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Abstract. An influential model of agent trust and experience is that

of Jonker and Treur [Jonker and Treur 99]. In that model amtage
uses its experience of the interactions of another agergsesa that
agent’s trustworthiness. We showed that key propertielsatfrhodel
are subsumed by classical mathematical systems theomyg Wse
latter theory we also clarify the issue of when two experéere-
quences may be regarded as equivalent. An intuitive featutiee
Jonker and Treur model is that experience sequence ordgesireg
respected by functions that map such sequences to trugirgsle
We raise a question about another intuitive property — tt&bo-
tinuity of these functions, viz. that they map experiencgusaces
that resemble each other to trust values that also resemtieother.
Using fundamental results in the relationship betweenalastders
and topologies we also showed that these two intutive ptigseare
essentially equivalent.

1 INTRODUCTION

In electronic internet trading systems like eBay an agentreak
other agents based on its assessment of the behavior ofapenes

in transactions. For an ageAtobserving another ageft over time
(possibly evenB’s interactions with agents other that), such se-
guential assessments may be said to fotls experience sequence
of B, and result in its judgement of the trustworthinesgzofln an
influential model of agent trust due to [Jonker and Treur 88gnts
assess the quality of their interactions and map such eqpErise-
quences into drust space. They required the experience sequenc
and trust spaces to be at least partially ordered, and theingm

be order-preserving. They established properties of theilel, in-
cluding condtions for the updating of trust ranks that dejpamy on
the existing rank and a new assessment of experience. Inaper p
we showed that the update and a number of other propertids are
fact subsumed by classical mathematical systems theoageSpn-
itations restrict to merely outline our results, but a fullersion is in
[Foo and Renz 07].

2 SYSTEMS-THEORETIC IMPLICATIONS

We took the work of [Jonker and Treur 99] as a starting poinept
ing in particular the discrete time framework (modelledfees natu-
ral numbers) for all functions. A sequel to that work is thetTiseur
[Treur 07] on properties of states arising from it. We usesteys
theory to (i) connect established propositions with thearky (ii)
showed constraints on trust structure imposed by expegistrac-
ture, (iii) suggested a way to topologize these and othdvatere
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Figure 1. Nerode Equivalence

structures, (iv) and showed that order-preservation ofiiap from
experience sequences to trust is equivalent to its cotyimaithe
topologies.

Conceptually the system we consider is a black box that ascep
experience sequences as inputs and produces trust ses|@snmet-
puts. A basic result from systems theory (see [Padulo anibAid)|
and [Zeigler, et.al. 2000]) guarantees that this black kax e en-
dowed with astate spacef trust values iff the input-output func-
tion F' representing it iscausal i.e, for any pointk in time the
trust output att depends only on thaitial segmentof the input
sequence. This subsumes a key result of [Jonker and Treub@9]

%oting the initial segment space of experience sequencés, e

then showed that the canonical state space is in fact a quspeace
(see [Kelley 55]) ofQ), with the quotient arising from an equiva-
lence relation known in systems theory as the Nerode eaurical
(see [Padulo and Arbib 74]), denoted heresby . Indeed, it follows
that the trust space can be most succinctly identified Rith=x.

To explain= we first make) a semigroup using the concatenation
(denoted by) of segments as the binary operation. Next, we use the
input-output function¥ to induce a functior” that maps to corre-
sponding length output segments. For any two input segmerdaad

w2 We definedv; =n w if for any arbitrary segment, F(w; o )
agrees with¥' (w2 o 1) from the respective times whenis appended.
This is only well-defined ifF" is causal. See figure 1 for intuition.

It is then intuitive thatu; andws cannot be distinguished once
their end points are reached. Th@s/ =y qualifies as a state of
the system. It is a corollary of that result, known as 8tate Real-
ization Theoren{see [Padulo and Arbib 74]), that there is an update
functioné from inputs and current state to the next state as follows:
d([w], e) = [w o €] whereé is the unit length segment with value
Figure 2 illustrates the main points. In the figuyds the map that
“reads” the trust and outputs it into the trust value splgg, and
n is the map induced by the combination-pfind the state update
function 8. Also, F' is the earlier defined map' restricted to the
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Figure 2. State Realization — The Key Ideas

(value at the) end of its input segment.

It can be shown that the state realization above, cdll,its in a
strong sense the most economical among all possible statesen-
tations. Formally, it is said that this realizationdanonicalin that
if there is another realizatioR’ that reproduces the sanig then
there is a unique homomorphism that mdgsto R. In particular a
typical assumption (see e.g., Treur [Treur 07]) that inputsg, etc.)
sequences and system states are both viable primitiveenrafizing
temporal dynamics is subject to this canonical constraint.

3 EXPERIENCE AND TRUST ORDERINGS

One example ordering considered by [Jonker and Treur 99] wa

worst < bad < neutral < good < bestfor experience values. They
then used these to partially order, say experience segsiéieemay
as well identify these sequences withabove, and the trust space
T with / =, and it can be partially ordered by, sayr. The
order-preservation postulate of [Jonker and Treur 99] tremslates
in systems theory to the quotient mapfrom Q to T (= Q/ =n)
defined byy(w) = [w]=, to be also order-preserving. That is an
intuitive requirement — good experiences should lead talgagst.

If a measure of “nearness” is placed on experience sequences
trust values we may also desire the property thahaps near se-
quences to near trust. The formalization of this is ¢batinuity of
1. The most abstract way to do this is vi@pologiesfor both O

[Kelley 55] to do this. We switch notation to the near synosysh(
(calling it E) andQ)/ =y (calling it ") for brevity. If a topologyrz
is given toF, then since) is the quotient map a natural topology
is induced byy that makes it both continuous and open.

the input segment spade (which in our context is identified with
the space of experience sequenglsnd is induced by it.

Any topology that is placed on the trust spaEewill induce a
specialization pre-order (partial orders are specialg)a$o what is
a suitable topology for it? If we identif§” with the range ofy, i.e.,
/=, thenT is the quotient space &t. /= can thus be given the
quotient topology.

Experience values in the real interJall, 1] rather than finite or
even discrete values may alter the character of the resudtslaser-
vations because the experience and trust spaces can nofirie in
and continuous. Continous values lend themselves to nesasuits
of nearness using the metrics well-known in functional gsial and
it is an obvious question whether the nexus of order-preserv
betweenE and T and continuity of the map still hold. Unfortu-
nately, if the space is Hausdorff (which is the most famibae),
its corresponding Alexandrov topology reduces to the disctopol-
ogy which is trivial for convergence. Therefore the requiests for
order-preservation and continuity are distinct.

4 CONCLUSION

We used classical mathematical systems theory to undémpifotin-
dations of an influential model of agent trust and experieticgas
shown that many of the properties of that model follow frorsutes
in systems theory. Moreover, the latter provides deep lmsigto
ghe structural interaction between experience and trugtesees, in
particular what it means to say thatst is condensed experiendan
intuitive feature of that model is that experience sequemderings
are respected by functions that map such sequences toresings.
We raised a question about another intuitive property —ahabn-
tinuity of these functions, viz. that they map experiencguseces
that resemble each other to trust values that also reseratieother.
Using fundamental results in the relationship betweenalatders
and topologies we showed that these two intutive propestieses-
sentially equivalent.
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