitatively by analysing

the topological relations between closed curves of the bound-
aries, and by ensuring that all assignments will only be be-
tween corresponding curves.

To this end we first construct a containment tree GRt
that

represents the topological relations between closed curves of
∂Rt. In this tree, each curve C is represented by a vertex vC
and the background is represented by the root. A vertex vC is
a parent of vC′ , if C contains C ′ and no other curve C ′′ lies
in between, i.e. there is no C ′′ that is contained by C and at
the same time contains C ′.

C1
0

C2
0

C3
0

C4
0

C1
1

C2
1

C3
1

C4
1

Figure 4: A graphical representation of the assignment be-
tween ∂R0 and ∂R1. Each line with an arrow is an assign-
ments before adjustment. Each dashed line stands for an
assignment that violates a certain rule. We resolve these viola-
tions in breadth-first order.

Then, we compute the initial assignment ft between ∂Rt

and ∂Rt+1 by solving the assignment problem in equation (1),
and represent the assignment graphically using the contain-
ment trees GRt

and GRt+1
(Fig. 4). We say that there is an

assignment between a vertex vCt
and vCt+1

when there is
an assignment between the underlying curves Ct and Ct+1,
i.e. ft(Ct) ∩ Ct+1 6= ∅. We then check whether there are any
conflicts or ambiguities in the assignment by traversing the
containment tree GRt in breadth-first order and examining its
vertices. Given an assignment ft between vCt

and vCt+1

• a conflict arises when vCt
and vCt+1

are not at the same
level in the containment tree, or when there is no assign-
ment between their parents. The conflict is resolved by
preventing such an assignment;

• an ambiguity arises when there are assignments be-
tween vCt

and vCt+1
and between vCt

and vC′
t+1

with
C ′t+1 6= Ct+1. Such an ambiguity is natural, if a topo-
logical change (e.g. merge, split) occurs between the
transition from Rt to Rt+1 and is sometimes hard to re-
solve. Ambiguities allow us to classify and to explain
topological changes (cf. Table 1).

After identifying all conflicts and ambiguities, we recalcu-
late the assignment ft between Rt and Rt+1 while preventing
assignments between conflicting curves. This is obtained by
setting the distances between boundary points of conflicting
curves so high that the Hungarian algorithm will avoid these
assignments. Note that we specifically designed our method
in this way as the correspondence of nodes between the two
containment trees is not necessarily known.

4.2 Boundary Point Prediction
Once we obtained the trend analysis z0, . . . , zT of each bound-
ary point pt, we can then estimate its current location as well
as predict its future location. To this end, we apply the Kalman
filter [Kalman, 1960], which is a data fusion method that has
been widely used for guidance, navigation, and control of ve-
hicles and for object tracking in computer vision. The Kalman
filter is an ideal choice as it is the optimal estimator that sat-
isfies previous assumptions. For more details about Kalman
Filter see [Kalman, 1960] or [Russell and Norvig, 2009, Sec-
tion 15.4].

The Kalman filter requires a state transition model as well
as an observation model. The state transition model describes
how the state of a system at time t evolves linearly to a state at



Algorithm 1: Boundary point prediction
Input :A sequence z0, z2, . . . , zT of observed boundary

points and ∆t ∈ N.
Output :The location of pT+∆t and the covariance

ΣT+∆t of its noise.

1 p0 ← z0, p1 ← z1, Σ1 ← I // initialise
2 for t← 1 to T do // Update current state
3 (pt+1,Σt+1)← PREDICT(pt−1, pt, 1,Σt)
4 (pt+1,Σt+1)← UPDATE(pt+1,Σt+1, zt+1)

5 return PREDICT(pT−1, pT ,∆t,ΣT ) // pT+∆t, ΣT+∆t

6 Function PREDICT(pt−1, pt,∆t,Σt)
7 vt ← pt − pt−1

8 Qt ← ∆t · ‖vt‖ · ‖zt − pt‖ · I
9 pt+1 ← pt + ∆t · vt

10 Σt+1 ← Σt +Qt

11 return pt+1,Σt+1

12 Function UPDATE(pt,Σt, zt)

13 D ← r/
√
|Br(zt) ∩ ∂Rt|

14 St ← D · I
15 Kt ← Σt(Σt + St)

−1 // Kalman gain
16 pt ← pt +Kt(zt − pt)
17 Σt ← Σt −KtΣt

18 return pt,Σt

time t+ 1. Our state transition model is given in equation (3)
and the observation model, which describes the observation
(or measurement) zt of the true location pt, is given in equa-
tion (2). The detailed integration and prediction procedure is
implemented in Algorithm 1. In line 8 of the algorithm, Qt

is the covariance of the noise at in the state transition model,
where I is the 2 × 2 identity matrix. The term ‖zt − pt‖
measures the agreement between the prediction model and the
observed boundary points as addressed in Section 3. In line 14
St is the covariance of the noise bt in the observation model,
where D reflects the density of boundary points in a neigh-
bourhood of zt and is defined as D = r/

√
|Br(zt) ∩ ∂Rt|,

where Br(zt) is an open disk with center zt and radius r > 0.

4.3 Outer Approximation and Qualitative
Prediction

Given the predicted boundary points ∂RT+∆t whose locations
have Gaussian noises, we can now approximate ∂RT+∆t by
building an outer boundary that most likely contains the region
at time T + ∆t. We call this the outer approximation of a
∂RT+∆t. Using our method we are also able to predict certain
topological changes that might occur, as is described below.

Outer approximation To outer-approximate RT+∆t we
need to adapt the outer-approximation to the noise of each
predicted boundary point of ∂RT+∆t, i.e. if the noise has a
large covariance then its outer-approximation has to be large
and vice versa. For this purpose we use the Mahalanobis

Table 1: Six basic topological changes. The changes are
given both pictorially and with containment trees. The left
containment tree is before a change, and the right containment
tree is after the change. The region boundaries where the
change takes place are coloured in red.

Appearance Merge Self-merge

Disapperance Split Self-split

distance

DM (p) =
√

(p− pT+∆t)T Σ−1
T+∆t(p− pT+∆t)

which measures how far a point p is away from a boundary
point pT+∆t relative to its covariance ΣT+∆t, and build an
α-concave hull of ∂RT+∆t in a way that the hull does not
intersect points with DM (p) ≤ d for a radius d. Thus the
threshold value d controls the size of the outer approximated
area and can be varied to suit different prediction requirements.

An admissible concave hull should enclose the entire region
while including as few points that are outside the region as
possible. We use [Edelsbrunner et al., 1983] to obtain an
admissible α-concave hull. The outer approximation of a
region Rt is denoted as α(Rt)

Qualitative Prediction The method predicts topological
changes of the region during the transition from RT to RT+1

by detecting changes of their containment trees. We detect 6
types of topological changes according to [Jiang et al., 2009],
namely, appear, disappear, merge, split, self-merge and self-
split (Table 1).

Additional Layer Information Integration Our method is
able to integrate additional information. Specifically, due
to the nature of Kalman filter, we can trace the path along
each predicted point and its previous states. This allows us to
adjust the resulting points based on domain-specific models
and their previous states. Integrating different models may
require different methods. For example, during a bushfire,
isolation areas such as a highway or water body can prevent
fire from burning across. Here we show the integration of
isolation areas in a bushfire as an example. We assume fire
cannot burn on or jump over isolation areas but has to extend
along the edge. Then the predicted points will be filtered out
under the following two circumstances:

Given the predicted point pt and its previous two states pt−1

and pt−2



1. if pt is on the isolation area
2. if either of the path between pt and pt−1 and between
pt−1 and pt−2 intersects with the isolation areas.

While this is intuitive, it demonstrates the ability of our method
to integrate with domain specific models.

5 Evaluation
We now evaluate our proposed method using real-world data
from two different domains as well as generated data. We
built our own simulator for generating test data as that allows
us to generate data that is more complicated and has more
erratic changes than what we saw in the real data. For each
evaluation, our method takes a sequence RT−w+1, . . . , RT

of w recent snapshots to predict the outer approximation of
regions at T + 1. For our analysis we varied both w and the
threshold d as defined in Section 4.3. We measure the accuracy
of the predicted outer approximation α(Rt) using the metrics
of Recall (R) and Precision (P ):

R =
|α(Rt) ∩Rt|
|Rt|

, P =
|α(Rt) ∩Rt|
|α(Rt)|

where |Rt| refers to the size of the area enclosed by Rt.
Given our outer approximation task, recall is more im-

portant than precision because we care more about how our
method can cover the region rather than if the prediction points
are true positive. However, precision should stay in a reason-
able range, as a prediction that covers the full map is useless.

5.1 Experimental Results on Real-world Data
We applied the method to two different spatial domains,
namely wild fire progression and also cloud movement, where
it is more likely that sudden changes or topological changes of
a region occur. We use a real-world data set for each domain
and the average precision and recall under different settings
are summarized in Table. 2.

Wild Fire Progression: From the data base of USDA forest
service2, we obtained a sequence of progression maps of a
real wild fire. Each map depicts the boundary of the wild
fire on a certain date. The time gap between consecutive
maps varied between 1 and 15 days. As our method is able
to take only two snapshots as input for prediction, data with
different time gap between adjacent snapshots can be dealt
with. There have been several sudden changes in the boundary
of the fire and the method can successfully deal with these
changes. Fig. 5 shows an example where the method predicts
the fire boundary based on the snapshots displayed in Fig. 1.
Although there is a significant non-linear spatial change from
R2 toR3, the method is still able to overcome it with a reliable
outer approximation.

There are several reasons why we could not compare our
approach with other wild fire prediction methods. One prob-
lem was that fire maps used to test these approaches were
not publicly available, relevant papers only contain a few im-
ages of the data that was used. Another problem is that these
existing tools require a detailed specification of all kinds of
parameters about fuel and weather, which was not available

2http://www.fs.fed.us/nwacfire/ball/
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Figure 5: Prediction and outer approximation of R3 based
on R0, R1, R2 from Fig. 1. The red dots are the ground truth
in Fig. 1d. It shows that the approximated boundary (shown
in dark blue) based on d = 2.5 covers most of the actual
boundary points. The one (shown in light blue) based on
d = 5 covers all the actual boundary points.

to us. While this made it impossible for us to compare our
method, it clearly demonstrates one major advantage of our
method, namely that it can be applied to any types of changing
regions without having to know any domain parameters.

Cloud Movement We also obtained video data of moving
clouds that is recorded using a fisheye lens (see [Wood-Bradley
et al., 2012] for detail). Predicting cloud movement is partic-
ularly interesting for estimating power output of solar power
plants. Before using the data, we had to flatten all images to
reflect the actual shapes and movement of clouds. Unlike the
wild fire case, the clouds movement is almost linear. However,
the problem is still challenging because the topological struc-
ture is very complex in such a data set. Therefore adjusting the
assignment of matching points with qualitative information is
useful here. We compared the results with and without qual-
itative adjustment. The result shows that after adjusting the
point assignment, our algorithm performs better on detecting
the inner structure of the region (Fig. 6). Moreover both the
recall and precision are generally better than the result without
adjustment.

In the end, we compared our method with a state-of-the-art
method developed in [Junghans and Gertz, 2010] described in
Section 2. The results show that our method outperforms their
method on all the data sets (see Table 2 for a summary).

5.2 Experimental Results on Generated Data
We applied the proposed method to a simulated environment
of forest fire where fire regions undergo extensive change.
The results confirm that the method can correctly identify the
spatial changes of multiple evolving regions in a environment
with unknown dynamics.

The underlying structure of the simulator is a two-
dimensional cellular automaton (CA). It has been shown that
CA are expressive enough to simulate highly complex phe-
nomena from simple rules. Each cell has two properties: fuel
and heat consumption. The amount of fuel determines how
long the cell will remain on fire and the amount of heat con-



(a) The prediction
before qualitative ad-
justment. We can
see that it incorrectly
matches two holes
into one.

(b) The result af-
ter adjustment. The
two holes can be de-
tected separately.

(c) A part of the
cloud picture that
contains the two
holes.

Figure 6: Comparasion between prediction results with and
without qualitative adjustment.

sumption determines how long it takes for a cell of forest to
become a cell of fire. The CA model simulates a global wind
that has the eight cardinal directions. The wind speeds up the
progression of the fire along its direction and slows down the
progression in the other directions.

We evaluate the method in scenarios where the global wind
randomly changes its direction and magnitude every ∆t time
steps. Therefore, there can be sudden changes in the wind’s di-
rection (e.g. a north wind becomes a south wind) or magnitude
(e.g. a strong wind suddenly disappears). We use this setting
to test the capability of the method in handling uncertainty
within a highly dynamic system.

5.3 Discussion
The results in Table 2 show that our method (M1) performed
better than the state-of-the-art method (M2) on all the data
sets. Table 2 shows the average recall and precision obtained
using M1 with different pairs of w and d on each data set.
M1 achieved an average recall of more than 90% on all

the data sets while M2 obtained an average of 83%. M2

approximates a region using the oriented minimum bounding
rectangle. Compared with the proposed method, this outer-
approximation tends to include more false positive points.
Besides, M2 is not able to handle holes and sudden spatial
changes such as disappearances of regions. Therefore, the
precision rate of M2 is much lower than M1.

The results clearly reflect the relationship between d and
the recall as well as the precision rate. Because a larger d
results in a larger outer approximation, the recall increases
and the precision decreases when d increases. The result also
indicates that running M1 with a larger window size (w) may
lower down the precision. Since the regions in those data sets
underwent strong spatial changes over time, a larger window
size introduced more uncertainties in the point prediction. As
a result, the covariance of the prediction has been made larger
by the method to accommodate these uncertainties, which
eventually relaxed the outer approximation.

The precision rate obtained on the cloud movement data set
is significantly lower than the one obtained on the wild fire
data set. This is mainly because the cloud data contains many
small connected components and holes. The concave hull of
the outer approximation may merge a hole with a connected
component if they are too close. However, the recall rate is
generally higher than the wild fire data set. This is because
the cloud movement can be considered as linear in most cases
if the wind is not strong, which fits our assumption well.

Table 2: M1: the proposed method. M2: the method in [Jung-
hans and Gertz, 2010]. w : window size. d : Mahalanobis
threshold. R : recall. P : precision.

Fire Cloud Simulation

d R P R P R P

w = 2

M2 − 0.80 0.62 0.84 0.4 0.79 0.54

M1

0.5 0.86 0.83 0.98 0.55 0.88 0.85
1.5 0.93 0.73 0.98 0.47 0.93 0.75
2.5 0.97 0.56 0.98 0.44 0.96 0.71

w = 3

M2 − 0.87 0.61 0.85 0.35 0.82 0.51

M1

0.5 0.88 0.76 0.97 0.54 0.94 0.83
1.5 0.94 0.66 0.97 0.45 0.95 0.78
2.5 0.98 0.52 0.98 0.41 0.98 0.68

w = 4

M2 − 0.89 0.61 0.87 0.31 0.84 0.48

M1

0.5 0.85 0.76 0.98 0.43 0.98 0.80
1.5 0.94 0.62 0.97 0.39 0.99 0.75
2.5 0.98 0.47 0.97 0.37 0.99 0.65

6 Conclusions
We developed a general method that is able to predict future
changes of evolving regions purely based on analysing past
changes. The method is a hybrid method that integrates both
a probabilistic approach based on the Kalman filter and a
qualitative approach based on the topological structure of a
region. It first identifies the trend of changes using qualitative
analysis, and then predicts the changes with the Kalman filter.
It does not need detailed a parameter setting as is required
by existing domain specific prediction tools. We evaluated
our method using both real world data from two different
application domains and also by using generated data that
allowed us to test our method under more difficult scenarios.

The main motivation of developing a general prediction
method is the ability to use it in situations where predictions
are required without having detailed knowledge about a do-
main or about the particular parameter setting of a specific
situation at hand. This is particularly useful in disaster sce-
narios where time is the most critical factor and where fast
and reasonably accurate predictions can save lives and prevent
further destruction. As our experimental evaluation demon-
strates, our general method is very good at providing accurate
predictions at different application domains and thus can be
used as the method of choice in time critical situations and in
situations where detailed knowledge about a given scenario is
not available. However, any available domain parameters can
be integrated into our method as an additional layer.
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