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1 IntroductionThe constraint satisfaction problem provides a natural framework for expressingmany combinatorial problems in computer science. Since the general problemis NP-hard [15], an important question is how to restrict the problem to ensuretractability. This research has mainly followed two di�erent paths: restrictingthe scope of the constraints [10, 11], i.e. which variables may be constrained withother variables, or restricting the constraints [9, 13, 20], i.e. the allowed valuesfor mutually constrained variables. In this paper, we will only consider problemswhere the constraints are restricted.Quite a large number of tractable subclasses of the CSP problem has beenidenti�ed in the literature. Due to the lack of systematicity in this search, itis of considerable interest to investigate how tractable constraint types may becombined in order to yield more general problems which are still tractable. Co-hen et al. [8] have studied so-called `disjunctive constraints', i.e. constraints whichhave the form of the disjunction of two constraints of speci�ed types. They iden-ti�ed certain properties which allow for new tractable constraint classes to beconstructed from existing classes. Several important classes of tractable con-straints can be obtained by their method such as the Horn and Krom fragmentsof propositional logic, the ORD-Horn class [16] and the classes of max-closed andconnected row-convex constraints [13, 9].The investigation of disjunctive constraints was continued in Broxvall & Jon-sson [5] where all tractable disjunctive classes for reasoning about partially andtotally ordered time were identi�ed. Somewhat surprisingly, all of these tractableclasses can be obtained by using 1-independence. This observation raised thequestion whether tractable disjunctive constraints can be completely charac-terised by these kind of properties. We partially answer this question in thispaper.We consider three di�erent properties, known as the guaranteed satisfaction(GS) property, 1-independence and 2-independence [8]. Let � and � be two setsof relations such that the CSP problem over �[� is tractable. In short, we provethe following:� Let the set �� contain all possible disjunctive relations over �. The CSPproblem for this set is tractable if and only if � has the GS property.� Let the set ��_�� contain all disjunctive relations over �[� where relationsin � are allowed to appear at most once in a disjunction (compare with theHorn fragment of propositional logic). The CSP problem for this set istractable if and only if � is 1-independent of �.� Consider the set � [ �2 where �2 contains all disjunctive relations over� containing at most two disjuncts (compare with the Krom fragment of2



propositional logic). The CSP problem for this set is tractable if and onlyif � is 2-independent of �.Our results are obtained by using the de�nition of the disjunction combinator�_ proposed in [5] instead of the original de�nition in [8]. This change makesthe result cleaner since we do not have to take care of a number of pathologicalspecial cases. This issue is discussed in greater detail in the paper.These results suggest that automatic methods for checking these propertiesmay be very useful when working with disjunctive constraints. Also, it is hardlysurprising that deciding these properties is highly non-trivial task in many cases.For classes of binary constraints where satis�ability can be decided by check-ing path-consistency, we present a fairly simple method for verifying the 1-independence property. This method builds on a somewhat surprising connectionbetween 1-independence and re�nements [17]. Loosely speaking, a re�nement isa way of reducing one CSP problem to another and it has the property that ifthe second problem can be decided by path-consistency, then path-consistencydecides the �rst problem, too. Re�nements were successful in proving tractabilityof large subsets of RCC-8 as well as Allen's Interval Algebra [17]. One impor-tant aspect of re�nements is that their correctness can be easily checked by acomputer-assisted analysis which implies that 1-independence can be automati-cally checked in many cases. To demonstrate the usefulness of our method, weshow that all previously known independence results for the time point algebrasfor partially and totally ordered time [5] can be derived automatically. This raisesthe question whether our method is complete or not|unfortunately, we are notable to answer this question in its full generality.The paper is organized as follows: In Section 2 we give an overview of the basicde�nitions concerning CSPs, disjunctions and re�nements. Section 3 contains themain complexity results for combining constraints with disjunctions. In Section4 we relate re�nements and 1-independence and prove the connection betweenthem. We also exemplify how the method can be used for identifying tractabledisjunctive constraints. Finally, the last section contains some discussions andconclusions of the results presented earlier. Some of the results in Section 4 havepreviously been presented in a conference paper [6].2 PreliminariesThis section consists of three parts where we de�ne the constraint satisfactionproblem, provide some background material concerning disjunctions and describethe re�nement method.
3



2.1 The constraint satisfaction problemLet S be a set of relations over some domain D (of values) and let V be a setof variables. The relations in S may be of arbitrary arity and the domain D isnot necessarily �nite. Let R 2 S be a relation of arity a and x 2 V a (whereV a denotes the a-fold cartesian product of V ). We write R(x) (a constraint) todenote that the variables in x are related by R. This de�nition allows the use ofrepeated variables in the scope of a constraint, e.g. R(x; y; x). For any constraintc = R(x), let Rel(c) = R. The consistency problem CspSat(S) is de�ned asfollows:Instance: A tuple (V; C) where V is a set of variables and C is a �nite set ofconstraints over V , where for each c 2 C; Rel(c) 2 S.Question: Is there a satisfying instantiation of the variables, i.e. a total functionf : V ! D such that for all R(x1; : : : ; xa) 2 C, (f(x1); : : : ; f(xa)) 2 R?Given an instance � of CspSat(S), let Mods(�) denote the class of models of� (i.e. the satisfying instantiations) and Vars(�) the variables appearing in �.Let ? denote the empty relation (of arbitrary arity).2.2 Basics of disjunctionsWe begin by introducing operators for combining relations with disjunctions.De�nition 1 Let R1; R2 be relations of arity i; j and de�ne the disjunction R1_R2 of arity i + j as follows:R1 _ R2 = f(x1; : : : ; xi+j) 2Di+jj(x1; : : : ; xi)2R1_(xi+1; : : : ; xi+j)2R2gThus, the disjunction of two relations with arity i; j is the relation with arity i+jsatisfying either of the two relations.To give a concrete example, let D = f0; 1g and let the relations and = fh1; 1igand xor = fh0; 1i; h1; 0ig be given. The disjunction of and and xor is given by:and _ xor = 8><>: h0; 0; 0; 1i; h0; 1; 0; 1i; h1; 0; 0; 1i; h1; 1; 0; 1i;h0; 0; 1; 0i; h0; 1; 1; 0i; h1; 0; 1; 0i; h1; 1; 1; 0i;h1; 1; 0; 0i; h1; 1; 0; 1i; h1; 1; 1; 0i; h1; 1; 1; 1i 9>=>;We see that the constraint (and _ xor)(x; y; x; z) is satis�able when x, y and zhas, for instance, been instantiated to 1; 0; 0, respectively.The de�nition of disjunction can easily be extended to sets of relations.De�nition 2 Let �1;�2 be sets of relations and de�ne the disjunction �1�_�2 asfollows: �1�_�2 = �1 [ �2 [ fR1 _R2 j R1 2 �1; R2 2 �2g4



The disjunction of two sets of relations �1�_�2 is the set of disjunctions of eachpair of relations in �1;�2 plus the sets �1;�2. It seems sensible to include �1 and�2 since one wants to have the choice of using the disjunction or not. Thus, ourde�nition of �_ di�ers slightly from the de�nition given by Cohen et al. [8]; theyde�ne �1�_�2 as fR1 _ R2 j R1 2 �1; R2 2 �2g. The two de�nitions coincide if ?is included in both �1 and �2. Otherwise, the de�nitions are di�erent and theimplications of this are pointed out in Subsection 3.1. We will tacitly assume that? is not a member of any set of relations that we consider. Note that CspSat(�)has the same complexity as CspSat(�[f?g) up to polynomial-time reductions.In many cases we shall be concerned with constraints that are speci�ed bydisjunctions of an arbitrary number of relations. Thus, we make the followingde�nition: for any set of relations, �, de�ne �� = S1i=0�i where �0 = � and�i+1 = �i�_�.For proving tractability of disjunctive constraints, a number of properties havebeen proposed in [8]:De�nition 3 Let � be a set of relations. If every instance CspSat(�) is satis-�able, then we say that � has the guaranteed satisfaction (GS) property.CspSat(��) is clearly tractable if � has the GS property.De�nition 4 For any sets of relations � and �, de�ne CspSat��k(� [ �) tobe the subproblem of CspSat(� [ �) consisting of all instances containing atmost k constraints over the relations in �. We say that � is k-independent of� if the following condition holds: any set of constraints C in CspSat(� [ �)has a solution provided every subset of C belonging to CspSat��k(�[�) has asolution.It is easy to see that if � is k-independent of �, then � is k + 1-independent of�, too. The following result by Cohen et al. [8] demonstrates the usefulness ofthe independence property.Theorem 5 Let � and � be sets of relations such that CspSat(� [ �) istractable. If � is 1-independent of �, then CspSat(��_��) is tractable. If �is 2-independent of ;, then CspSat(��_�) is tractable.The notion of 1-independence can alternatively (but equivalently) be de�ned asfollows: Let C = fc1; : : : ; ckg and D = fd1; : : : ; dng be arbitrary �nite sets ofconstraints over � and �, respectively. Then, � is 1-independent of � i� forevery possible choice of C and D, the following holds: if C [ fdig, 1 � i � n, issatis�able, then C[D is satis�able. Also note that � is 2-independent of ; if andonly if for every constraint problem C over � having no solution, there exists apair of constraints ci; cj 2 C such that fci; cjg has no solution.5



2.3 Basics of the re�nement methodWe review the re�nement method as introduced by Renz [17] in this subsection.For proofs and additional results, see [17] or its forthcoming journal version formore details [18].So far the re�nement method has been introduced for binary CSPs only. So,although we deal with n-ary constraints in this paper, the parts dealing withre�nements apply only to binary constraints.LetA be a �nite set of jointly exhaustive and pairwise disjoint binary relations,also called basic relations, and S � 2A. We denote the standard operationscomposition, intersection and converse by �, \ and ��1, respectively. Furthermore,we de�ne the unary operation : such that :R = AnR for all relations R � Aand let eq denote the binary equality relation.A set of constraints is path-consistent if for any consistent assignment of twovariables, there exists an assignment for every third variable such that the threeassignments taken together are consistent. Path-consistency can be enforced byiteratively applying the following operation to every pair of variables xi; xj, untila �xed point is reached (Rij speci�es the relation between xi and xj):8k : Rij := Rij \ (Rik �Rkj):If the empty relation occurs during this process, the set is inconsistent, otherwisethe resulting set is path-consistent.A re�nement of a constraint xRy is a constraint xR0y such that R0 � R. Are�nement of a set of constraints � is a set of constraints �0 such that everyconstraint of �0 is a re�nement of a constraint of �. It is clear that if �0 has asolution, then also � has a solution.In order to handle di�erent re�nements, a re�nement matrix is used thatcontains for every relation S 2 S all speci�ed re�nements.De�nition 6 A re�nement matrix M of S has jSj � 2jAj boolean entries suchthat for S 2 S, R 2 2A, M [S][R] = true only if R � S, i.e. R is a re�nement ofS.De�nition 7 Let � � S. M� is the �-re�nement matrix of S if for every S 2 S,M�[S][S 0] = true i�1. there exists a relation R 2 � such that S 0 = S \R and S 0 6= ;; or2. S 0 = S.The basic idea of the re�nement method [17] is to exploit that the path-consistencyalgorithm only looks at triples of constraints and that re�nements of constraintsare passed from triple to triple. Thus, the possible number of di�erent triplesover a set of relations S as well as the number of re�nements of these triples is6



Algorithm: Check-RefinementsInput: A set S and a re�nement matrix M of S.Output: fail if the re�nements speci�ed in M canmake a path-consistent triple of constraints overS inconsistent; succeed otherwise.1. changes  true2. while changes do3. oldM  M4. for every path-consistent tripleT = (R12; R23; R13) of relations over S do5. for every re�nement T 0=(R012; R023; R013) of Twith oldM [R12][R012] = oldM [R23][R023] =oldM [R13][R013] =true do6. T 00  Path-Consistency(T 0)7. if T 00 = (R0012; R0023; R0013) contains the emptyrelation then return fail8. else do M [R12][R0012] true,M [R23][R0023] true,M [R13][R0013] true9. if M = oldM then changes  false10. return succeedFigure 1: Algorithm Check-Refinements [17]limited, although there is an in�nite number of di�erent sets of constraints �over S. Therefore, it is possible to extract properties of a set of relations S byjust analyzing a limited number of triples of constraints over S. This is done bythe algorithm Check-Refinements (see Figure 1) which takes as input a setof relations S and a re�nement matrix M of S and either succeeds or fails. Atriple (R; S; T ) of relations denotes the following CSP problem on three variables:fxRz; xSy; yTzg. Since A is a �nite set of relations, M can be changed only a�nite number of times, so the algorithm always terminates.If Check-Refinements(S;M) returns succeed, we have checked all possiblere�nements of every path-consistent triple of variables as given by the re�ne-ment matrix M . Thus, applying these re�nements to a path-consistent set ofconstraints can never result in an inconsistency when enforcing path-consistency.This is stated in the following theorem.Theorem 8 (Renz [17]) Let S be a set of relations that can be decided by path-consistency,M a re�nement matrix of S and assume thatCheck-Refinements(S;M)returns succeed. For every path-consistent set � of constraints over S, the follow-7



ing holds: for every re�nement �0 of � such that xiR0xj 2 �0 only if xiRxj 2 �and M [R][R0] = true, �0 has a solution.The re�nement method, thus, simply consists of running the algorithm Check-Refinements on a set of relations S and a re�nement matrix M . We say thatS can be re�ned by M , if Check-Refinements(S;M) returns succeed.Renz [17] used the re�nement method in a di�erent way, namely, for showingthat path-consistency decides a set of relations S: Assume that path-consistencydecides consistency for a set of relations T . If Check-Refinements(S;M) re-turns succeed and if the resulting re�nement matrixM 0 contains for each relationS 2 S a relation TS 2 T , i.e. M 0[S][TS] = true, then path-consistency decidesconsistency of S. It turned out that by using the re�nement matrix M 6= it waspossible to prove tractability for all maximal tractable subsets of RCC-8 and theInterval Algebra which contain all basic relations.3 Tractable DisjunctionsWe shall now show the close connections between tractable disjunctive constraintsand the GS/independence properties. Our main results are the following: Let �and � be two sets of relations such that CspSat(� [�) is tractable. Then,(1) CspSat(��) is tractable i� � has the GS property;(2) CspSat(��_��) is tractable i� � is 1-independent of �; and(3) CspSat(� [�2) is tractable i� � is 2-independent of �.If these conditions are not met, then CspSat(��), CspSat(� _ ��) and/orCspSat(�[�2) are NP-complete. The proofs of (1){(3) can be found in Subsec-tions 3.1{3.3, respectively. An interesting question is whether (3) can be strength-ened to ensure tractability of CspSat(��_�). We demonstrate that this does nothold in general at the end of Subsection 3.3.The NP-completeness results are based on reductions from the following twoNP-complete problems:3-SatInstance: Set U of variables, collection C of clauses over U such that eachclause c 2 C has jcj = 3.Question: Is there a satisfying truth assignment for C?3-ColourabilityInstance: Undirected graph G = (V;E).Question: Does there exist a function f : V ! f0; 1; 2g such that f(u) 6= f(v)8



whenever fu; vg 2 E?Before we proceed, we need to prove that the problems we consider are membersof NP.Lemma 9 Assume that S is a tractable set of relations. For any set S 0 ofrelations constructed using �_ and the relations in S, CspSat(S 0) is in NP.Proof: Non-deterministically choose one atomic constraint from every disjunc-tive constraint (we assume, without loss of generality, that there exists polynomial-time computable decomposition operators for the disjunctive constraints) andshow that the resulting set of constraints is satis�able. Since CspSat(S) istractable1, CspSat(S 0) is in NP. 23.1 The guaranteed satisfaction propertyWe begin by studying the (admittedly trivial) GS property. The proof idea will,however, turn out to be very useful for proving results about the independenceproperties.Theorem 10 The following statements are equivalent:1. � has the GS property;2. � is 1-independent of ;;3. CspSat(��) is tractable;4. CspSat(�3) is tractable;Otherwise, CspSat(�3) and CspSat(��) are NP-complete.Proof: We show that (1)) (3)) (4)) (1) and (1), (2).The implication (1)) (3) is trivial and (3)) (4) follows from the fact that�3 � ��. To show that (4)) (1), we assume the opposite, i.e. CspSat(�3) istractable but � does not have the GS property. This implies that there exists aset of constraints H = fh1; : : : ; hng over � such that H is not satis�able. Notethat jHj > 1 since we do not allow the relation ?. We choose H to be minimal;i.e. jHj is as small as possible. This implies that every strict subset H 0 � H issatis�able. Finally, consider the set H = fh1_h2g[ (H�fh1; h2g) and note thatin any model of H, either h1 or h2 hold, but not both.To prove NP-hardness, we show that 3-Sat can be transformed toCspSat(�3)in polynomial time; membership in NP follows from Lemma 9. Arbitrarily choose1It is actually su�cient that CspSat(S) is in NP.9



a 3-Sat formula F = c1^ : : :^cn over the variables p1; : : : ; pm. We incrementallyconstruct an instance of CspSat(�3) that is satis�able i� F is satis�able.For each variable pi, introduce a fresh copy of the set H (i.e. the copies of Hare over disjoint sets of variables) where we denote the `important' relations h1and h2 as hit and hif , respectively. As we noted earlier, this will force either hit orhif to hold in any model but not both. We interpret hit as `pi is true' and hif as`pi is false'.For each clause ci, it is now easy to add a disjunction corresponding to theclause: for instance, (pi _ :pj _ pk) is translated to hit _ hjf _ hkt . Obviously, theresulting set of constraints (which trivially can be computed in polynomial time)is an instance of CspSat(�3) and is satis�able i� F is satis�able.Finally, we show that (1), (2). The only-if direction is obvious so we provethe other direction. Assume to the contrary that there exists a set of constraintsH over � such that H is not satis�able. Since � is 1-independent of ;, thisimplies that there must be a single constraint h 2 H that is not satis�able|inother words, Rel(h) is the empty relation and we have a contradiction. 2This result does not hold if the original de�nition of �_ [8] is used (see Section 2for the exact de�nition). Assume that � has the GS property. Then, ? 62�. Assume furthermore that � is an arbitrary set of relations (we do not evenrequire that CspSat(�) is tractable). Then, ��_� is tractable! This followsfrom the fact that � 6� ��_�; every possible member of ��_� is either of theform R(x1; : : : ; xarity(R)) where R 2 � or R(x1; : : : ; xarity(R)) _ S(y1; : : : ; yarity(S))where R 2 � and S 2 �. Hence, the GS property ensures that every instanceof CspSat(��_�) is satis�able. It seems counter-intutitive that � [ � can be acomputationally harder problem than ��_� which explains why we have modi�edthe de�nition of �_.There are also technical reasons for de�ning �_ the way we have done. Forinstance, the result in the next section would be very di�erent. It simply statesthat CspSat(��_��) is tractable i� CspSat(� [ �) is tractable and � is 1-independent of �. With the original de�nition of �_, we would need to take careof several cases; one of them is that CspSat(��_��) is tractable if � has the GSproperty but � is not 1-independent of � (which once again is a `strange' casewhere CspSat(� [�) may be computationally harder than CspSat(��_��).3.2 1-IndependenceThe proof presented here is a slight variation of the proof of Theorem 10 so weonly sketch the proof.Theorem 11 The following statements are equivalent:1. � is 1-independent of �; 10



2. CspSat(��_��) is tractable;3. CspSat(� [�3) is tractable;Otherwise, CspSat(� [�3) and CspSat(��_��) are NP-complete.Proof: The implications (1) ) (2) follows from Theorem 5 and (2) ) (3) istrivial since � [ �3 � ��_��. To show that (3) ) (1), we assume the opposite,i.e. CspSat(� [�3) is tractable but � is not 1-independent of �. This impliesthat there exists a set of constraints X over � and a set H = fh1; : : : ; hng over �such that X [ fhig is satis�able for every 1 � i � n but X [H is not satis�able.Choose X and H such that jHj is as small as possible and note that jHj � 2.The existence of a set H 0 � H such that X [H 0 is not satis�able contradicts theminimality of H so X [H 0 is satis�able for all H 0 � H. Finally, consider the setX = X [fh1_h2g[ (H�fh1; h2g) and note that in any model of X , either h1 orh2 hold, but not both. The result can now easily be shown by a reduction from3-Sat that is analogous to the reduction employed in the proof of Theorem 10. 2By combining Theorems 10 and 11, we see that whenever � is 1-independent of�, � must have the GS property|this observation can signi�cantly simplify thesearch for sets of 1-independent relations.3.3 2-IndependenceThe proof of this case consists of two parts; the �rst part strengthens a tractabil-ity result by Cohen et al. [8] while the second part is a hardness result in the styleof Theorems 10 and 11. The reduction is quite di�erent, though, and is basedon 3-Colourability instead of 3-Sat. In the end of this subsection (Theo-rem 14), we complement this positive result with a negative result showing that2-independence is not su�cient for ensuring tractability of CspSat(��_�).Theorem 12 CspSat(� [ �2) is tractable i� � is 2-independent of �. Other-wise, CspSat(� [�2) is NP-complete.Cohen et al. have shown that CspSat(�2) is tractable if � is 2-independentof ;; i.e. an instance I of CspSat(�2) has a solution if every I 0 � I such thatjI 0j = 2 has a solution. We begin by generalising this result.Lemma 13 If � is 2-independent of �, then CspSat(� [�2) is tractable.Proof: We show that the algorithm 2Ind-Solvable de�ned in Figure 2 suc-ceeds when applied to C if and only if C has a solution.11



only-if: Assume that 2Ind-Solvable returns succeed. This implies that thereexists a satisfying truth assignment, �, for A[A0[A00. De�ne the set of constraintsC 0 as follows:C 0 = fc j �(qc) = trueg:We �rst show that C 0 has a solution. If C 0 has no solution, there exists c1; : : : ; ck 2C 0 such that Rel(c1); : : : ;Rel(ck) 2 � and Q� [fc1; : : : ; ckg is not satis�able. Weknow that Q� has a solution since the algorithm did not fail in line 4. Hence,the fact that � satis�es A and A00 implies that Q� [ fci; cjg is satis�able for1 � i; j � k so Q� [ fc1; : : : ; ckg is satis�able since � is 2-independent of �. SoC 0 does indeed have a solution.Now, let f be a model of C 0. For each disjunctive constraint in C we know thatat least one of its disjuncts is a member of C 0, because � satis�es the formulae inA0. We also know that every non-disjunctive constraint is a member of C 0 since� satis�es the formulae in A00. Taken together, this means that C has a model.if: Assume that C has a model f . De�ne the truth assignment � : fqc j c 2P [Q� [Q�g ! ftrue; falseg as follows:�(qc) = true i� c is satis�ed by f:We show that � is a satisfying truth assignment of A [ A0 [ A00 by consideringthe elements of A, A0 and A00 in turn.(1) For each formula (:qc0_:qc00) 2 A, we know that Q�[fc0; c00g has no model.Hence, it cannot be the case that �(c0) = �(c00) = true, which means that(:qc0 _ :qc00) is satis�ed by �.(2) For each formula (qc0 _ qc00) 2 A0 we know that there is a constraint c 2 Cof the form c = c0 _ c00. Since f is a model of C, f satis�es at least one ofc0 and c00 which means that (qc0 _ qc00) is satis�ed by �.(3) For each formula qc 2 A00 there exists a constraint c 2 C that is not adisjunction. Consequently, f must satisfy c and � satis�es qc.Finally, we have to show that the algorithm 2Ind-Solvable runs in polynomialtime. This follows directly from the observation that line 5 can be computed inpolynomial time (since CspSat(�[�) is tractable) and that the test in line 8 canbe performed in polynomial time by using some tractable algorithm for showingthe satis�ability of 2CNF formulae (such as the algorithm by Aspvall et al. [1]). 2Proof: (of Theorem 12) The if direction follows from Lemma 13. To show theother direction we assume to the contrary that CspSat(�[�2) is tractable but� is not 2-independent of �. 12



This implies that there exists a set of constraints X over � and a set H =fh1; : : : ; hng over � such that X [fhi; hjg is satis�able for every 1 � i; j � n butX [H is not satis�able. Choose X and H such that jHj is as small as possibleand note that jHj � 3. The existence of a set H 0 � H such that X [H 0 is notsatis�able contradicts the minimality of H so X[H 0 is satis�able for all H 0 � H.Thus, we can de�ne the satis�able set X = X[fh1_h2; h1_h3; h2_h3; h4; : : : ; hngwhich have the following property: In every model of X , exactly one of h1; h2; h3is not satis�ed.To prove the result, we show that 3-Colourability can be transformed toCspSat(�[�2) in polynomial time. Arbitrarily choose an undirected graph G =(V;E) such that V = fv1; : : : ; vkg. We will construct an instance of CspSat(�[�2) that is satis�able i� G is colourable with three colours.For each vertex vi, introduce a fresh copy of the set X where we denote theconstraints h1; h2; h3 as hi1; hi2; hi3, respectively. As we have already noted, thiswill force exactly one of hi1; hi2; hi3 not to hold in every model. We interpret thathij does not hold as `vertex vi has colour j'.For each edge (vi; vj) 2 E, we add the disjunctions hi1 _ hj1, hi2 _ hj2 andhi3 _ hj3 which ensures that vi and vj are not assigned the same colour. The re-sulting set of constraints can be computed in polynomial time, it is an instanceof CspSat(� [ �2) and is satis�able i� G is 3-colourable which concludes theproof. 2Theorem 14 There exist sets of unary relations �;� such that CspSat(�[�)is tractable, � is 2-independent of � but CspSat(��_�) is NP-complete.Proof: Consider the domain D = f0; 1; 2g. De�ne unary relations neqi � D,0 � i � 2, such that neqi(x) holds i� i 6= x and de�ne eqi � D, 0 � i � 1,such that eqi(x) holds i� i = x. Let � = fneq0; neq1; neq2g and � = feq0; eq1g.Proving the tractability of CspSat(�[�) and that � is 2-independent of � areroutine veri�cations.We show that CspSat(��_�) is NP-complete by a polynomial-time reductionfrom 3-Colourability. Let G = (V;E) be an arbitrary undirected graph. Wewill construct an instance X of CspSat(��_�) that is satis�able i� G can be3-coloured.Assume V = fv1; : : : ; vmg. To simplify our description of the reduction, wewill only consider edges e = (vi; vj) in E such that i < j. Obviously, we cando this without loss of generality since G is undirected. For each vertex v 2 V ,introduce a variable v̂ and for each edge (v; w) 2 E, introduce three variables eivw,0 � i � 2. Finally, for each edge (v; w) 2 E, add the following six constraints toX: (1) neq0(v̂) _ eq0(e0vw) (2) neq0(ŵ) _ eq1(e0vw)(3) neq1(v̂) _ eq0(e1vw) (4) neq1(ŵ) _ eq1(e1vw)(5) neq2(v̂) _ eq0(e2vw) (6) neq2(ŵ) _ eq1(e2vw)13



Algorithm: 2Ind-SolvableInput: A �nite set C of constraints over� [�2.Output: succeed if C is satis�able; fail other-wise.1. P  fc1; c2 j c 2 C and c = c1 _ c2g2. Q�  fc 2 C j c is not a disjunction and Rel(c) 2 �g3. Q�  fc 2 C j c is not a disjunction and Rel(c) 2 � n�g4. if Q� has no solution then return fail5. de�ne a set of boolean variables fqc j c 2 P [Q� [Q�g6. A  f(:qc0 _ :qc00) j c0; c00 2 P [Q� and Q� [ fc0; c00g not satis�ableg7. A0  f(qc0 _ qc00) j 9c 2 C such that c = c0 _ c00g8. A00  fqc j c 2 Q� [Q�g9. if A [ A0 [ A00 is satis�ablethen return succeedelse return failFigure 2: Algorithm 2Ind-SolvableThe value of variables v̂ will equal the colour of the corresponding vertex andvariable eivw is to be interpreted as follows: if eivw = 0, then variable ŵ does nothave the value i; otherwise, ŵ equals i. Now, consider constraint (1). It tells usthat either v̂ is not equal to 0 or the variable ŵ is not equal to 0. Hence, theconstraints (1), (3) and (5) ensure that adjacent vertices are not assigned thesame colour. For this to work, it must also be true that a variable ŵ cannot havea value i and at the same time eivw = 0. This is guaranteed by constraints (2),(4) and (6).We can now show that X is satis�able i� G is 3-colourable.only-if: Let M be a model of X. We show that M(v̂) 6=M(ŵ) whenever there isan edge between v and w in G. Since the range of M is f0; 1; 2g, M can easilybe modi�ed into a three-colouring of G.Assume to the contrary that X has a model M such that M(v̂) =M(ŵ) = 0(the other two cases are analogous) and (v; w) 2 E. Constraints (1) and (2)implies that both eq0(e0vw) and eq1(e0vw) hold which leads to a contradiction.if: Let f : V ! f0; 1; 2g be a 3-colouring of G. Construct a model M of X asfollows:M(v̂) = f(v); 14



M(eivw) = 0 if f(w) 6= iM(eivw) = 1 if f(w) = iTo see that M is a model of X, arbitrarily choose a constraint c in X. Assume�rst that c is on the form (1) neq0(v̂) _ eq0(e0vw). This constraint is not satis�edi�M(v̂) = 0 andM(e0vw) = 1. By the construction ofM , it follows that f(v) = 0and f(w) = 0 which contradicts the fact that f is a 3-colouring of G.Assume c is on the form (2) neq0(ŵ) _ eq1(e0vw) instead. This constraint isnot satis�ed i� M(ŵ) = 0 and M(e0vw) = 0. By the construction of M , it followsthat f(w) = 0 and f(w) 6= 0 at the same time. 24 1-Independence and Re�nementsIn the previous section we have shown that the 1-independence property is anecessary and su�cient condition for tractability of a natural class of disjunctiveconstraints. However, it is often quite di�cult to prove that this property holdsfor a certain class, and this has to be proven for each class anew. Recently,Renz [17] proposed a general method for proving tractability of classes of relationswhich is comprised by running a simple algorithm. This re�nement method,which is described in Section 2.3, seems to be related to the 1-independenceproperty in the following (simpli�ed) way:The 1-independence property speci�es when a constraint can be added to a setof constraints without changing consistency, while by the re�nement method itcan be shown if a relation can be removed from a disjunctive constraint withoutchanging consistency. Actually, removing a relation R from a disjunctive con-straint xSy is the same as adding the constraint x:Ry. In Subsection 4.1, we tryto elaborate this similarity and show under which conditions the 1-independenceproperty corresponds to the re�nement method and vice versa. Some successfulexamples for using the re�nement method for proving 1-independence propertyare presented in Subsection 4.2. We stress once again that the results in thissection are only applicable when considering binary relations.4.1 Connections between 1-Independence and Re�nementsWe will now show how the re�nement method can be used for proving 1-independence.Let A be a set of basic relations and choose S � 2A such that S can be decidedby path-consistency. Let � be a subset of S. We make the following additionalassumptions about S and �:1. eq 2 S; 15



2. � is closed under intersection.These restrictions can be imposed without loss of generality: First note that sinceCspSat(S) is tractable, the problem CspSat(S [feqg) is also tractable and cantrivially be reduced to the �rst problem (by contracting any two variables relatedby eq to a single variable). The fact that � can be assumed to be closed underintersection follows from the next lemma.Lemma 15 Let �;� be sets of relations such that � is 1-independent of �, thenthe closure of � under intersection is also 1-independent of �.Proof: Let � be a set of constraints over � and H = fh1; : : : ; hng a setof constraints over � [ fR \ Sg for some R; S 2 �. Assume that � [ fhig,1 � i � n is satis�able. Construct the setH 0 = (H � f(R \ S)(x) 2 Hg) [ fR(x); S(x) j (R \ S)(x) 2 Hgand note that �[ fh0g is satis�able for all h0 2 H 0. The constraints in H 0 are allbased on the relations in � so �[H 0 is satis�able by 1-independence. It followsfrom the construction of H 0 that � [ H is also satis�able and � [ fR \ Sg is1-independent of �. 2From now on, we assume that all relations encountered are members of S. Weneed a couple of lemmata before we can establish the main result.Lemma 16 A triple (R; S; T ) is satis�able i� R \ (S � T ) 6= ;.Proof: The only-if direction is obvious. We show the other direction by choos-ing some basic relation K 2 R\(S �T ) and arbitrarily picking two values a and csuch that aKc. The fact that K 2 S � T implies that for all possible choices of aand c, there exists a value b such that aSb and bT c. By making the assignmentsx = a, y = b and z = c, we have shown that (R; S; T ) is satis�able. 2Lemma 17 Assume that S can be re�ned by M�, let R be a relation in S andK1; : : : ; Kn 2 �. If R \Ki 6= ;, 1 � i � n, then R \ Tni=1Ki 6= ;.Proof: Induction over n. The lemma obviously holds for n = 1 so we assumethat it holds for n = k, k � 1. We show that the claim holds for n = k + 1. Theinduction hypothesis tells us that R\Tki=1Ki 6= ; and we know that Tki=1Ki 2 �since � is closed under intersection. Consider the triple (R;R; eq) and note thatit is path-consistent since R = R \ (R � eq) and eq = eq \ (R �R�1).Since R \ Kk+1 6= ;, the fact that S can be re�ned by M� implies that(R \ Kk+1; R \ Tki=1Ki; eq) is satis�able. By Lemma 16, this is equivalent with(R \ Kk+1) \ ((R \ Tki=1Ki) � eq) 6= ; so (R \ Kk+1) \ (R \ Tki=1Ki) =(R \ Tk+1i=1 Ki) 6= ; which concludes the induction. 216



Theorem 18 If S can be re�ned by M�, then � is 1-independent of S.Proof: Let � be a set of constraints over S and H = fh1; : : : ; hng a set ofconstraints over �. Let �0 be the set � after enforcing path-consistency andassume that � [ fhig, 1 � i � n, has a solution.Arbitrarily choose i and assume that hi = xR0y. Since �[fhig has a solution,�0 [ fhig also has a solution and there is a non-empty relation R that relates xand y in �0. Note that adding hi to �0 is the same thing as re�ning the relationxRy 2 �0 to x(R \ R0)y. Certainly, R \ R0 6= ; since �0 [ fhig would not havea solution otherwise. Consequently, M�[R][R \ R0] = true since R0 2 � and byLemma 17, we know that the relation R cannot be re�ned to the empty relationby adding more constraints from H. Thus, adding the constraints in H to � areall re�nements according to M�.Since Check-Re�nements(S;M�) succeeds, Theorem 8 tells us that such re-�nements can be made without making �0 inconsistent, i.e. �0[H has a solutionwhich trivially implies that �[H has a solution. We have thus shown that � is1-independent of S since � and H were arbitrarily chosen. 2This theorem gives us the possibility to prove 1-independence of � with respectto S automatically by simply running Check-Refinements(S;M�). If thealgorithm returns succeed, we know that � is independent of S. In order tomake use of a negative answer of the algorithm, we also have to prove the oppositedirection, i.e. independence of � with respect to a set S implies that Check-Refinements(S;M�) returns succeed. Although this is a highly desirableproperty, we have not been able to prove this nor did we �nd a counterexample.There are, however, many examples for which this conjecture holds. As we will seein Subsection 4.2, this includes all 1-independence results for the point algebrasfor partially and totally ordered time. We give a proof of a slightly limited versionof this conjecture.De�nition 19 Let S � 2A and R 2 S. We say that path-consistency makesR explicit i� for every path-consistent instance � of CspSat(S), the followingholds: if M(x)RM(y) for every M 2 Mods(�), then xSy 2 � and S � R.Theorem 20 Let S � 2A and assume that � is independent of S. Then,Check-Refinements(S;M�) returns succeed if and only if path-consistencymakes :R explicit for every R 2 �.Proof: only-if: Assume to the contrary that there exists a path-consistentinstance � of CspSat(S), x; y 2 Vars(�) and relations R 2 �, S 2 S such that:1. xSy 2 �;2. for all M 2 Mods(�), M(x):RM(y); and17



3. S \R 6= ;.Since R 2 � and Check-Refinements(S;M�) returns succeed, the instance�0 = � [ fuRv j uTv 2 � and T \ R 6= ;ghas a solution. However, S \ R 6= ; so xRy 2 �0. We know that all models Mof � have the property M(x):RM(y) so every model M 0 of �0 must also havethis property. This contradicts the fact that �0 has a model and, consequently,S \ R = ; and S � :R. We have thus shown that path-consistency makes :Rexplicit.if: Let � be a path-consistent instance of CspSat(S) and arbitrarily choosea constraint xSy 2 � such that S \ R 6= ; for some R 2 �. The fact thatpath-consistency makes :R explicit gives that � [ fxRyg has a solution and,by independence, �0 = � [ fuRv j R 2 �; uTv 2 � and T \ R 6= ;g has asolution. However, �0 is equivalent to � re�ned by the matrix M� so Check-Refinements(S;MR) returns succeed by Theorem 8 2Corollary 21 Given a set of relations S � 2A for which path-consistency com-putes minimal labels and a re�nement matrixM�, Check-Refinements(S;MR)returns succeed if and only if � is independent of S.Proof: If path-consistency computes minimal labels, then it makes :R explicitfor every R 2 �. 2Examples of when path-consistency computes minimal labels can, for instance,be found in Deville et al. [9] and Bessi�ere et al. [3].4.2 Computational experienceWe will demonstrate that many 1-independence results can be obtained by usingthe re�nement method. We shall show that all independence results for the pointalgebras for partially and totally ordered time can be derived using re�nements.This is possible since we know every maximal tractable set of disjunctions ofrelations for partially ordered time [5]. This, of course, requires a de�nition of amaximal tractable set of disjunctions of relations. Let B be a set of basic relationsand � � B� such thatCspSat(�) is tractable. We say that � ismaximal tractable(with respect to B) i� for every R 2 B� such that R 62 �, �[fRg is not tractable.The point algebra for partially ordered time is based on the notion of relationsbetween pairs of variables interpreted over a partially-ordered set. We considerfour basic relations which we denote by <;>;= and k. If x; y are points in apartial order hT;�i then we de�ne these relations in terms of the partial ordering� as follows: 18



�A �A �B �B �C �C �D< � � �� � � �<> � �<=> � � �k � � � �k = � � � �= � � � �6= � � � � � �< k � � � �� k � � � �Table 1: Tractable classes of the point algebra for partially ordered time [5].1. x < y i� x � y and not y � x2. x > y i� y � x and not x � y3. x = y i� x � y and y � x4. xky i� neither x � y nor y � xThe point algebra for partially ordered time has been throughly investigatedearlier and a total classi�cation with respect to tractability has been given inBroxvall and Jonsson [4]. In Broxvall and Jonsson [5] the sets of relations inTable 1 are de�ned and it is proven that �A�_��A, �B�_��B, �C�_��C and ��D arethe unique maximal tractable disjunctive classes of relations for partially orderedtime. The proofs of tractability for those sets relied on a series of handmadeindependence proofs. We will now derive these independence results using there�nement method.To do so, we need to show that the classes �A;�B;�C and �D are decidable bypath-consistency. We begin by proving a useful connection (Lemma 22) betweenRCC-5 and the point algebra for partially ordered time which in turn will beneeded to prove that path-consistency decides �A and �B.RCC-5 [2] is based on the notions of regions and binary relations on them. Aregion p is a regular open set of a topological space. Regions themselves do nothave to be internally connected, i.e. a region may consist of di�erent disconnectedpieces.Given two regions, their relation can be described by exactly one of the ele-ments of the set B of �ve basic RCC-5 relations. The de�nition of these relationscan be found in Table 2. 19



XfDRgY i� X \ Y = ;XfPOgY i� 9a; b; c : a 2 X; a 62 Y; b 2 X; b 2 Y; c 62 X; c 2 YXfPPgY i� X � YXfPPIgY i� X � YXfEQgY i� X = YTable 2: The �ve basic relations of RCC-5.Lemma 22 Let � be a set of relations in the point algebra for partially orderedtime and de�ne the function � such that1. �(<) = PP;2. �(>) = PP�1;3. �(=) = EQ; and4. �(jj) = (DR PO).Then, � can be decided by path-consistency if the set�0 = f[r2R �(r) j R 2 �gof RCC-5 relations can be decided by path-consistency.Proof: Let � be an arbitrary CSP instance over the relations in �. De�nethe set � of RCC-5 formulae as follows: for each xi R xj 2 �, add the formulaxi Sr2R �(r) xj. Note that � is a CSP instance over �0 that, by assumption, canbe decided by path-consistency.We begin by comparing the composition tables for partially-ordered time andthe RCC-5 relations (PP), (PP�1), (EQ) and (DR PO):< > = k< f<g > f<g fk <g> > f>g f>g f> kg= f<g f>g f=g fkgk fk <g f> kg fkg >(PP) (PP�1) (EQ) (DR PO)(PP) (PP) > (PP) (PP DR PO)(PP�1) > (PP�1) (PP�1) (PP�1 DR PO)(EQ) (PP) (PP�1) (EQ) (DR PO)(DR PO) (PP DR PO) (PP�1 DR PO) (DR PO) >20



By also noting that <�1 = >, >�1 = <, PP�1 = PPI, PPI�1 = PP and that allother relations are invariant under ��1, it is obvious that the empty relation canbe derived from � if and only if it can be derived from �. Thus, we only have toshow that whenever � has a model, � also has a model.Let M be a model that assigns regions to the variables x1; : : : ; xn that appearin �. We de�ne an interpretation N from the variables in � to the partial orderhfM(xi) j 1 � i � ng;�i as follows: N(xi) = M(xi) for 1 � i � n. To concludethe proof, we pick an arbitrary constraint xiRxj in � and show that it is satis�edby the interpretation N . Assume now, for instance, that M(xi) (PP) M(xj).By the de�nition of �, we know that f<g � R and it follows immediately thatN(xi) < N(xj) and the constraint xiRxj is satis�ed. The remaining cases can beproved analogously. 2Theorem 23 Path-consistency decides consistency for �A, �B, �C and �D.Proof: Let �0 = fSr2R �(r) j R 2 �Ag (where � is de�ned as in Lemma 22)and note that �0 � R285 [14]. Since R285 can be decided by path-consistency [19],Lemma 22 implies that path-consistency decides �A.Similarly, we can verify that path-consistency decides �B; in this case, �00 =fSr2R �(r) j R 2 �Bg � R145 [14]. Showing that R145 is decided by path-consistency is straightforward and left as an exercise (hint: compare R145 andthe point algebra for totally ordered time and recall that the latter is decided bypath consistency).For �C the result follows from the fact that it is a subset of �A and �D istrivially decided by path-consistency. 2By using the algorithm Check-Refinements, we can automatically verify that�A;�B;�C and �D are valid re�nements of �A;�B;�C and �D, respectively.Theorem 23 now gives that �A;�B;�C and �D are independent of �A;�B;�Cand �D, respectively, so we have proven tractability of all maximal tractable setsof disjunctions of relations for the point algebra for partially ordered time.In Broxvall and Jonsson [5] the point algebra for totally ordered time is alsoinvestigated and the following two classes are de�ned:X1 = f(<); (<=); (<>); (=)g�_f(<>)gX2 = f(<=); (=)g�These two classes are the only two maximal tractable sets of disjunctions ofrelations. It is well-known that path-consistency decides the point algebra fortotally ordered time and the independence result can easily be veri�ed using there�nement algorithm. 21



5 Conclusions and Open QuestionsWe have studied the complexity of reasoning with disjunctive constraints. Wehave shown that three previously presented properties are necessary and su�cientfor tractability of CspSat(��), CspSat(��_��) and CspSat(� [�2). There isat least one interesting case that is not covered by our results so we pose thefollowing problem:Open question 1. Assume CspSat(� [ �) is tractable. What is a necessaryand su�cient condition for tractability of CspSat(��_�).Ideas taken from Cohen et al. [7] can probably be used for answering this questionif we restrict � and � to be relations over disjoint domains.We have provided a method for automatically deciding the 1-independenceproperty based on re�nements. The only requirement for applying this methodis the su�ciency of path-consistency for deciding consistency in the class of con-straints under consideration. In many cases this can, however, also be shown byusing re�nement techniques. We have demonstrated that this method is completein two cases (the point algebras for totally-ordered and partially-ordered time)but we have not been able to prove this in general. We ask the following:Open question 2. Assume path-consistency decides CspSat(�). Is it true that� � � is 1-independent of � if and only if Check-Refinements(�;M�) returnssucceed?Even if it turns out that the answer to the previous question is `yes', there isstill room for improving the re�nement method since (1) it is restricted to binaryrelations only; and (2) path-consistency must decide the underlying CspSatproblem.Open question 3. Given arbitrary sets �,� of relations, is there an algorithmfor deciding whether � is 1-independent of � or not?The previous questions naturally suggest our �nal question.Open question 4. Given arbitrary sets �,� of relations, is there an algorithmfor deciding whether � is 2-independent of � or not?AcknowledgementsWe would like to thank Andrei Bulatov, David Cohen, Peter Jeavons, AndreiKrokhin and the anonymous reviewers for valuable comments. Mathias Broxvall22
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