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Abstract. An influential model of agent trust and experience is that
of Jonker and Treur [Jonker and Treur 99]. In that model an agent
uses its experience of the interactions of another agent to assess that
agent’s trustworthiness. We showed that key properties of that model
are subsumed by classical mathematical systems theory. Using the
latter theory we also clarify the issue of when two experience se-
quences may be regarded as equivalent. An intuitive featureof the
Jonker and Treur model is that experience sequence orderings are
respected by functions that map such sequences to trust orderings.
We raise a question about another intuitive property — that of con-
tinuity of these functions, viz. that they map experience sequences
that resemble each other to trust values that also resemble each other.
Using fundamental results in the relationship between partial orders
and topologies we also showed that these two intutive properties are
essentially equivalent.

1 INTRODUCTION

In electronic internet trading systems like eBay an agent can rank
other agents based on its assessment of the behavior of thoseagents
in transactions. For an agentA observing another agentB over time
(possibly evenB’s interactions with agents other thanA), such se-
quential assessments may be said to formA’s experience sequence
of B, and result in its judgement of the trustworthiness ofB. In an
influential model of agent trust due to [Jonker and Treur 99],agents
assess the quality of their interactions and map such experience se-
quences into atrust space. They required the experience sequence
and trust spaces to be at least partially ordered, and the mapping to
be order-preserving. They established properties of theirmodel, in-
cluding condtions for the updating of trust ranks that depend only on
the existing rank and a new assessment of experience. In our paper
we showed that the update and a number of other properties arein
fact subsumed by classical mathematical systems theory. Space lim-
itations restrict to merely outline our results, but a fuller version is in
[Foo and Renz 07].

2 SYSTEMS-THEORETIC IMPLICATIONS

We took the work of [Jonker and Treur 99] as a starting point accept-
ing in particular the discrete time framework (modelled as the natu-
ral numbers) for all functions. A sequel to that work is that by Treur
[Treur 07] on properties of states arising from it. We used systems
theory to (i) connect established propositions with their work, (ii)
showed constraints on trust structure imposed by experience struc-
ture, (iii) suggested a way to topologize these and other derivative
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Figure 1. Nerode Equivalence

structures, (iv) and showed that order-preservation of themap from
experience sequences to trust is equivalent to its continuity in the
topologies.

Conceptually the system we consider is a black box that accepts
experience sequences as inputs and produces trust sequences as out-
puts. A basic result from systems theory (see [Padulo and Arbib 74]
and [Zeigler, et.al. 2000]) guarantees that this black box can be en-
dowed with astate spaceof trust values iff the input-output func-
tion F representing it iscausal, i.e, for any pointk in time the
trust output atk depends only on theinitial segmentof the input
sequence. This subsumes a key result of [Jonker and Treur 99]. De-
noting the initial segment space of experience sequences byΩ̄, we
then showed that the canonical state space is in fact a quotient space
(see [Kelley 55]) ofΩ̄, with the quotient arising from an equiva-
lence relation known in systems theory as the Nerode equivalence
(see [Padulo and Arbib 74]), denoted here by≡N . Indeed, it follows
that the trust space can be most succinctly identified withΩ̄/ ≡N .
To explain≡N we first makēΩ a semigroup using the concatenation
(denoted by◦) of segments as the binary operation. Next, we use the
input-output functionF to induce a function̄F that maps̄Ω to corre-
sponding length output segments. For any two input segmentsω1 and
ω2 we definedω1 ≡N ω2 if for any arbitrary segmentµ, F̄ (ω1 ◦ µ)
agrees withF̄ (ω2◦µ) from the respective times whenµ is appended.
This is only well-defined ifF is causal. See figure 1 for intuition.

It is then intuitive thatω1 andω2 cannot be distinguished once
their end points are reached. Thus,Ω̄/ ≡N qualifies as a state of
the system. It is a corollary of that result, known as theState Real-
ization Theorem(see [Padulo and Arbib 74]), that there is an update
functionδ from inputs and current state to the next state as follows:
δ([ω], e) = [ω ◦ ê] whereê is the unit length segment with valuee.
Figure 2 illustrates the main points. In the figureγ is the map that
“reads” the trust and outputs it into the trust value spaceVout, and
η is the map induced by the combination ofγ and the state update
function δ. Also, F ′ is the earlier defined map̄F restricted to the
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Figure 2. State Realization – The Key Ideas

(value at the) end of its input segment.
It can be shown that the state realization above, call itR, is in a

strong sense the most economical among all possible state represen-
tations. Formally, it is said that this realization iscanonical in that
if there is another realizationR′ that reproduces the samēF , then
there is a unique homomorphism that mapsR′ to R. In particular a
typical assumption (see e.g., Treur [Treur 07]) that input (trust, etc.)
sequences and system states are both viable primitives in formalizing
temporal dynamics is subject to this canonical constraint.

3 EXPERIENCE AND TRUST ORDERINGS

One example ordering considered by [Jonker and Treur 99] was
worst< bad< neutral< good< bestfor experience values. They
then used these to partially order, say experience sequences. We may
as well identify these sequences withΩ̄ above, and the trust space
T with Ω̄/ ≡N , and it can be partially ordered by, say,@T . The
order-preservation postulate of [Jonker and Treur 99] thentranslates
in systems theory to the quotient mapψ from Ω̄ to T (= Ω̄/ ≡N )
defined byψ(ω) = [ω]≡N

to be also order-preserving. That is an
intuitive requirement — good experiences should lead to good trust.

If a measure of “nearness” is placed on experience sequencesand
trust values we may also desire the property thatψ maps near se-
quences to near trust. The formalization of this is thecontinuityof
ψ. The most abstract way to do this is viatopologiesfor both Ω̄
andΩ̄/ ≡N . Fortunately, there is already much classical machinery
[Kelley 55] to do this. We switch notation to the near synonyms of Ω̄
(calling itE) andΩ̄/ ≡N (calling it T ) for brevity. If a topologyτE

is given toE, then sinceψ is the quotient map a natural topologyτT

is induced byψ that makes it both continuous and open.
We then showed that under a simple topology — the Alexandrov

topology (see [Arenas 99] or [Wiki Alexandrov]) — the two require-
ments above, viz., order-presevation and continuity, are equivalent.
We now outline how this was done.

There is a close connection between partial orders — in fact pre-
orders will do — andtopologieson a space. Given a partial order
v on a spaceS, the Alexandrov topology defined by it has as open
sets the so-calledup-sets, viz., subsetsθ such thatx ∈ θ andx v z
impliesz ∈ θ of up-sets. Conversely, given a topologyτ on a setS,
thespecialization pre-order≤ is defined byx ≤ y iff y is in every
open set that containsx. It is easily seen that≤ so defined is indeed
a pre-order. If we had started with some partial orderv and used it
to define the Alexandrov topology as before, it is natural to ask what
is the specialization order that arises from that topology.The answer
is that we get backv, and although there are other topologies (e.g.
the Scott topology [Abramsky and Jung 94] or [Stoy 77]) that have
this “reversal” property the Alexandrov topology is the finest one. In
this way the partial ordervE defines the Alexandrov topology on

the input segment spacēΩ (which in our context is identified with
the space of experience sequencesE) and is induced by it.

Any topology that is placed on the trust spaceT will induce a
specialization pre-order (partial orders are special cases). So what is
a suitable topology for it? If we identifyT with the range ofψ, i.e.,
Ω̄/≡, thenT is the quotient space of̄Ω. Ω̄/≡ can thus be given the
quotient topology.

Experience values in the real interval[−1, 1] rather than finite or
even discrete values may alter the character of the results and obser-
vations because the experience and trust spaces can now be infinite
and continuous. Continous values lend themselves to measurements
of nearness using the metrics well-known in functional analysis, and
it is an obvious question whether the nexus of order-preservation
betweenE andT and continuity of the mapψ still hold. Unfortu-
nately, if the space is Hausdorff (which is the most familiarone),
its corresponding Alexandrov topology reduces to the discrete topol-
ogy which is trivial for convergence. Therefore the requirements for
order-preservation and continuity are distinct.

4 CONCLUSION

We used classical mathematical systems theory to underpin the foun-
dations of an influential model of agent trust and experience. It was
shown that many of the properties of that model follow from results
in systems theory. Moreover, the latter provides deep insights into
the structural interaction between experience and trust sequences, in
particular what it means to say thattrust is condensed experience. An
intuitive feature of that model is that experience sequenceorderings
are respected by functions that map such sequences to trust orderings.
We raised a question about another intuitive property — thatof con-
tinuity of these functions, viz. that they map experience sequences
that resemble each other to trust values that also resemble each other.
Using fundamental results in the relationship between partial orders
and topologies we showed that these two intutive propertiesare es-
sentially equivalent.
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